CHAPTER 5

MATHEMATI CAL MCDELS OF RELI ABI LI TY

| NTRODUCTI ON

In a general sense, we can say that the science of statistics attenpts to
quantify our uncertainty about the outcome of an experinment or test. Before
we conduct an experinment, we are aware of’ the possible outconmes, but we are
not sure which of the outcones will actually result. The mathenmatical nodel,
a logical extension of our assunptions about the experinment, quantifies our
uncertainty and provides us with a tool for analysis of the outcone.

Suppose that a systemis to be put into operation. We know that after a
certain anount of operating time it will experience a failure. W would |ike

to know when the systemw || fail. Generally, any prediction about the actual
time of failure will not be accurate enough to be worthwhile. However, we can
address nore confidently questions such as: “WII| the systemoperate free of
failure for at |east 500 hours?” A nodel that describes the experinment in
question wll help us answer these questions with a certain anpunt of
assurance.

In this chapter, we consider three nodels that are pertinent to RAM consi d-
erations: the binomal, the Poisson, and the exponential. The binom al and
Poi sson are discrete nodels in that they essentially count nunbers of fail-
ures. The exponential nodel is continuous in that it describes tines between
failures . Al t hough the Poisson nodel addresses discrete events, itisa
continuous tinme nodel. It counts failures as they occur over a period of
tine, i.e. , the possible outcomes of the experinent, conducted on a continuous

time basis, are enumerated as numbers of failures. This distinction wll
becone clearer as we contrast the poisson nodel and the binom al nodel.

In its nost basic form a mathematical nodel of a statistical experinent is a
mat hemati cal expression (function) that defines the probability associated
with each of the outcones of the experiment. For our purposes, we will dis-
cuss the two basic types of nodels: di screte and continuous. The type of
nmodel --di screte or continuous--is defined by the type of outcone that the
experiment provides.

DI SCRETE MODELS

A discrete nodel is appropriate when the possible outconmes of an experinent
can be enunerated or counted. In its nost basic form the discrete nodel is a
mat hemati cal expression (function) that defines the probability of each indi-
vidual outcome. A sinple exanple is the following. Suppose a die is to be
tossed once, and the outcone of interest is the nunber of dots facing up when
the die comes to rest. The outcones are {1, 2, 3, 4, 5, 6}. |f we assunme
that the die is “fair, " the probabilities can be expressed as follows :

p(1) *P(2) *P(3) *‘P(4) ~P(5) = p(6) 1/6.
G aphically, we display the probabilities in Figure 5-1.
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FIGURE 5-1
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Suppose our experiment is to toss two dice, and the outcone of interest is the
sum of the dots facing up. The set of all possible outcones is {2, 3, 4, 5,
6, 7, 8 9, 10, 11, 12}. The probabilities can be expressed as foll ows:

PR) = p(12) = 1/ 36 p(5) = p( 9 = 4/36
P(3) = p(11) = 2/36 P(6) = p( 8) = 5/36
P(4) “p(10) = 3/36 p( 7) = 6/36.

G aphically, we display the probabilities in Figure 5-2.
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CONTINUOUS MODELS

A statistical experinent often results in an outcone that is neasured on a
continuous scale. Time and distance are perhaps the nbst comon continuous

vari abl es. In its nmost basic form the continuous nodel is a mathematical
expression (function) useful in conputing probabilities of certain outcones.

It differs fromprobabilities for discrete nodels in that it does not define

probabilities directly. Generally, for a continuous nodel, it only makes
sense to consider the probability of an outcone within a range of values or a

certain interval --between 100 and 150 mles, nore than 10 hours. The prob-
ability of an outconme falling wthin a given range is the area which lies

beneath the continuous nodel curve over that range. Consi der the exanples
bel ow.

FIGURE 5-3 GRAPH OF THE EXPONENTI AL MODEL
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The probability that an outcone is between 1 and 2 is defined by the area
under the curve between the values 1 and 2. Therefore,

P(outcome falls between 1 and 2)
2-x -X 2 -1 -2
:f e dx — -e = e - e = 0.233
The probability that an outconme is between 0.50 and 0.51 is
0.51 —x
f e dx
0. 50

which i S e'O'50 - e'o'51 or 0.006.
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FIGURE 5-4 GRAPH OF UNI FORM MODEL
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Figure 5-4 illustrates another possible continuous model with the function

being f (x) = O 1 defined on the interval 10 < x < 20.

The probability that an outcone is less than 13 is

13
f 0.1 dx,
10

which is 1.3-1.0, or 0.3. The probability that an outcome is between 16 and
16.11s

16. 1
f 0.1 dx,
16

which is 1.61-1.60, or 0.01.

Bl NOM AL MODEL

The nodel that is used nost commonly to describe the outcones of success/fail
test prograns is the binom al nodel. In order for a testing programto be a
bi nom al experiment, four conditions are required. They are:

The test period consists of a certain nunber (n) of identical trials.

At any individual tinme unit (trial) , the test results in a success or
failure.

The outcone at any individual tinme unit is independent of the outcones
of all other tine units.

The reliability (probability of success) of the systemrenmains un-
changed for each trial.
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In a ot acceptance sanpling test program the third and fourth conditions are
not precisely satisfied. | n such a case, the hypergeonetric distribution
provi des the exact analysis and nust be used for small |ot sizes. However, if
the sanple size (n) is snmall conpared to the lot size (N, say n/N < 0. 05,
then the binom al nodel provides a reasonable basis for analysis. #e do not
present a discussion of the hypergeonetric distribution in this text. The
reader can refer to any nunber of noderate level statistics textbooks for
i nformation on the use of hypergeonetric distribution.

Exanpl es of binom al experinents are:
- firing a mssile (is it launched successfully?);
- firing a mssile (does it hit the intended target?);
operating any system over tine (does it achieve its durable life?).

For the remainder of this section on binomial nodels, the followi ng notation
is used.

n: the nunber of trials or test units.

p: the probability of failure for any trial. (W use p here as the
probability of failure instead of the nore classical probability of
success because of the failure-oriented approach used by the Poisson
model ) .

n)_ bi nom al coefficient, which by definition is equal to n!/[k!(n-k)!],
( " where k nust be sone integer between O and n inclusive. By defini-
tion, n!'=n(n-1)(n-2)...1 and 0!=1.

b (k): the probability of k failures out of n trials with p the probability
P of failure on any one trial.

B _(k): the probability of k or fewer failures out of n trials with p the
probability of failure on any one trial.

Any binom al experinent (test program) is conpletely characterized by the
nunber of trials and the probability of failure for any given trial. The
probability of failure (p) is generally an unknown val ue about which testing
requirenments are stated.

In Chapter 7, the binomial is used inthis reversed role: the test results
wi || have been observed and we will make inferences about the probability of
success based on the binom al nodel.

For the binom al nodel an exact mathematical fornula is used to conpute prob-

abilities. We denote the probability of exactly k failures out of n trials
for a fixed probability of failure, p, by bn p(k), and

n n-k

erPW) - (k) pX(1-p)" 7K. (5.1)
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The probability of k or fewer failures, terned the binomal cunulative distri-
bution function, is Bn P(k), wher e

B, () Iz:) (%) o™

. i
1.—

k

j_iobnap(l) ( )

Figure 5-5 presents graphs of three binom al nodels. The graphs chosen por-
tray nodels for which the values of p are equal to0205and 0.7 with n,
the number of trials, equal to 10 in each case.

For the case p = 0.2, the graph shows that a |arge nunber of failures--nore
than 5--is unlikely. Note that the nost likely nunmber of failures is 2, which
corresponds to a percentage of failures equal to 0.2. For the case p = 0.7,

the graph shows that a small nunber of failures--fewer than 5--is unlikely.

Once again, the most likely nunber of failures, 7, corresponds to a percentage
of failures equal to 0.7. For the case p = Q5, the graph shows that a nod-
erate nunber of failures--between 3 and 7--is likely, with 5 failures (half of
the trials) being nost |ikely.

Comput ation of binomial probabilities using bn or B | s cumber some when n
: : woo m,poo
is large. Three alternative methods for determning bi nom al probabilities
are:

use of a statistics package for a calcul ator,

use of binomal tables, and
use of an approximating distribution (Poisson or normal).

Tables of b or B for n less than or equal to 20 are generally published

. n)p . n’.p . .

in elementary statistics textbooks. More extensive tables are avail able but
are not as easy to locate. A table of cunulative binomal probabilities for
sel ected values of n, k, and p is given in Appendix B, Table 1. Wwen nis
| arger than 20, either the Poisson distribution (p > 0.8 or p <0.2) or the
normal distribution (0.2 < p < 0.8) provides reasonabl e approxi mations to
bi nom al probabilities. (See Appendix A for details on these procedures.)

In Case Studies 5-1, 5-2 and 5-3, we denonstrate the application of the
bi nom al nodel and conpute probabilities associated with the nodel.
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FIGURE 5-5 Bl NOM AL PROBABI LI Tl ES
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PO SSON MODEL

The nost commonly used nodel for describing the outcones of a continuous tine
testing programis the Poisson nodel. In order for a testing programto be a
Poi sson experinent, it is required that no nore than one event (failure) can
occur at the sane tine and that the nunber of events (failures) is related
directly to the amount of test tine. Exanpl es of Poi sson experinents are:

nunber of failures of a systemduring a test cycle;

nunmber of unschedul ed mai ntenance actions required during a given tine
period; and,

nunber of msfires of an automatic weapon firing over a given tine
period.

For the remainder of the section on Poisson nodels and the succeeding section
on exponential nodels, the following notation is used.

A: Failure rate or average nunber of failures per unit tine.

T.  The length of the interval (hours, iles, etc.) of :interest
(e.g., mssion duration, test exposure).

gy T(k); The probabi ity of exactly k failures during a test period of
) | ength T when the failure rate is A

G, ~(k): The probability of k or fewer failures during a test period of
A,T | ength T when the failure rate is A

Any Poi sson experinment (test program is conpletely characterized by the
| ength of time on test and the nean value function. The nean val ue function

for a specific test length is the average nunmber of failures to occur during
the specified length. \Wen the system has a constant failure rate for the
entire interval T, this function is simply AT. A di scussion of constant
failure rate assunptions can be found in Chapter 7. The value A is the fail-
ure rate of the systemon test, A nore famliar paraneter is the nean tine
between failures (MTBF) which is the reciprocal of A System requirenents are
generally stated in terns of the nmean time between fail ures.

As with the binomal nodel, Poisson probabilities can be conputed using an
exact mathematical fornula. Wwe denote the probability of exactly k failures
during a test period of length T where the failure rate is A py gy T(k)’ and

k -AT
. (AT) e
g}k,T(k) k! (53)

The number of failures may be any integer value including Oand O = 1. The
probability of k or fewer failures, terned the Poisson cunulative distribution
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function, 1s Gﬂ Tﬂﬂ, wher e

. o g oryte AT
AT i=o 1

k
&, (5.4)

1

Figure 5-6 presents graphs of three Poisson nmodels. Vvalues for AT of 2, 5,
and 7 were chosen to denonstrate the effect of time T on the nunbers of fail-

ures likely to be seen. \Wen A the failure rate, is fixed, the nunmber of

failures will, in all likelihood, increase with the ampunt of operating tine
T.

Al ternative methods for conputing Poisson probabilities include:
use of a statistics package for a calcul ator,
use of Poisson tables or charts, and
use of an approximating function.

In Case Studies 5-5 and 5-6 we denonstrate the application of the Poisson
model and conpute probabilities associated with the nodel. Tabl es of gy T(k)

or GA T(k) are available in many textbooks. A table of cunulative Poisson

probabilities is given in Appendix B, Table 3. Appendix B, Chart 1 is also
useful in determning cunulative Poisson probabilities. \Wen the product AT

s greater than 5, the normal distribution provides reasonable approxinations
to Poisson probabilities . (See Appendix A for details on this procedure. )

EXPONENTI AL MODEL

Generally, it is nmore informative to study tinmes between failures, rather than
nunbers of failures, for a continuous tine testing program The nost commonly
used nodel for describing the tinmes between failures for a continuous tine
testing program is the exponential nodel. |n order for a testing programto
qualify as an exponential experinent, the followi ng conditions are required:

(1) the systemis as good as new after each repair, and (2) the probability of

failure in any given interval of time is the sanme no matter how old a system
Is and no matter how many failures it has experienced. The second condition
Is an intuitive description of the so-called memoryless property. The system
cannot “remenber” how old it is, nor can it “renmenber” how often it has
failed. The exanples listed for Poisson experinents can serve also as
exanpl es of exponential experinents.

For the exponential nodel, there is an exact mathematical fornula used for
conputing probabilities that a certain anmount of tine wll pass before the
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FIGURE 5-6 PO SSON  PROBABI LI TI ES
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next failure. The probability that a failure will occur in some future inter-
val of time (a, b) for a systemwth failure rate Ais

b
f re Mix. (5.5)
d

FIGURE 5-7 GENERAL EXPONENTIAL MODEL:f(x)=zAe" Ax
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The exponential cunulative distribution function, Fh(t)’ defi nes the prob-
ability that the systemw || fail before time t. By definition,

T

F)\(t) =Jh%-hdx =1 - e-At. (5.6)

A function of nore interest to us is the reliability function, R(t), which
defines the probability that the systemw || operate for t units of tine
wi thout failure. By definition,

oo
Rh(t):il. he—Axdx = e-AP (5.7)
t

The reliability function, R(t), can also be expressed as e (t/e), where 8, the
reciprocal of A, is the nmean tinme between failures (MITBF). The reliability
function R(t) translates the effectiveness parameters A, the failure rate, or
8, the MIBF, into reliability. Reliability is the probability of failure-free
operation for a specified length of tinme, t.

We referred to the variable t as a tine variable in the above di scussion.
Measure of life units which can be appropriate are hours, mles, cycles and
rounds.

As an exanple, suppose that the mission profile for a systemrequires a
m ssion duration (MD) of 40 hours and the system has a mean tinme between
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operational mssion failure (MTBOMF) of 400 hours. Then the probability that
the system successfully conpletes a mssion can be evaluated using the reli-
ability function, R(t). Now

R(t) = e-At = e t/8 = ¢~ (MD/MTBOMF)

Since MD = 40 hours and MTBOMF = 400 hours, the mission reliability is

e'40/400, whi ch reduces to 0.905. In other words, the systemhas a 90.5%
chance of conpleting the 40-hour m ssion.

NOTE : A useful approximation for the reliability function is :

e-t/ﬂ 21- t/e for t/6 £ 0.1.

For the above exanple, t/El = O 1 so that the approximtion yields 0.90.

In Case Study 5-4, we denonstrate the application of the exponential nodel
with conputations based on both nodels. See Case Studies 5-4, 5-5, and 5-6,
for more illustrations of this conputation and other conputations associ ated
with the Poi sson/exponential nodel.

The reliability function e M my also be sym

bolized as exp(-At) or in‘'(-At) . That is, it
I's the exponential function evaluated at the
point, -At, or it is the inverse of the natural
| ogarithm function evaluated at that point.
Sone cal cul ators eval uate the exponential func-
tion as the inverse natural logarithm function.
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CASE STUDY NO 5-1

Backgr ound

A sensor device has an operational mssion reliability of 0.90 for a 4 hour

mssion. At least 3 sensors are required to locate targets. Failed sensors
wi Il not be repaired during a mssion.

Det er m ne

1. |f a system enploys 3 sensors, what is the probability of successfully
conpl eting the m ssion?

2. |f a system enploys 4 sensors, what is the probability of successfully
conpl eting the m ssion?

Sol ution

1. W use the mathenmatical fornula for the binomal nbdel given in equation
5.1, wth

R=1-p=0.9
p=1- 09 =0.1
n =3, and

k =0

Applying equation 5.1, the probability of O failures is:

3
= 0.
by 01(0) (o)¢ 1)0(0.9) 3
The binom al coefficient is:
3 3!
(o) - of3r - 1
The probability of O failures is:

(1) (1)(0.9)°= 0. 729.
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2. We use the binom al
5.2, with

R

1 -p=20.9

cunul ative distribution function given in equation

p=1-09=01

n =4, and

k =1

Applying equation 5.2, the probability of 1 or fewer failures is:

By,0.1(1)

1
4 K (4-K)
kza(k)(o. 1¥0.9)

= (g)(o.1)°(0.9)4 + (?)(0.1)1(0.9)3

The binom al coefficients are:

4 4
(0) ~ 04!

= 1, and

4 _ 4t
() 113y &

The probability of 1 or fewer failures is:

(1)(1)(0.9)* + (4)(0.1)%0.9)°

= 0.656 + 0.292 = 0.948.

Comment ary

For the second problem we use the binom al cunulative distribution function
since we are required to conpute the probability of Ofailures or 1 failure,
i.e., the cunulative probabilities of both outcones.
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CASE STUDY NO 5-2

Backgr ound

A lot of 500,000 rounds of ammunition is available for sale. The buyer wll

purchase the lot if he has reasonable assurance that the lot is no nore than
. 15% defective.

Det er m ne

. |f the true proportion of defects is O 15 what is the probability a
sample of size 10 will yield fewer than 2 defects? Mre than 3 defects?

2. | f the -true proportion of defects is 0.05 what is the probability a
sanple of size 20 will yield fewer than 3 defects? Mire than 1 defect?

3. |f the true proportion of defects is 0.02, what is the probability a
sanple of size 100 will yield fewer than 5 defects?

4. |f the true proportion of defects is O 15 what is the probability a

sanmpl e of size 50 will yield nore than 10 defects? Between 5 and 10 defects,
i ncl usive?

Sol utions

This is a lot acceptance sanpling problem Although the binomal nodel is not
technically correct, it will provide very good approxinmations in this case
because the ratio of sanple size n to lot size N(N = 500,000) is not nore than

0.0002. A further explanation of the use of the binomal nobdel for lot ac-
ceptance sanpling problens is found on page 5-5.

1 The probability of failure, p, is O 15. For fewer than 2 defects, we
| ook in the tables for n = 10, the colum p = 0.15, and the rowc = 1. The
probability is 0.5443.

The probability of nore than 3 defects is the difference between 1 and the

probability of fewer than 4 defects. The probability of fewer than 4 defects
is 0.9500, so the probability of nore than 3 defects is 0.05.

2. The probability of fewer than 3 defects out of 20 is obtained directly in

the tables for n =20, the colum p = 0.05, and the rowc = 2. The prob-
ability is 0.9245.

The probability of nore than 1 defect is the difference between 1 and the
probability of fewer than 2 defects. The probability of fewer than 2 defects
is 0.7358, so the probability of nore than 1 defect is 0.2642.

3. A binomal table for n = 100 is not given in the Appendi x and woul d be
difficult to locate in other sources. However, because the sanple size, n, is
| arge, we nmay use an approximation fairly confidently. Recall that there are
two approxi mati ons (Poisson and normal) to the binomal presented in the text
of Chapter 5. The procedures for using these approximtions are detailed in
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Appendi ces A-1 and A-2.  Using the nornal approxination (Appendix A-1)
probability of 4 or fewer defects out of 100 trials is

. the

1 -P(z>(4+0.5- (100)(0.02))/4100(0.02)(0.98)) ,

whi ch reduces to
1 -P(zZ>1.79) = 0.9633 .

Usi ng the Poi sson approximtion (Appendix A-2) , we set m= 2, ¢ = 4, and
obtain the probability directly from Appendi x B, Table 3 as 0.947.

The exact value for the probability of fewer than 5 defects, obtained fromthe
formula, is 0.9491, Note that, although each approximtion is reasonably
close to the exact value, the Poisson has provided the better approximation.

As noted on page 5-6, the Poisson is nore appropriate when p is very large or
very small (in our case, p = 0.02).

4, The probability of nore than 10 defects is the difference between 1 and
the probability of fewer than 11 defects. The probability of fewer than 11
defects using the binomal tables for n = 50, the column p = 0.15, and the row
¢ =10, is 0.8801. The probability of nore than 10 defects is thus 0.1199.

The probability of between 5 and 10 defects inclusive is the probability of
fewer than 11 defects less the probability of fewer than 5 defects. These two
nunbers are 0.8801 and 0.1121, and the difference is 0.7680. The nor nal

distribution is appropriate for approximating this probability. Using this
approximation, we find that the probability of nore than 10 (11 or nore)

defects is

P(Z> (11 - 0.5 - (50)(0.15))/450(0. 15)(0.85)) ,

whi ch reduces to
P(z > 1.19) = 0.1170 .
The approximate probability of between 5 and 10 defects inclusive is
P(z > (5- 0.5- 7.5)/y6.38) - P(z >(lo + 0.5 - 7.5)//6.38)
= P(Z > -1.19) - P(Z > 1.19) = 0.7660 .

Comment ary

We have cal culated probabilities for certain outcomes which could result from
an inspection of a sanple fromthe |lot of 500,000. To calculate these val ues
It 1s necessary to assunme that we know the true proportion of defects in the
entire lot. O couse, we do not, in fact, know this true proportion of de-
fects, but we performthis exercise in order to develop a rational plan for
sanpling fromthe lot in order to determne whether we should accept or reject
the |ot. Consider, for exanple, the solution to the second part of ques-
tion 1.  Nanely, the probability of 4 or nmore defects out of 10 trials when
the |l ot contains 15% defects is 0.05. Consequently, 1if the sanple of 10
shoul d yield 4 or nore defects, the buyer has reasonabl e assurance that the
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| ot contains nore than 15% defects and should be rejected. Consi der now
part 2 of question 4. In a prelimnary step to the solution, we determ ned
that the probability of 4 or fewer failures when the lot contains 15% defects
s 0.1121. Consequently, if a sanple of 50 yields 4 or fewer defects, the
buyer has reasonabl e assurance that the | ot contains fewer than 15% defects
and should be accepted. W discuss in Chapter 8 nethods for preparing test
pl ans whi ch provide reasonabl e assurance to both producer and consuner. Qur
purpose in presenting the above discussion is to introduce the reader to the
probabilistic analysis that takes place in the preparation of test plans or

| ot acceptance sanpling plans .
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CASE STUDY NO. 5-3

Backgr ound

A mechani zed infantry battalion has 36 arnored personnel carriers (APC) , 20
weapon stations (WS), and 5 command posts (CP). The mission reliability of an
APC is 0.70, of a Wois 0.85, and of a CPis 0.95. The entire battalion can
performsatisfactorily if at least 24 APCS, 17 W8S, and 5 CPS are operable
t hroughout the mss ion.

Det er m ne

1 What is the probability each type of system has enough units operating to
conpl ete the m ssion?

2. What is the probability the mission will be successful ?

3. How smal | do we need to nake p, the probability of failure, in order to

ensure that each set of systens has a probability 0.90 of performng
satisfactorily?

4. | f each of the probabilities of failure is fixed, then how many nore of
each type of systemis required to achieve the goal nentioned in nunber
3?

Sol uti ons

The probability that a sufficient nunber of APCS operate throughout the ms’
sion is the probability of 12 or fewer failures out of 36 trials. Note that
p, the probability of failure, is equal to 0.30. The probability that a
suf ficient nunber of WES operate throughout the mssion is the probability
that 2 or fewer failures occur out of 20 trials. The probability that all CPS
operate throughout the mssion is the probability of no failures.

| a. The probability of 12 or fewer failures out of 36 trials where p = 0. 30.

Use Appendix B, Table 1. On page B-20 for n = 36, we |look in the
colum | abel ed 0.300 and the rowr = 12. The value is 0.7365.

1. Use Normal Approxinmation. (See Appendix A-1l. ) Since np = (36)
(0.3) = 10.8 and np(1-p) = (36)(0.3)(0.7) = 7.56, the approxinate
probability is

1 - P(Z > (12.5 -np)/ynp(1-p))

1 - P(Z > (12.5 -10.8)/47.56)

=1-P(Z>0.62)

0.7324
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. C.

W obtain this value using Appendix B, Table 2, page B-42 in the row
mar ked Z, = 0.62 and the colum |abeled P(Z > za).

111. Use Poisson Approximation. (See Appendix A-2.) We make the identi-
fication m= np = (36)(0.3) = 10.8 and use Appendix B, Table 3. On
page B-47 we obtain the value fromthe colum |abeled 12 and inter-
pol ate between rows | abeled 10.5 and 11.0. The value is 0.718.

Note that since 0.2 < p < 0.8, the normal yields a better approxination
t han the Poisson.

The probability of 3 or fewer failures out of 20 trials where p = 0. 15.

Use Appendix B, Table 1. On page B-7 for n = 20, we ook in the
colum | abeled 0.150 and the rowr = 3. The value is 0.6477.

ii.  Use Nornmal Approxinmation. (See Appendix A-1.) Since np = (20)
(0.25) = 3 and np(1-p) = (20)(0.15)(0.85) = 2.55, the approxi mate
probability is

1 - P(Z > (3.5-np)/ynp(1-p))
=1-P(z > (3.5-3)/4-")
=1-P(Z>0.32) =1 - 0.3745
= 0. 6255

W obtain this value using Appendix B, Table 2, page B-42 in the row
mar ked Zy " 0.32 and the colum | abeled P(Z > za).

i1i. Use Poisson Approximation. (See Appendix A-2.) W nake the identi-
fication m= np = (20)(0.15) = 3 and use Appendix B, Table 3. On
page B-46 we obtain the value fromthe colum | abeled 3 and the row
| abel ed 3.00. The value is 0.647.

Note that since p < 0.2, the Poisson yields a better approxinmation than
t he normal .

The probability of Ofailures out of 5 trials where p "0.05. This
probability is given by equation 5. 1.

by (0 = () pA-p)"
((5))(0.05)0(0.95)5 = (0.95)°=0. 774

Note the value of n is much too small to use an approxi mation. See
di scussion of this concept on page 5-6.
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Probability

Max. # of System of M ssion Success

Author- Mninum Al lowabl e M ssi on
System ized Required Failures Reliability Binomal Normal “Poisson
APC 36 24 12 0.70 0.7365 0.7324 0.718
WS 20 17 3 0.85 0.6477  0.6255  0.647
CP 5 5 0 0. 95 0.774 -

The term System Mssion Reliability is the probability that an individual APC
W, or CP wll successfully conplete a m ssion. The term Probability of
M ssion Success is the probability that for the individual systens at |east

the required mninmum nunber of vehicles will successfully conplete the
m ssi on.

2. APC WS —»{ C(CP | M ssion Success

We use a series nodel to evaluate the probability of mssion success. This
probability is the product of the probabilities of success for APC's (0.737),
W'S (0.648), and CP'S (0.774). The product is 0.37.

(See Chapter 2’s section entitled “Series and Redundancy Models.”)

3. In part 1 above, we determned that the m ssion success probabilities for
APC S, Wo'S, and CP's, are approximately 0.73, 0.65, and 0.77, respectively.
|f we assune that the authorized nunmber of units of each type system renains
fixed, then we nust inprove the mssion reliability of each type systemto
achi eve a success probability of 0.90 for each type system General |y,
statistics books do not address procedures for solving this type problem but
the solutions are straightforward and |ogical.

a. For APC'S, the probability of 12 or fewer failures nmust be at |east
0. 90.

i. Use Appendix B, Table 1. Note that for n = 36 and ¢ = 12, the
val ues in the body of the table increase as p, the probability
of failure decreases. This fact is actually true for any
values of n and c. As we nmove in the body of the table from
right to left, we find that the first tinme the probability
exceeds 0.90 is for a p of 0.25. Consequently a p of 0.25 or
| ess will achieve the goal.

1. The normal approximation provides a nethod for determning the

desired probability, p. The approximate probability of 12 or
fewer failures out of 36 trails for any pis

1 - P(Z>(12.5 - 36p)/y36p(1-p)) .
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The procedure is to set the above quantity equal to 0.90 and

solve for p. To acconplish this, note that we can reduce the
equation to

P(Z > (12.5 - 36p)/J36p(1-p)) = 0.10 .
Since P(Z > 1.28) = 0.10, the above equality occurs when

(12.5 - 36p)/J36p(1-p) = 1.28
To solve the equation for p, we nultiply both sides by

¥36p(1-p)

and square both sides to obtain the quadratic equation
156.25 - 900p + 1296p° = 58.98p(1-p), or
1354.98p°- 958.98p + 156.25 = O .

We used the quadratic formula to find p = 0.254.

i11. The Poi sson approxi mation provides a nethod for determning the
desired probability, p. Note that for ¢ = 12 in the Poisson
tables, the probabilities increase as the value of m decreases.
Searching the body of the table in the colum |abeled c= 12,
we find that the probability exceeds 0.90 for the first tine at
M= 8.6. Recall that m= np for the Poisson approxi mation.
Now n = 36 and m= 8.6, so p = 8.6/36 = 0. 24,

For WS's, the probability of 3 or fewer failures nust be at [east
0.90. The procedures for determning the probability of faiure, p,
are identical to those in part a above.

Appendix B, Table 1. For ¢ = 3, as p decreases, the value in
the table exceeds 0.90 for the first tine at p = 0.009.

1. Nornmal Approximation. The equation to solve is

(3.5 - 20p)/J20p(1-p) = 1.28 ,
and the value of p that solves the equation is p = 0.092.

| 11. Poisson Approximation. For ¢ = 3, as mdecreases, the value in
the table exceeds 0.90 for the first time at m= 1.7. Conse-
quently, p = 1.7/20 = 0. 085.

For CP's, the probability of Ofailures oust be at |east 0.90.
Using a direct conputation, we solve the follow ng equation for p:

(g)po(l—p)5 = 0.90.
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Equi val ent |y,

(1-p)> = 0.90 or I-p = (0.90)°°.

The solution to the above equation is a p of 0.02.

4, |f the mssion reliability of the different systens cannot be inproved,
then in order to achieve a success probability of 0.90 for each system the
nunber of authorized units nust be increased- This allows for nore units to

fail during the mssion, while maintaining the required strength to achieve
m SSi on success.

a. For

APC' S, the probability of at least 24 units performng success-

fully must be at |east 0.90.

Appendi x B, Table 1.

n = 36 P(12 or fewer failures) = 0.7365
n=37 P(13 or fewer failures) = 0.8071
n=38 P(14 or fewer failures) = 0.8631
n=39 P(15 or fewer failures) = 0.9056

The requirenent is satisfied for an n of 39.

Nor mal Appr oxi mat i on. Since the nunber of failures allowed

| ncreases by one for every increase in allocation while the
nunber of successes renai ns constant at 34, we can fornul ate

the solution to this question nore easily in ternms of suc-
cesses . The approxi mate probability of 24 or nore successes
out of ntrials, for any n, when p = 0.7 is

P(Z > (23.5 - 0.7n)/y0.21n) .

We set the above termequal to 0.90 and solve for n. Since P(Z

> -1.28) = 0.90, the value of n required is the one which
solves the equation

(23.5 - 0.7n)/40.21n = -1.28 .

We perform the same manipulations as in part 3 above to obtain
a quadratic equation in n, one of whose solutions is n = 38.8.

Poi sson Approximation. Let us use Chart 6 to approxinmate the
sol ution, The abscissa of the graph is labeled O/T which is

the reciprocal of m= np. Consider the points where the curves
cross the 0.90 ordinate |ine.
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12
13
14
15
16

T

0.12
0. 108
0.097
0.09
0. 083

n = (0.36/2")"
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O~Npx O
N O A ©O 00

M2 B gy e MR

# Successes

16 or nore
18 or nore
210r nore
23 or nore
25 or nore

This nmethod shows that 38 units are not enough and that 41
units are too many. Either 39 or 40 units are appropriate.

For W§'S, the probability of at
fully must be at least 0.90.

| east 17 units performng success-

Appendi x B, Table 1.

n=20 P(3 or fewer failures) = 0.6477

n=21 P(4 or fewer failures) = 0.8025

n=22 P(5 or fewer failures) = 0.9001
The requirenment is satisfied for an n of 22.

iI1.  Normal Approxination.

(16.5 - 0.85n)/40.1275n = -1.28 .
21.9.

The equation to solve is

The solution is n =

i111. Poisson Approximation. Use Chart 6.

c o/ T n = (0.1568/T) ! # Successes
4 0.42 15.9 (16) 12
5 0. 33 20.2 (21) 16
6 0. 26 25.6 (26) 20
Clearly, this method indicates that either 22 or 23 should be
sufficient.
For CP's, the probability of at least 5 units performng satis-
factorily must be at least 0.90. The nunber of units is so small
that approximations are not appropriate. W can solve the problem

very easily using the formula for conputation of binom al
ities .

pr obabi | -

by, p(k):(ﬁ) K (qp)nk

n!

- . _ k -k
ki (a-iyr] P (-p)”
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n_ Probability of 5 or Mire Successes

5 . :
5 | | - 0.
(5 (0-08)°(0.95)°= 0.774
6 (?)(0.05)1(0.95)5 + (g)(o.05)0(0.95)6 = 0.96

An n of 6 Is sufficient.
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CASE STUDY NO. 5-4

Backgr ound

A new conbat assault vehicle is being proposed. The nean miles between m s-
sion failure (MMBMF) is to be 320 mles. The nean niles between durability
failures (MMBDF) is to be 5771 mles. Historically, both mssion failures and
durability failures have occurred at a fairly constant rate.

Det er m ne

. What is the mission reliability for a 50-mle mssion?

2. What is the probability of operating for 4000 mles wthout experiencing
a durability failure?

3. What MMBDF is required to have an 80% probability of operating for 4000
mles wthout a failure?

Sol utions

L We use the reliability function,

R(t) = &/°

where t is mssion duration and 8 is mssion MMBF. Sincet = 50 mles and 6 =
320 mles, the mssionreliability is

e 20/320 - g gs5

2. Durability is defined as the probability of conpleting 4000 mles of

operation without suffering a power train durability failure. Again we use
the reliability function,

Rty = &'°

where t is the durability requirement and 8 is the power train MMBDF. Since t
= 4000 mles and 6 = 5771 mles, the mssion reliability is

e-4000/5771

= 0.50.
3. Once again we use the reliability function,
R(t) =8¢

but , in this case, t = 4000 mles and R(4000) = 0. 80. By solving the above
equation for 6, we have

_ t
= -log_ R(t)
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Consequent |y,

5 = 4000
-Tog, 0.80

= 17,926 mles .

Comment ary

Usual |y durability requirenments are inposed on specific subsystens such as the
power train. When individual subsystens are considered, durability failures
are likely to occur wwth an increasing failure rate due to physical wearout of
conponents. In such a case, the use of the exponential nodel would not be
appropriate. OQher distributional nodels of life length (such as the Weibull
distribution) would be appropriate for use in analyzing durability.
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CASE STUDY NO 5-5

Backgr ound

A heavy truck uses 10 road wheels. Each tire’' s nmean niles between failures
(MMBF) is 10,000 mles. Assune a series nodel for the 10 tire system

Det er m ne
1 What is the failure rate of each tire.
2. What is the probability that a single tire wll experience no failure

during a 1000 mle mission?

3. Assum ng the tires operate independently, what is the probability of no
tire failures in a 500 nmile mssion?

4, VWhat is the MVBF of the entire systemof 10 tires.

b. How many spares should be kept so that a 500 mle mssion can be com
pleted at |east 90% of the time? 99% of the tinme?

Sol uti ons

1. The failure rate (A) is the reciprocal of the nean mles between failures
(MMBF). Consequently,

1 1

A. = 'WI"?BF = 10’ OOO = Ow 0001 &

2. Using the fornula for conputing Poisson probabilities (equation 5.3) with
the follow ng paraneters

000 mles

M ssion Length (T) =1
= 0. 0001,

Failure Rate (A)

we have

) (1yEe AT
gy, 1K) k!

0 ~AT
P(no failures) = (AT) 0? = e

=¢ 91 -0 905 .

-AT _ _-(0.0001)(1000)

This value could have been obtained using Appendix B, Table 3, using m AT ~
0.1 and c = O In addition, we could have used Appendix B, Chart 1 using O/T
= |/AT =10 and ¢ = QO
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3. For a single tire the probability of no failures in a 500 mle mssion is

k -AT
_ (AT)"e
a k!

g, (k)

[(0.0001)(500) )% (0-0001)(500)
) 0!

= 0.951 .

Since all tires are in series, have the same failure rate and operate inde-
pendently, the probability of no failures anong all 10 tires is

(0. 951) **=0. 605

4, In order to determ ne the MMBF of the systemof 10 tires, we use the
reliability function

RT) = e /9,

where T is mssion length and 6 Is MMBF. Solving this equation for 6, we
obtain

T
-loge R(T) *

6 =

In problem 3, we determned that R(500) = 0.605 for the 10-tire system Thus,

g = 500
-1og . 0.605
e
=1000m | es.
5. Mssion Length (T) = 500 mles.

System Failure Rate (A) = 0.001.
(Note:  MVBF = 1000 from question 4)

Using Appendix B, Table 3 with m= AT = 0.5, we have

P(no failures) = 0.607

P(less than or equal to 1 failures) = 0.910
P(less than or equal to 2 failures) = 0.986
P(less than or equal to 3 failures) = 0.998

For a 90% chance of m ssion conpletion, one spare will suffice. For a 99%
chance of mssion conpletion, 3 spares are required. However, the inprovement
inreliability from().986 (2 spares) to 0.998 (3 spares) does not appear to
warrant the extra spare.
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CASE STUDY NO. 5-6

Backgr ound

A new vehicle is under devel opnent which is required to have a MIBF of at
| east 200 hours (A no nore than 0.005) and a nean tine to repair (MTTR) of no

nore than 40 man-hours. Assune that the specifications (200 hours MIBF and 40
hours MITR) have been net by contractor A

Det er m ne

1. What is the probability that a devel opnent test of 1000 hours will show
at least 10 failures?

2. What is the probability of no failures during the first 400 hours of the
test?

3. How many man-hours of repair time are expected during the 1000-hour test?

4, How nmuch cal endar tine in days--operating and maintenance--based upon an
8- hour day should be programmed so that at least 10 total repairs will be
perforned by a team of 4 mechanics working on 10 identical systens? W desire
that there be at least 10 failures with probability 0.90. W desire to take
only a 10% risk that repair time allotted will be insufficient. Assune that
each repair takes 40 hours, the mean repair time. Rework the problem assum ng
each repair is conpleted within 60 hours.

Sol utions

1. The “background to this study indicates that this is a continuous tine
testing situation. In addition, we are interested in nunbers of failures and
not in times between failures, so the Poisson nodel is used for this analysis.
Test tinme (T) is 1000 hours and MIBF is 200 hours (A = 0.005). The unknown
value is the probability of 10 or nore failures.

Use Appendix B, Table 3, with AT = (0.005)(100.0) = 5.0. The probability of 10
or nore failures = 1 - P(9 or fewer failures).

For AT = m= 5.0, we see in the colum labeled ¢ = 9 that the probability of 9

or fewer failures is 0.968. Consequently, the probability of 10 or nore
failures is 0.032.

2. Test tine (T) is 400 hours and MIBF is 200 hours (A = 0.005). The un-
known value is the probability of O failures.

Use Appendix B, Table 3, with AT = (0.005)(400) "2.0.

For AT = m= 2.0 we see in the colum labeled ¢ = Othat the probability of
zero failures is 0.135.

3. Test time (T) is 1000 hours and MIBF is 200 hours (A = 0.005). MITR is
40 hours (A = 0.025). Each repair takes 40 hours on the average. There are
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1000(0.005) or 5failures expected. The expected repair tine is 5(40) or 200
man- hour s.

4. Let To be operating tinme needed and ﬁ be repair time needed. W desire
that To be large enough that the probability of seeing 10 or nore failures be

at least 0.9. However we nust allow repair tine for that nunber of failures
(nlO)vwnch represents all but the upper 10% of the distribution of nunbers of

failures, i.e., the probability that nore than 0y failures occurring is 0.10.
a. Determne T : Probability of at |east 10 failures nust be at |east
0.90. ‘

Note:  The probability of 10 or nore failures = 1 - the probability of 9 or
fewer failures.

The probability of nine or fewer failures nmust be no nore than 0.10. Under
the colum labeled ¢ = 9.0 of Table 3, we find by interpolation that a 0.10
probability of 9 or fewer failures is achieved when m= 14. 2.

Since m= AT and m= 14.2
T = To and
A= 0. 005

W solve the follow ng equation for TO:
To = mMA = 14.2/0.005 = 2,840 hours.

b. Det er m ne N Al low for 19 failures since the probability of 20 or

more failures is just under O0.10.

C. Determne T: (19)(40) = 760 man-hours

Tr = 760/4 = 190 cl ock hours.

d. Det erm ne nunber of days needed:
Qperating hours: 2,840

Ten systens operating hours: 284 for each system
Mai nt enance hours: 190

Total hours: 474
Days Required: 59.25

€. | f each repair takes 60 man-hours. then 1140 nan-hours are required.
Thi s corresponds to 285 clock hours. Consequently, the total number
of hours is 569 which represents 71.1 working days.

Comment ary

For nunber 4, we have allowed 40 nman-hours for each repair. If the average
repair tinme is indeed 40 man-hours, then 760 total man-hours should be a
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reasonably close estinmate. Conmputation of the risk involved wth this ap-
proach is conplicated and beyond the scope of this work. One procedure to
adopt is to increase the allotted tine per repair as we have noted in 4e.
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