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Ceramic Materials

3.4STK4TK4KennametalSiAlON
3.2SN5PSN235PKyoceraSi3N4

3.2SN47147-31NCeradyneSi3N4

3.1SC46146-5SCeradyneSiC
3.1SCLHLPS Hexoloy SASaint-GobainSiC
3.1SCEHEnhanced Hexoloy SASaint-GobainSiC
6.1ZRO2Ce-TZPCoorsTekZrO2

3.8ALOXAD995CoorsTekAl2O3
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• Eight candidate materials were chosen from commercial vendors
– All materials are off-the-shelf technologies
– No material development was planned for this ATO

• Extensive test matrix developed to characterize the mechanical 
and thermal properties of each material
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Erosion and Damage Tests
Different simulators used to test the 
erosion resistance of ceramics
– Blow-out Gun – ARL

• Extreme condition erosion test 
– Closed Bomb Test – ARL

• Examine propellant gas-ceramic chemical 
interactions

– Vented Erosion Simulator (VES) Test–
Benet Laboratories
• Simulates the IB conditions seen in a 

120mm system
– Pulsed Laser Heating Test – Benet

Laboratories
• Capable of inducing thermal shock damage 

similar to that created during an IB event

Blow-Out Gun



VENTED EROSION SIMULATOR
Simulates erosive environment of a Large Caliber tank gun
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• SN5P scheduled to be exposed to 100 rounds
• Mass loss determined after every 10 rounds
• Terminated after 44 and 94 rounds due to potential damage 

to the VES fixtures NOT because of damage to the ceramic

Exhaust End



Erosion Summary
• Si3N4 and SiAlON performed well in all tests

– Lower mass loss per shot than gun steels
– Exhibited some fracturing

• Not unexpected since all fixtures were originally designed for steel samples with 
no modifications made for the ceramic samples

• Damaged VES samples did not exhibit an accelerating erosion rate
• SiC and Al2O3 showed significant mass loss due to fracture
• ZrO2 exhibited extensive damage & accelerating mass loss

However, ceramics are hindered by brittle facture, low fracture 
toughness, and highly variable tensile strength

– Need new modeling and failure prediction approaches to design a 
ceramic lined barrel.

– Require methods for imparting high compressive prestress

Low erosion rates make ceramics attractive as gun barrel materials



Modeling Brittle Failure
• Ceramics can support tensile load, 

but are subject to large scatter in the 
observed strength

• Brittle material design requires a change 
from the deterministic methods used in 
metals to a probabilistic approach:

– Failure initiated at random flaw sites 
scattered throughout the material

– Failure strength for each sample 
determined by the stress exceeding the 
strength at a critical flaw

• Weibull statistics are used incorporate 
this information into design parameters
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Pf = Weibull Probability of Failure
σ = Applied Stress
σo = Characteristic Strength
m  = Weibull Modulus
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Internal Pressure Testing
Experimental Data and Model Predictions

• Ceramic tubes tested by internal 
pressurization

• Model predictions based on 
measurements for the strength of 
different flaw populations
– Uniaxial tension to determine the 

volumetric flaws
– C-ring tests the outer surface flaws

• A lack of data on the inner surface 
flaws - they are presumed to be 
identical to the outer surface flaws
– This leads to two different 

predictions for the following plots 
• High - the predicted strength for 

volumetric flaws only
• Low - the predicted strength for 

volumetric and surface flaws 



Model Predictions

• Calculated failure pressure ranges bracket the 
experimental values

• The model predicts ranges for both unsheathed and 
sheathed tubes

SN47 Unsheathed SN47 + Composite Sheath
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Failure Surface Plots
• Experimental data supports 

model predictions

• The next step is to apply the 
model to search for successful 
designs for different 
gun/cannon tubes 

• Failure surface plots illustrate 
the effects of varying ceramic 
thickness and pre-stress level 
for a pressurized tube

• Provides quick approach for 
visualizing 10,000 different 
design concepts

- Sheath Failure
- Ceramic Failure 
- Successful Design

Increasing Pre-Stress

All
Steel

All
Ceramic

Ceramic Failure

Sheath Failure

Successful
Design
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Probabilistic Modeling Summary

Validated probabilistic 
modeling capability for 
predicting the strength of 
ceramic lined gun tubes 
has been coupled with FEA 
models to assess:

• Transient thermal behavior
• Thermal shock on the bore 

surface
• Dynamic thermo-mechanical        

loading
• Rifling/engraving
• Projectile/barrel interactions
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High-Tension Winding



High-Tension Winding Results
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Final strains 
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sheath thickness = 0.1 inch
(9.1 MPa)
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Multiaxial Sheathing

Ceramic

Tapered sleeves
for press-fit

Barrel

Sheath

Demonstrated sheathing pressure 
in excess of 200MPa

OD Hoop Strains During Assembly
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Ballistic Test Fixture

Ceramic tube
Ceramic tube

Graphite Sheath
Graphite Sheath



Ballistic Specimens



Firing History & Plans

• Four Si3N4 tubes with high-tension wind
– Maximum pressure achieved ~45 ksi
– Ceramic tubes crack but failure is not catastrophic

• Two SiAlON tubes with high-tension wind
– Maximum pressure achieved ~25ksi
– Issues with tube concentricity and the firing fixture have limited the 

achievable pressure

• Test of multi-axial confinement schemes planned 
by year end



Conclusions

• Identified commercially available ceramics for 
ceramic-lined gun barrel application

• Developed a probabilistic design approach to 
account for ceramic failure behavior

• Investigated robust sheathing schemes to provide 
the required level of compressive pre-stress

• Have conducted preliminary firing tests with 25-mm 
tubes achieving 45 ksi (in line with predicted limits of 
sheathing)



• Imparting rifling without degrading the performance 
of the ceramic liner

• Manufacturing of longer, straighter, more concentric 
tubes held to tight tolerances

Future Challenges


