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Outline

• Comments regarding Behind Armor Debris (BAD) 
• Generalized Particle Algorithm (GPA)
• Conversion of finite elements to particles
• Description of computed fragments
• Computations of Behind Armor Debris

- EPIC code
- Ballistic velocities and hypervelocities
- Computations compared to experiments

• Summary
• Movie (if time permits)
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Comments regarding Behind Armor Debris

• Determination of BAD from testing is difficult
- Requires fragment material, size, velocity, position
- Another approach is to collect fragments in witness pack

• Determination of BAD from computations is difficult
- Eulerian algorithms have trouble with large air gaps
- Finite element algorithms have trouble with large distortions
- Meshless particle algorithms may have trouble with accuracy

• Combination of finite elements and meshless particles
is well suited for BAD computations
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Conversion of finite elements to particles

Interface after conversion of elements
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Capabilities of Lagrangian conversion algorithm

• Penetration and perforation of target
• Failure and fragmentation of material
• Highly distorted flow and structural deformations
• Accurate contact and sliding between materials
• Travel through large air gaps

- no numerical diffusion of geometry or materials
- no element or particle representation of air gaps

• Interaction with subsequent target components
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t = 100 µs

Ballistic velocities
V = 2000 m/s

Conversion of finite elements to particles

Particles sliding 
on elements

Particles attached 
to elements

Particle contact 
between different 

materials

Elements sliding 
on elements
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t = 200 µs

Ballistic velocities
V = 2000 m/s

Conversion of finite elements to particles

Fragments composed of 
multiple elements/particles
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Damage at t = 200 µs

Conversion of finite elements to particles
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Red particles are failed (D = 1.0)

Description of computed fragments 

full bond

half bond

no bond

(compression only)

Fragment
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Estimate of small fragment sizes

It is possible to estimate the sizes of fragments smaller than the particles
^

(but probably not necessary)

Failed particle
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Behind Armor Debris at ballistic velocities

N. Heider, K. Weber and P. Weidemaier, “Experimental and 
numerical simulation analysis of the impact process of structured 
KE penetrators onto semi-infinite and oblique plate targets,” 
presented at 21st International Ballistics Symposium, 2004.

• Tungsten rod (L/D = 20) impacting steel plate
• Impact velocity = 1615 m/s
• Impact obliquity = 60 degrees
• Angle of attack = 2.4 degrees (nose up)

Radiograph during test Section of recovered plate
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Computed results at ballistic velocities

Computed responses at 80 µsBaseline (V = 1615 m/s)
- impact conditions from test
- different materials High-strength target

- 50 % stronger
Constant kinetic energy
- higher velocity (25%)
- lower mass
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Computed damage at 168 µs

Computational and experimental results

Constant kinetic energy
- higher velocity (25%)
- lower mass

Baseline
- impact conditions from test
- different materials

High-strength 
target
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Baseline computation with witness plate

witness plate

Thin aluminum witness plate placed behind target
- projectile and target fragments damage witness plate
- used to quantify behind armor debris

front
back

Computed response at 500 µs
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Layered ceramic/aluminum target

Projectile
• steel core
• copper jacket
• V = 900 m/s
• Ø = 10 deg

Damage
• t = 20 µs
• cracks form
before conversion

t = 30 µs

t = 300 µs
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Computations of hypervelocity impact

Aluminum sphere impacting thin aluminum plate at 6.15 km/s

A. Piekutowski, “Effects of scale on 
debris cloud properties.” Int. J. Impact 
Engng 20 (1997).

- Shows same debris-cloud  characteristics
- Position/scale of radiographs distorted   by 
x-ray projection

8.1 µs 23.2 µs

Computation using conversion:

Beissel, Gerlach, Johnson (HVIS 2005)
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Aluminum sphere impacting thin aluminum plate at 6.15 km/s

Three regions identified by Piekutowski in test:
1. Melted target and projectile at front
2. Large projectile fragments in middle
3. Small projectile fragments in spall

Region 1
Tmelt = 925 K
for Al

Region 2
large frags

Region 3
spall w/small fragsTemperature

at 23.2 µs
Damage

at 23.2 µs

Computations of hypervelocity impact
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25o

2024-T351 Al cylinder
L = D = 7.72 mm

6061-T6 Al bumper
t = 2.03 mm

2024-T351 Al rear plate
t = 6.35 mm

10.59 cm

6.39 km/s

25o

2024-T351 Al cylinder
L = D = 7.72 mm

6061-T6 Al bumper
t = 2.03 mm

2024-T351 Al rear plate
t = 6.35 mm

10.59 cm

6.39 km/s

Oblique cylinder impacting a Whipple shield

Impact configuration

Computations of hypervelocity impact
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Computations of hypervelocity impact

Computed cross-section 15 µs after impact
(before debris cloud has reached rear plate)

Concentration 
of projectile 
material

Oblique cylinder impacting a Whipple shield

Beissel, Gerlach, Johnson (HVIS 2005)
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Oblique cylinder impacting a Whipple shield

Computed cross-section 
50 µs after impact

spall

perforation

Two modes of failure in rear plate:
1. Perforation due to impact by concentration of projectile material in primary debris cloud
2. Spall due to impact by remaining projectile material in primary debris cloud

Computations of hypervelocity impact
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Oblique cylinder impacting a Whipple shield

Computed rear plate 50 µs after impact
A. Piekutowski, “Debris clouds generated 
by hypervelocity impact of cylindrical 
projectiles with thin aluminum plates.” Int. 
J. Impact Engng 5 (1987).

Computations of hypervelocity impact
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Summary

• Combination of elements and particles is well suited
for BAD computations

• Conversion algorithm enhances accuracy and
efficiency of computations

• Demonstrated capability to compute BAD
- includes travel through large air gaps
- includes interaction with subsequent target plates/structures

• Demonstrated general agreement with test data
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Behind Armor Debris movie


