
CHAPTER 5

MATHEMATICAL MODELS OF RELIABILITY

INTRODUCTION

In a general sense, we can say that the science of statistics attempts to
quantify our uncertainty about the outcome of an experiment or test. Before
we conduct an experiment, we are aware of’ the possible outcomes, but we are
not sure which of the outcomes will actually result. The mathematical model,
a logical extension of our assumptions about the experiment, quantifies our
uncertainty and provides us with a tool for analysis of the outcome.

Suppose that a system is to be put into operation. We know that after a
certain amount of operating time it will experience a failure. We would like
to know when the system will fail. Generally, any prediction about the actual
time of failure will not be accurate enough to be worthwhile. However, we can
address more confidently questions such as: “Will the system operate free of
failure for at least 500 hours?” A model that describes the experiment in
question will help us answer these questions with a certain amount of
assurance.

In this chapter, we consider three models that are pertinent to RAM consid-
erations: the binomial, the Poisson, and the exponential. The binomial and
Poisson are discrete models in that they essentially count numbers of fail-
ures. The exponential model is continuous in that it describes times between
failures . Although the Poisson model addresses discrete events, it is a
continuous time model. It counts failures as they occur over a period of
time, i.e. , the possible outcomes of the experiment, conducted on a continuous
time basis, are enumerated as numbers of failures. This distinction will
become clearer as we contrast the poisson model and the binomial model.

In its most basic form, a mathematical model of a statistical experiment is a
mathematical expression (function) that defines the probability associated
with each of the outcomes of the experiment. For our purposes, we will dis-
cuss the two basic types of models: discrete and continuous. The type of
model--discrete or continuous--is defined by the type of outcome that the
experiment provides.

DISCRETE MODELS

A discrete model is appropriate when the possible outcomes of an experiment
can be enumerated or counted. In its most basic form, the discrete model is a
mathematical expression (function) that defines the probability of each indi-
vidual outcome. A simple example is the following. Suppose a die is to be
tossed once, and the outcome of interest is the number of dots facing up when
the die comes to rest. The outcomes are {1, 2, 3, 4, 5, 6]. If we assume
that the die is “fair, ” the probabilities can be expressed as follows :

P(1) ‘P(2) ‘P(3) ‘P(4) = P(5) =P(6) = I/6.

Graphically, we display the probabilities in Figure 5-1.
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FIGURE 5-1
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Suppose our experiment is to toss two dice , and the outcome of interest is the
sum of the dots facing up. The set of all possible outcomes is {2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12}. The probabilities can be expressed as follows:

P(2) = p(12) = 1/36
P(3) = p(n) = 2/36

p(5) = p( 9) = 4/36

P(4) = P(10) = 3/36
P(6) = p( 8) = 5/36

P( 7) = 6/36.

Graphically, we display the probabilities in Figure 5-2.
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GONTINUOUS MODELS

A statistical experiment often results in an outcome that is measured on a
continuous scale. Time and distance are perhaps the most common continuous
variables. In its most basic form, the continuous model is a mathematical
expression (function) useful in computing probabilities of certain outcomes.
It differs from probabilities for discrete models in that it does not define
probabilities directly. Generally, for a continuous model, it only makes
sense to consider the probability of an outcome within a range of values or a
certain interval--between 100 and 150 miles, more than 10 hours. The prob-
ability of an outcome falling within a given range is the area which lies
beneath the continuous model curve over that range. Consider the examples
below.

FIGURE 5-3 GRAPH OF THE EXPONENTIAL MODEL

I
f(x) =e-x
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The probability that an outcome is between 1 and 2 is defined by the area
under the curve between the values 1 and 2. Therefore,

P(outcome falls between 1 and 2)

J
2

e-xd~ = -e-x ~ -1 -2 = o 233= = e - e . .
1

The probability that an outcome is between 0.50 and 0.51 is

I
0.51

e-xdx
0.50

-0.50 -0.51which is e - e or 0.006.
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FIGURE 5-4 GRAPH OF lJNI F O R M  M O D E L
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Figure 5-4 illustrates another possible continuous model with the function
being f (x) = O. 1 defined on the interval 10 < x < 20.

The probability that an outcome is less than 13 is

J
13

0.1 dx,
10

which is 1.3-1.0, or 0.3. The probability that an outcome is between 16 and
16.1 is

s 16.1
0.1 dx,

16

which is 1.61-1.60, or 0.01.

BINOMIAL MODEL

The model that is used most commonly to describe the outcomes of success/fail
test programs is the binomial model. In order for a testing program to be a
binomial experiment, four conditions are required. They are:

- The test period consists of a certain number (n) of identical trials.

- At any individual time unit (trial) , the test results in a success or
failure.

- The outcome at any individual time unit is independent of the outcomes
of all other time units.

- The reliability (probability of success) of the system remains un-
changed for each trial.
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In a lot acceptance sampling test program, the third and fourth conditions are
not precisely satisfied. In such a case, the hypergeometric distribution
provides the exact analysis and must be used for small lot sizes. However, if
the sample size (n) is small compared to the lot size (N), say n/N < 0.05,
then the binomial model provides a reasonable basis for analysis. #e do not
present a discussion of the hypergeometric distribution in this text. The
reader can refer to any number of moderate level statistics textbooks for
information on the use of hypergeometric distribution.

Examples of binomial experiments are:

- firing a missile (is it launched successfully?);

- firing a missile (does it hit the intended target?);

operating any system over time (does it achieve its durable life?).

For the remainder of this section on binom’ial models, the following notation

the number of trials or test units.

the probability of failure for any trial. (We use p here as the
probability of failure instead of the more classical probability of
success because of the failure-oriented approach used by the Poisson
model) .

binomial coefficient, which by definition is equal to n!/[k!(n-k)!],
where k must be some integer between O and n inclusive. By defini-
tion, n!=n(n-1)(n-2). ..l and 0!=1.

the probability of k failures out of n trials with p the probability
of failure on any one trial.

the probability of k or fewer failures out of n trials with p the
probability of failure on any one trial.

Any binomial experiment (test program) is completely characterized by the
number of trials and the probability of failure for any given trial. The
probability of failure (p) is generally an unknown value about which testing
requirements are stated.

In Chapter 7, the binomial is used in this reversed role: the test results
will have been observed and we will make inferences about the probability of
success based on the binomial model.

For the binomial model an exact mathematical formula is used to compute prob-
abilities. We denote the probability of exactly k failures out of n trials
for a fixed probability of failure, p, by brip(k), and

>

brip(k) ‘(~) Pk(l-P)n-k.>
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The probability of k or fewer failures, termed the binomial cumulative distri-
bution function, is B* Jk), where

>

B
‘,P(k) = i~~ ‘;) Pi(’-p)n-i

k
= Zb (i). (5.2)

i=o njp

Figure 5-5 presents graphs of three binomial models. The graphs chosen por-
tray models for which the values of p are equal to 0.2, 0.5, and 0.7 with n,
the number of trials, equal to 10 in each case.

For the case p = 0.2, the graph shows that a large number of failures--more
than 5--is unlikely. Note that the most likely number of failures is 2, which
corresponds to a percentage of failures equal to 0.2. For the case p = 0.7,
the graph shows that a small number of failures--fewer than 5--is unlikely.
Once again, the most likely number of failures, 7, corresponds to a percentage
of failures equal to 0.7. For the case p = O.5, the graph shows that a mod-
erate number of failures--between 3 and 7-- is likely, with 5 failures (half of
the trials)

Computation

is large.
are:

use

use

use

being most likely.

of binomial probabilities using b or B
n9P

is cumbersome when n
npp

Three alternative methods for determining binomial probabilities

of a statistics package for a calculator,

of binomial tables, and

of an approximating distribution (Poisson or normal).

Tables of b or B
n$p

for n less than or equal to 20 are generally published
n~p

in elementary statistics textbooks. More extensive tables are available but
are not as easy to locate. A table of cumulative binomial probabilities for
selected values of n, k, and p is given in Appendix B, Table 1. When n is
larger than 20, either the Poisson distribution (p > 0.8 or p < 0.2) or the
normal distribution (0.2 < p < 0.8) provides reasonable approximations to
binomial probabilities. (See Appendix A for details on these procedures.)

In Case Studies 5-1, 5-2 and 5-3, we demonstrate the application of the
binomial model and compute probabilities associated with the model.
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FIGURE 5-5 BINOMIAL PROBABILITIES
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POISSON MODEL

The most commonly used model for describing the outcomes of a continuous time
testing program is the Poisson model. In order for a testing program to be a
Poisson experiment, it is required that no more than one event (failure) can
occur at the same time and that the number of events (failures) is related
directly to the amount of test time. Examples of Poisson experiments are:

number of failures of a system during a test cycle;

number of unscheduled maintenance actions required during a given time
period; and,

number of misfires of an automatic weapon firing over a given time
period.

For the remainder of the section on Poisson models and the succeeding section
on exponential models, the following notation is used.

A: Failure rate or average number of failures per unit

T: The length of the interval (hours, ❑ iles, etc.) of :
(e.g., mission duration, test exposure).

gA,T(k): The probability of exactly k failures during a test
length T when the failure rate is A.

time.

nterest

period of

GA,T(k): The probability of k or fewer failures during a test period of
length T when the failure rate is A.

Any Poisson experiment (test program) is completely characterized by the
length of time on test and the mean value function. The mean value function
for a specific test length is the average number of failures to occur during
the specified length. When the system has a constant failure rate for the
entire interval T, this function is simply AT. A discussion of constant
failure rate assumptions can be
ure rate of the system on test,
between failures (MTBF) which is
generally stated in terms of the

found in ~hapter 7. The value A is the fail-
A more familiar parameter is the mean time

the reciprocal of A. System requirements are
mean time between failures.

As with the binomial model, Poisson probabilities can be computed using an
exact mathematical formula. We denote the probability of exactly k failures
during a test period of length T where the failure rate is A, by gA,T(k), and

bj,#d =

The number of
probability of

~AT)ke-AT
. .

k! (5.3)

failures may be any integer value including O and O! = 1. The
k or fewer failures, termed the Poisson cumulative distribution
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function, is GA ~(k), where
)

~ (AT)ie-AT
GA,T(k) = .i=o 1!

k
= Z gA,T(i).

i=()
(5.4)

Figure 5-6 presents graphs of three Poisson models. Values for AT of 2, 5,
and 7 were chosen to demonstrate the effect of time T on the numbers of fail-
ures likely to be seen. When A, the failure rate, is fixed, the number of
failures will, in all likelihood, increase with the amount of operating time
T.

Alternative methods for computing Poisson probabilities include:

use of a statistics package for a calculator,

use of Poisson tables or charts, and

use of an approximating function.

In Case Studies 5-5 and 5-6 we demonstrate the application of the Poisson
model and compute probabilities associated with the model. Tables of gA T(k)

T
or GA ~(k) are available in many textbooks. A table of cumulative Poisson

probabilities is given in Appendix B, Table 3. Appendix B, Chart 1 is also
useful in determining cumulative Poisson probabilities. When the product AT
is greater than 5, the normal distribution provides reasonable approximations
to Poisson probabilities . (See Appendix A for details on this procedure. )

EXPONENTIAL MODEL

Generally, it is more informative to study times between failures, rather than
numbers of failures, for a continuous time testing program. The most commonly
used model for describing the times between failures for a continuous time
testing program is the exponential model. In order for a testing program to
qualify as an exponential experiment, the following conditions are required:
(1) the system is as good as new after each repair, and (2) the probability of
failure in any given interval of time is the same no matter how old a system
is and no matter how many failures it has experienced. The second condition
is an intuitive description of the so-called memoryless property. The system
cannot “remember” how old it is, nor can it “remember” how often it has
failed. The examples listed for Poisson experiments can serve also as
examples of exponential experiments.

For the exponential model, there is an exact mathematical formula used for
computing probabilities that a certain amount of time will pass before the
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next failure. The probability that a failure will occur in some future inter-
val of time (a, b) for a system with failure rate A is

J
b

Ae ‘Axdx. (5.5)
a

Ax
FIGURE 5-7 GENERAL EXPONENTIAL MODEL:f(x]=h-

a b
O U T C O M E

The exponential cumulative distribution function, FA(t), defines the prob-

ability that the system will fail before time t. By definition,

J
t

FA(t) = Ae-hdx = 1 - e-At.
o

(5.6)

A function of more interest to us is the reliability function, R(t), which
defines
without

the probability that the system will opera~e for t units of time
failure. By definition,

J
(n

RA(t) =
~e+x -Atdx=e .

t
(5.7)

-(t/e)
The reliability function, R(t), can also be expressed as e , where 6, the
reciprocal of A, is the mean time between failures (MTBF). The reliability
function R(t) translates the effectiveness parameters A, the failure rate, or
e, the MTBF, into reliability. Reliability is the probability of failure-free
operation for a specified length of time, t.

We referred to the variable t as a time variable
Measure of life units which can be appropriate are
rounds.

As an example, suppose that the mission profile
mission duration (MD) of 40 hours and the system
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operational mission failure (MTBOFfF) of 400
the system successfully completes a mission
ability function, R(t). Now

hours. Then the probability that
can be evaluated using the reli-

R(t) = e-At = e-t’g = e -(MD/MTBOMl)

Since MD = 40 hours and MTBOMF = 400 hours, the mission reliability is
-40/400e , which reduces to 0.905. In other words, the system has a 90.5%

chance of completing the 40-hour mission.

NOTE : A useful approximation for the reliability function is :

e-t/e z I - t/e for tle < 0.1.—

For the above example, t/El = O. 1 so that the approximation yields 0.90.

In Case Study 5-4, we demonstrate the application of the exponential model
with computations based on both models. See Case Studies 5-4, 5-5, and 5-6,
for more illustrations of this computation and other computations associated
with the Poisson/exponential model.

The reliability function e
-At

may also be sym-

bolized as exp(-At) or in‘l(-At) . That is, it
is the exponential function evaluated at the
point, -At, or it is the inverse of the natural
logarithm function evaluated at that point.
Some calculators evaluate the exponential func-
tion as the inverse natural logarithm function.
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CASE STUDY NO. 5-1

Background

A sensor device has an operational mission reliability of 0.90 for a 4 hour
mission. At least 3 sensors are required to locate targets. Failed sensors
will not be repaired during a mission.

Determine

. 1. If a system employs 3 sensors, what is the probability of successfully
completing the mission?

2. If a system employs 4 sensors, what is the probability of successfully
completing the mission?

Solution

1 . We use the mathematical formula for the binomial model given in equation
5.1, with

R=l -p=o.9

p=l - 0.9 =0.1

n = 3, and

Applying equation 5.1, the probability of O failures is:

b30 #@ =(;)(O. 1)0(0.9)37.

The binomial coefficient is:

() –3 3!
o

= ()!3! = 1

The probability of O failures is:

(1)(1)(0.9)3 = 0.729.
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2. We use the binomial cumulative distribution function given in equation
5.2, with

R=l-p=O.9

p=l. 0.9 = 0.1

n = 4, and

k=]

Applying equation 5.2, the probability of 1 or fewer failures is:

J34,0.J0  = : (;)(o. l)k(o.9)(4-k)
k=o

= (:)(0.1)0(0.9)4 + (:)(0.1)1(0.9)3

The binomial coefficients are:

4
( )

4! 4
0 ‘~ ( )

=l,and ~ =%=4.
. .

The probability of 1 or fewer failures is:

(1)(1)(0.9)4+ (4)(0.1)1(0.9)3

= 0.656 + 0.292 = 0.948.

Commentary

For the second problem, we use the binomial cumulative distribution function
since we are required to compute the probability of O failures or 1 failure,
i.e., the cumulative probabilities of both outcomes.
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CASE STUDY NO. 5-2

Background

A lot of 500,000 rounds of ammunition is available for sale. The buyer will
purchase the lot if he has reasonable assurance that the lot is no more than

. 15% defective.

Determine

1. If the true proportion of defects is O. 15, what is the probability a
sample of size 10 will yield fewer than 2 defects? More than 3 defects?

2. If the “true proportion of defects is 0.05, what is the probability a
sample of size 20 will yield fewer than 3 defects? More than 1 defect?

3. If the true proportion of defects is 0.02, what is the probability a
sample of size 100 will yield fewer than 5 defects?

4. If the true proportion of defects is O. 15, what is the probability a
sample of size 50 will yield more than 10 defects? Between 5 and 10 defects,
inclusive?

Solutions

This is a lot acceptance sampling problem. Although the binomial model is not
technically correct, it will provide very good approximations in this case
because the ratio of sample size n to lot size N(N = 500,000) is not more than
0.0002. A further explanation of the use of the binomial model for lot ac-
ceptance sampling problems is found on page 5-5.

1. The probability of failure, p, is O. 15. For fewer than 2 defects, we
look in the tables for n = 10, the column p = 0.15, and the row c = 1. The
probability is 0.5443.

The probability of more than 3 defects is the difference between 1 and the
probability of fewer than 4 defects. The probability of fewer than 4 defects
is 0.9500, so the probability of more than 3 defects is 0.05.

2. The probability of fewer than 3 defects out of 20 is obtained directly in
the tables for n = 20, the column p = 0.05, and the row c = 2. The prob-
ability is 0.9245.

The probability of more than 1 defect is the difference between 1 and the
probability of fewer than 2 defects. The probability of fewer than 2 defects
is 0.7358, so the probability of more than 1 defect is 0.2642. ~

3. A binomial table for n = 100 is not given in the Appendix and would be
difficult to locate in other sources. However, because the sample size, n, is
large, we may use an approximation fairly confidently. Recall that there are
two approximations (poisson and normal) to the binomial presented in the text
of Chapter 5. The procedures for using these approximations are detailed in
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Appendices A-1 and A-2. Using the normal approximation (Appendix A-1) , the
probability of 4 or fewer defects out of 100 trials is

1- P(z ~ (4 + 0.5 - (100)(0.02))/~100(0.02)(0.98))  ,

which reduces to

1- P(Z ~ 1.79) = 0.9633 .

Using the Poisson approximation (Appendix A-2) , we set m = 2, c = 4, and
obtain the probability directly from Appendix B, Table 3 as 0.947.

The exact value for the probability of fewer than 5 defects, obtained from the
formula, is 0.9491, Note that, although each approximation is reasonably
close to the exact value, the Poisson has provided the better approximation.
As noted on page 5-6, the Poisson is more appropriate when p is very large or
very small (in our case, p = 0.02).

4. The probability of more than 10 defects is the difference between 1 and
the probability of fewer than 11 defects. The probability of fewer than 11
defects using the binomial tables for n = 50, the column p = 0.15, and the row
c = 10, is 0.8801. The probability of more than 10 defects is thus 0.1199.
The probability of between 5 and 10 defects inclusive is the probability of
fewer than 11 defects less the probability of fewer than 5 defects. These two
numbers are 0.8801 and 0.1121, and the difference is 0.7680. The normal
distribution is appropriate for approximating this probability. Using this
approximation, we find that the probability of more than 10 (11 or more)
defects is

P(z ~ (11 - 0.5 - (50)(0.15))/450(0.15)(0.85)) ,

which reduces to

P(z ~ 1.19) = 0.1170 .

The approximate probability of between 5 and 10 defects inclusive is

P(z ~ (5 - 0.5 - 7.5)/4m) - P(z > (lo + 0.5 - 7.5)/~)—

=P(z ~-1.19) - P(Z ~ 1.19) = 0.7660 .

Commentary

We have calculated probabilities for certain outcomes which could result from
an inspection of a sample from the lot of 500,000. To calculate these values
it is necessary to assume that we know the true proportion of defects in the
entire lot. Of couse, we do not, in fact, know this true proportion of de-
fects, but we perform this exercise in order to develop a rational plan for
sampling from the lot in order to determine whether we should accept or reject
the lot. Consider, for example, the solution to the second part of ques-
tion 1. Namely, the probability of 4 or more defects out of 10 trials when
the lot contains 15% defects is 0.05. Consequently, if the sample of 10
should yield 4 or more defects, the buyer has reasonable assurance that the
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lot contains more than 15% defects and should be rejected. Consider now
part 2 of question 4. In a preliminary step to the solution, we determined
that the probability of 4 or fewer failures when the lot contains 15% defects
is 0.1121. Consequently, if a sample of 50 yields 4 or fewer defects, the
buyer has reasonable assurance that the lot contains fewer than 15% defects
and should be accepted. We discuss in Chapter 8 methods for preparing test
plans which provide reasonable assurance to both producer and consumer. Our
purpose in presenting the above discussion is to introduce the reader to the
probabilistic analysis that takes place in the preparation of test plans or
lot acceptance sampling plans .
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CASE STUDY NO. 5-3

Background

A mechanized infantry battalion has 36 armored personnel carriers (APC) , 20
weapon stations (WS), and 5 command posts (CP). The mission reliability of an
APC is 0.70, of a WS is 0.85, and of a CP is 0.95. The entire battalion can
perform satisfactorily if at least 24 APCS, 17 WSS, and 5 CPS are operable
throughout the miss ion.

Determine

1. What is
complete the

2. What is

the probability
mission?

the probability

each type of system has enough units operating to

the mission will be successful?

3. How small do we need to make p, the probability of failure, in order to
ensure that each set of systems has a probability 0.90 of performing
satisfactorily?

4. If each of the probabilities of failure is fixed, then how many more of
each type of system is required to achieve the goal mentioned in number
3?

Solutions

The probability that a sufficient number of APCS operate throughout the mis-

sion is the probability of 12 or fewer failures out of 36 trials. Note that
p, the probability of failure, is equal to 0.30. The probability that a
sufficient number of WSS operate throughout the mission is the probability
that 2 or fewer failures occur out of 20 trials. The probability that all CPS
operate throughout the mission is the probability of no failures.

la. The probability of 12 or fewer failures out of 36 trials where p = 0.30.

i. Use Appendix B, Table 1. On page B-20 for n = 36, we look in the
column labeled 0.300 and the row r = 12. The value is 0.7365.

ii. Use Normal Approximation. (See Appendix A-1. ) Since np = (36)
(0.3) = 10.8 and np(l-p) = (36)(0.3)(0.7) = 7.56, the approximate
probability is

1- P(Z ~ (12.5 -np)/J-)

= 1- P(Z ~ (12.5 -10.8)/~~

= 1- P(Z ~ 0.62)

= 0.7324
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lb.

l.c.

iii.

Note
than

We obtain this value using Appendix B, Table 2, page B-42 in the row
marked z = 0.62 and the column labeled P(Z ~ Za).

a

Use Poisson Approximation. (See Appendix A-2.) We make the identi-
fication m = np = (36)(0.3) = 10.8 and use Appendix B, Table 3. On
page B-47 we obtain the value from the column labeled 12 and inter-
polate between rows labeled 10.5 and 11.0. The value is 0.718.

that since 0.2 < p < 0.8, the normal yields a better approximation
the Poisson.

The probability of 3 or fewer failures out of 20 trials where p = 0.15.

i.

ii.

iii.

Note

Use Appendix B, Table 1. On page B-7 for n = 20, we look in the
column labeled 0.150 and the row r = 3. The value is 0.6477.

Use Normal Approximation. (See Appendix A-l.) Since np = (20)
(0.25) = 3 and np(l-p) = (20)(0.15)(0.85) = 2.55, the approximate
probability is

1- P(Z ~ (3.5-np)/J=)

= 1- P(z ~ (3.5-3)/4-”)

=1- P(Z ~0.32) = 1 - 0.3745

= 0.6255

We obtain this value using Appendix B, Table 2, page B-42 in the row
marked z = 0.32 and the column labeled P(Z ~ Za).

a

Use Poisson Approximation. (See Appendix A-2.) We make the identi-
fication m = np = (20)(0.15) = 3 and use Appendix B, Table 3. On
page B-46 we obtain the value from the column labeled 3 and the row
labeled 3.00. The value is 0.647.

that since p < 0.2, the Poisson yields a better approximation than
the normal.

The probability of O failures out of 5 trials where p = 0.05. This
probability is given by equation 5.1.

(): (0.05)0(0.95)5=  (0.95)5 =0.774

Note the value of n is much too small to use an approximation. See
discussion of this concept on page 5-6.
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Max. # of System
Probability

Author- Minimum Allowable Mission
of Mission Success

EYus!!! ized Required Failures Reliability Binomial Normal “Poisson

APC 36 24 12 0.70 0.7365 0.7324 0.718

Ws 20 17 3 0.85 0.6477 0.6255 0.647

CP 5 5 0 0.95 0.774 -

The term System Mission Reliability is the probability that an individual APC,
Ws , or CP will successfully complete a mission. The term Probability of
Mission Success is the probability that for the individual systems at least
the required minimum number of vehicles will successfully complete the
mission.

2. APC Ws w CP > Mission Success

We use a series model to evaluate the probability of mission success. This
probability is the product of the probabilities of success for APC’S (0.737),
WS’S (0.648), and CP’S (0.774). The product is 0.37.

(See Chapter 2’s section entitled “Series and Redundancy Models.”)

3. In part 1 above , we determined that the mission success probabilities for
APC’S, WS’S, and CP’S, are approximately 0.73, 0.65, and 0.77, respectively.
If we assume that the authorized number of units of each type system remains
fixed, then we must improve the mission reliability of each type system to
achieve a success probability of 0.90 for each type system. Generally,
statistics books do not address procedures for solving this type problem but
the solutions are straightforward and logical.

a. For APC’S, the probability of 12 or fewer failures must be at least
0.90.

i. Use Appendix B, Table 1. Note that for n = 36 and c = 12, the
values in the body of the table increase as p, the probability
of failure decreases. This fact is actually true for any
values of n and c. As we move in the body of the table from
right to left, we find that the first time the probability
exceeds 0.90 is for a p of 0.25. Consequently a p of 0.25 or
less will achieve the goal.

ii. The normal approximation provides a method for determining the
desired probability, p. The approximate probability of 12 or
fewer failures out of 36 trails for ~ p is

1- P(Z ~ (12.5 - 36p)/~-) .
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The procedure is to set the above quantity equal to 0.90 and
solve for p. To accomplish this, note that we can reduce the
equation to

P(Z ~ (12.5 - 36P)/~~) = 0.10 .

Since P(Z ~ 1.28) = 0.10, the above equality occurs when

( 1 2 . 5  - 36p)/~~ = 1.28 .

To solve the equation for p, we multiply both

~

and square both sides to obtain the quadratic

156.25 - 900p + 1296p2 = 58.98p(l-p), or

1354.98p 2 - 958.98p + 156.25 = O .

sides by

equation

We used the quadratic formula to find p = 0.254.

iii. The Poisson approximation provides a method for determining the
desired probability, p. Note that for c = 12 in the Poisson
tables, the probabilities increase as the value of m decreases.
Searching the body of the table in the column labeled c = 12,
we find that the probability exceeds 0.90 for the first time at
M = 8.6. Recall that m = np for the Poisson approximation.
Now n = 36 and m= 8.6, so p = 8.6/36 = 0.24.

b. For WS’S, the probability of 3 or fewer failures must be at least
0.90. The procedures for determining the probability of faiure, p,
are identical to those in part a above.

i. Appendix B, Table 1. For c = 3, as p decreases, the value in
the table exceeds 0.90 for the first time at p = 0.09.

ii. Normal Approximation. The equation to solve is

(3.5 - 20p)/~~ = 1.28 ,

and the value of p that solves the equation is p = 0.092.

iii. Poisson Approximation. For c = 3, as m decreases, the value in
the table exceeds 0.90 for the first time at m = 1.7. Conse-
quently, p = 1.7/20 = 0.085.

c. For CP’S, the probability of O failures ❑ ust be at least 0.90.
Using a direct computation, we solve the following equation for p:

()5 0
0 p (1-P)5 =  0 . 9 0 .
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Equivalently,

(1-p)5 = 0.90 or l-p = (0.90)0.2 .

The solution to the above equation is a p of 0-02.

4. If the mission reliability of the different systems cannot be improved,
then in order to achieve a success probability of 0.90 for each system, the
number of authorized units must be increased- This allows for more units to
fail during the mission, while maintaining the required strength to achieve
mission success.

a. For APC’S, the probability of at least 24 units performing success-
fully must be at least 0.90.

i.

ii.

iii.

Appendix B, Table 1.

n= 36 P(I2 or fewer failures) = 0.7365
n = 3 7 P(13 or fewer failures) = 0.8071
n = 3 8 P(14 or fewer failures) = 0.8631
n = 3 9 P(15 or fewer failures) = 0.9056

The requirement is satisfied for an n of 39.

Normal Approximation. Since the number of failures allowed
increases by one for every increase in allocation while the
number of successes remains constant at 34, we can formulate
the solution to this question more easily in terms of suc-
cesses . The approximate probability of 24 or more successes
out of n trials, for any n, when p = 0.7 is

P(Z ~ (23.5 - 0.7n)/~~n) .

We set the above term equal to 0.90 and solve for n. Since P(Z
> -1.28) = 0.90, the value of n required is the one which
~olves the equation

(23.5 - 0.7n)/~~- = -1.28 .

We perform the same manipulations as in part 3 above to obtain
a quadratic equation in n, one of whose solutions is n = 38.8.

Poisson Approximation. Let us use Chart 6 to approximate the
solution. The abscissa of the graph is labeled 0/T which is
the reciprocal of m = np. Consider the points where the curves
cross the 0.90 ordinate line.
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c 0/T n = (0.36/2’)-1 # Successes

12 0.12 27.8 = (28) 16 or more
13 0.108 30.9 = (31) 18 or more
14 0 . 0 9 7 3 4 . 4  = ( 3 5 ) 21 or more
15 0.09 37.0 ~ (38) 23 or more
16 0.083 40.2 ~ (41) 25 or more

This method shows that 38 units are not enough and that 41
units are too many. Either 39 or 40 units are appropriate.

b. For WS’S, the probability of
fully must be at least 0.90.

i. Appendix B, Table 1.

at least 17 units performing success-

n = 2 0 P(3 or fewer failures) = 0.6477
n = 2 1 P(4 or fewer failures) = 0.8025
n = 2 2 P(5 or fewer failures) = 0.9001

The requirement is satisfied for an n of 22.

ii. Normal Approximation. The equation to solve is

(16.5 - 0.85n)/~~ = -1.28 .

The solution is n = 21.9.

iii. Poisson Approximation. Use Chart 6.

c 0/T n = (0.150/T)-1 # Successes

4 0.42 15.9 (16) 12
5 0.33 20.2 (21) 16
6 0.26 25.6 (26) 20

Clearly, this method indicates that either 22 or 23 should be
sufficient.

c. For CP’S, the probability of at least 5 units performing satis-
factorily must be at least 0.90. The number of units is so small
that approximations are not appropriate. We can solve the problem
very easily using the formula for computation of binomial probabil-
ities .

b
n p(k) = (~) pk(~-p)n-k>

= [k!(:k] pk(l-P)n-k
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n Probability of 5 or More Successes—

5
( )
; (0.05)0(0.95)5 = 0.774

6 (:)(0.05)1(0.95)5  +(:)(0.05)0(0.95)6=0.96

An n of 6 is sufficient.

5-24



CASE STUDY NO. 5-4

Background

A new combat assault vehicle is being proposed. The mean miles between mis-
sion failure (MMIMfF) is to be 320 miles. The mean miles between durability
failures (MMBDF) is to be 5771 miles. Historically, both mission failures and
durability failures have occurred at a fairly constant rate.

Determine

1. What is the mission reliability for a 50-mile mission?

2. What is the probability of operating for 4000 miles without experiencing
a durability failure?

3. What MMBDF is required to have an 80% probability of operating for 4000
miles without a failure?

Solutions

1. We use the reliability function,

-t/e
R(t) = e ,

where t is mission duration and 0 is mission MMBF. Since t = 50 miles and 0 =
320 miles, the mission reliability is

-50/320
e = 0.855 .

2. Durability is defined
operation without suffering
the reliability function,

-t/o
R(t) = e ,

as the probability of completing 4000 miles of
a power train durability failure. Again we use

where t is the durability requirement and (3 is the power train MMBDF. Since t
= 4000 miles and 0 = 5771 miles, the mission reliability is

-4000/5771 = o so
e . .

3. Once again we use the reliability function,

-t/e
R(t) = e ,

but , in this case, t = 4000 miles and R(4000) = 0.80. By solving the above
equation for 0, we have

e=
‘108: R(t)
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Consequently,

o= 4 0 0 0
-log 0.80

e

17,926 miles .

Commentary

Usually durability requirements are imposed on specific subsystems such as the
power train. When individual subsystems are considered, durability failures
are likely to occur with an increasing failure rate due to physical wearout of
components. In such a case, the use of the exponential model would not be
appropriate. Other distributional models of life length (such as the Weibull
distribution) would be appropriate for use in analyzing durability.
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CASE STUDY NO. 5-5

Background

A heavy truck uses 10 road wheels. Each tire’ s mean miles between failures
(MMBF) is 10,000 miles. Assume a series model for the 10 tire system.

Determine

1. What is the failure rate of each tire.

2. What is
during a 1000

3. Assuming
tire failures

the probability that a single tire will experience no failure
mile mission?

the tires operate independently, what is the probability of no
in a 500 mile mission?

4. What is the MMBF of the entire system of 10 tires.

5. How many spares should be kept so that a 500 mile mission can be com-
pleted at least 90% of the time? 99% of the time?

Solutions

1. The failure rate (A) is the reciprocal of the mean miles between failures
(MMBF). Consequently,

A.~ 1
MMBF = 10,000 = 0“0001 “

2. Using the formula for computing Poisson probabilities (equation 5.3) with
the following parameters

Mission Length (T) = 1000 miles
Failure Rate (A) = 0.0001,

we have

(AT)ke-AT
gA,T(k) = k!

P(no failures) = (AT)O e-hT = e-AT =e-(O.OOO1)(looo)
()!

-0.1
e = 0.905 .

This value could have been obtained using Appendix B, Table 3, using m = AT =

0.1 and c = O. In addition, we could have used Appendix B, Chart 1 using 0/T
= l/AT = 10 and c = O.
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3. For a single tire the probability of no failures in a 500 mile mission is

k -AT

gA,T(k) = ‘AT)k:

= [(0.0001)(500)]0e-(0”0001)(500)
()!

=  0 . 9 5 1  .

Since all tires are in series, have the same failure rate and operate inde-
pendently, the probability of no failures among all 10 tires is

(0.951)10=0.605 .

4. In order to determine the MMBF of the system of 10 tires, we use the
reliability function

R(T) = e-T’O,

where T is mission length and e is MMBF. Solving this equation for 8, we
obtain

e=
-log: R(T) “

In problem 3, we determined that R(500) = 0.605 for the 10-tire system. Thus,

0= 5 0 0
-log 0.605

e

= 1000 miles.

5. Mission Length (T) = 500 miles.
System Failure Rate (A) = 0.001.
(Note: MMBF = 1000 from question 4)

Using Appendix B, Table 3 with m = AT = 0.5, we have

P(no failures) = 0.607
P(less than or equal to 1 failures) = 0.910
P(less than or equal to 2 failures) = 0.986
P(less than or equal to 3 failures) = 0.998

For a 90% chance of mission completion, one spare will suffice. For a 99%
chance of mission completion, 3 spares are required. However, the improvement
in reliability from ().986 (2 spares) to ().998 (3 spares) does not appear to
warrant the extra spare.
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CASE STUDY NO. 5-6

Background

A new vehicle is under development which is required to have a MTBF of at
least 200 hours (A no more than 0.005) and a mean time to repair (MTTR) of no
more than 40 man-hours. Assume that the specifications (200 hours MTBF and 40
hours MTTR) have been met by contractor A.

Determine

1. What is the probability that a development test of 1000 hours will show
at least 10 failures?

2. What is the probability of no failures during the first 400 hours of the
test?

3. How many man-hours of repair time are expected during the 1000-hour test?

4. How much calendar time in days --operating and maintenance--based upon an
8-hour day should be programmed so that at least 10 total repairs will be
performed by a team of 4 mechanics working on 10 identical systems? We desire
that there be at least 10 failures with probability 0.90. We desire to take
only a 10~0 risk that repair time allotted will be insufficient. Assume that
each repair takes 40 hours, the mean repair time. Rework the problem assuming
each repair is completed within 60 hours.

Solutions

1 . The “background to this study indicates that this is a continuous time
testing situation. In addition, we are interested in numbers of failures and
not in times between failures, so the Poisson model is used for this analysis.
Test time (T) is 1000 hours and MTBF is 200 hours (A = 0.005). The unknown
value is the probability of 10 or more failures.

Use Appendix B, Table 3, with AT = (0.005)(100.0) = 5.0. The probability of 10
or more failures = 1 - P(9 or fewer failures).

For AT = m = 5.0, we see in the column labeled c = 9 that the probability of 9
or fewer failures is 0.968. Consequently, the probability of 10 or more
failures is 0.032.

2. Test time (T) is 400 hours and MTBF is 200 hours (A = 0.005). The un-
known value is the probability of O failures.

Use Appendix B, Table 3, with AT = (0.005)(400) = 2.0.

For AT = m = 2.0 we see in the column labeled c = O that the probability of
zero failures is 0.135.

3. Test time (T) is 1000 hours and MTBF is 200 hours (A = 0.005). MTTR is
40 hours (A = 0.025). Each repair takes 40 hours on the average. There are
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1000(0.005) or 5 failures expected. The expected repair time is 5(40) or 200
man-hours.

4. Let To be operating time needed and T be repair time needed. We desirer
that To be large enough that the probability of seeing 10 or more failures be

at least 0.9. However we must allow repair time for that number of failures
(nlo) which represents all but the upper 10% of the distribution of numbers of

failures, i.e., the probability that more than nlo failures occurring is 0.10.

a. Determine T.: Probability of at least 10 failures must be at least
0.90. “

Note: The probability of 10 or more failures = 1
fewer failures.

The probability of nine or fewer failures must be
the column labeled c = 9.0 of Table 3, we find by
probability of 9 or fewer failures is achieved when

Since m = AT and m = 14.2

b.

c.

d.

e.

T = To and

A= 0.005

We solve the following equation for T :0

To = m/A = 14.2/0.005 = 2,840 hours.

- the probability of 9 or

no more than 0.10. Under
interpolation that a 0.10
m = 14.2.

Determine nlo: Allow for 19 failures since the probability of 20 or

more failures is just under 0.10.

Determine Tr: (19)(40) = 760 man-hours

T = 760/4 = 190 clock hours.r

Determine number of days needed:

Operating hours: 2,840
Ten systems operating hours: 284 for each system
Maintenance hours: 190

Total hours: 474
Days Required: 59.25

If each reuair takes 60 man-hours. then 1140 man-hours are required.
This corre~ponds to 285 clock hours. Consequently, the total n~ber
of hours is 569 which represents 71.1 working days.

Commentary

For number 4, we have allowed 40 man-hours
repair time is indeed 40 man-hours, then
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reasonably close estimate. Computation of the risk involved with this ap-
proach is complicated and beyond the scope of this work. One procedure to
adopt is to increase the allotted time per repair as we have noted in 4e.
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