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The work described in this talk was paid for by the 
American taxpayer through NASA and the 
Columbia Accident Investigation Board.
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Lots of people worked on the 
Columbia accident investigation
and return to flight.  

Some who directly helped with the 
impact-related material in this talk:

Donald J. Grosch (SwRI)
Sidney Chocron (SwRI)
Walt Gray (SwRI)
Justin Kerr (NASA/JSC)
Freeman Bertrand (Jacobs/Sverdrup)
Paul Parker (Boeing)
Mike Dunham (Boeing)

Lots of People

Photograph during Columbia investigation
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Southwest Research Institute
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The Columbia Accident
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STS-107

• 113th flight of the Space Shuttle Program
• 28th flight of Columbia
• Columbia was the first Shuttle to fly (April, 

1981)
• Launched January 16, 2003
• Disintegrated on re-entry, February 1, 2003
• Crewed by

– Rick Husband
– William C. McCool
– Michael P. Anderson
– David M. Brown
– Kalpana Chawla
– Laurel Clark
– Ilan Ramon
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CAIB Report, Volume I

• Volume 1 of the Columbia Accident 
Investigation Report was published 
August 26, 2003

• It can be found at the CAIB web site: 
www.caib.us

• The conclusions were that there were 
two causes of the loss of the 
Columbia:
– A physical cause
– An organizational cause

• SwRI was involved in identifying the 
physical cause, discussed in Chapter 3 
of the Volume I with more details in 
Volume II and a NASA report.

http://www.caib.us/
http://www.caib.us/news/report/default.html
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Columbia Accident Investigation Board 
Report, Volume II, Appendix D.12 (Oct. 2003)
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Bipod Ramp Foam Insulation
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Foam Impact on STS-107

• 81.7 seconds into flight, the bipod 
ramp foam insulation broke away.

• The shuttle was at 66,000 ft.
• The shuttle velocity was mach 2.46 

(1580 mph).
• The foam traversed the 58 feet 

between the bipod connection and 
the left wing in 0.16 seconds.

• The refined estimate of the impact 
velocity was 775 ft/s (528 mph).

• Estimated foam mass: 1.67 pounds.
• Estimated size: 21” × 11.5” × 5.5”
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Possible Impact Locations

Main Landing Gear Door

Wing Acreage
Leading Edge Panel
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Shifting Focus

• Early telemetry showed 
first anomalies in left 
main landing gear bay. 

• Upon recovery of the 
Modular Auxiliary Data 
System recorder on 
March 19, 2003, 
analysis of the data led 
attention to the leading 
edge.

Modular Auxiliary Data System Recorder
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Main Landing Gear Door
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Main Landing Gear Door from Enterprise
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SwRI Large Compressed Gas Gun

• 500 gallon tank,  275 
psi working pressure,  
10-inch diameter by
35-foot long barrel.

• Typically used to 
launch large, 
irregularly-shaped 
projectiles.

• Helium or Nitrogen is 
used as the driver gas.
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Launching Foam
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Main Landing Gear Door Tests

• Performed 5 impact tests on 
the left Main Landing Gear 
Door.

• These impacts demonstrated 
that at the speed (775 ft/s) and 
angles of impact on the tiles 
(up to 13°) the foam barely 
damages the tiles.
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Tile and Foam Modeling
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Foam Insulation Compression Tests

Stress-strain curve for sample 2Stress-strain curve for sample 1
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Strain (%)
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Transverse compression tests on roughly 
2” cube tile samples taken from 

tile MISC-794-400-120

Crushing begins at 345 kPa (50 psi)
Strain (%)

0 10 20 30 40 50 60

St
re

ss
 (k

Pa
)

0

50

100

150

200

250

300

350

400

450

500

St
re

ss
 (p

si
)

0

10

20

30

40

50

60

70

Failure begins



21

New EOS Model for Foam Insulation

Enlargement of low strain region, 
blue and black are data, red is model

Full stress-strain curve, blue and 
black are data, red is model

Foam density is 0.03844 gm/cm3 (2.4 lb/ft3), initial crushup stress is 220 kPa (32 psi)
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Strain (%)
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New EOS Model for Thermal Tile

Enlargement of low strain region, 
blue and black are data, red is model

Full stress-strain curve, blue and 
black are data, red is model

Tile density is 0.18 gm/cm3 (11.2 lb/ft3), initial crushup stress is 345 kPa (50 psi)
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Computations



24

Computations

• Most computations were performed 
in 2D plane strain – however, there 
was excellent agreement between 2D 
plane strain and 3D.

• The normal stress was examined 
along the surface of the tile gages 
(“tracers”) spaced 0.5 cm apart.

• The gage readings show the normal 
stress in the y direction at the 
respective location.

• Computations performed in CTH 
with new material models.
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How Damage/No Damage was Decided
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No Damage for 700 ft/s Impact at 15º
Impact Angle

Tile surface mostly flat after impact; normal stresses are 
below 345 kPa (50 psi) tile crushup level
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Crater for 700 ft/s Impact at 23º Impact 
Angle

Crater (indention) seen in target; normal stresses are above 345 kPa
(50 psi) tile crushup and 400 kPa (58 psi) tile yield/failure
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Results on Damage/No Damage Transition Region
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Damage/No Damage Transition

• Many CTH computations 
were performed using 
new EOS with 1” cubes 
of foam insulation 
impacting a tile.

• These computations 
allowed a determination 
of where the transition 
from no damage to 
damage occurred, in 
terms if impact velocity 
and impact angle.

• Figure shows results of 
computations.
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Theory

• It is possible to determine the impact velocity at 90 degrees (flyer 
plate) at which the thermal tile just begins to crush.   The velocity 
is given by

where σ is stress, c is sound speed, subscript t refers to tile, f to 
foam, e to elastic, and

• When computed, Vcrush = 68.2 m/s (224 ft/s).  This value was 
confirmed by 1D CTH computations.

)( 1 effef

fcrushtcrush
efetcrush uc

uuV
+
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Theory

• When foam impacts the tile at 
an angle, the horizontal and 
downward components of the 
velocity interact nearly 
separately if the interface 
remains relatively flat.

• Thus, crushing of the thermal 
tile would be expected when

)sin(θ
crushVV =

Vy = -Vsin(θ)
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Damage/No Damage Transition

• When the computed 
Vcrush = 68.2 m/s (224 
ft/s) is used, good 
agreement is obtained 
with the 
computational results.
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Damage/No Damage Transition
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Damage/No Damage Transition
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Damage/No Damage Transition

• All the foam data is 
plotted from Rand’s 
1979 report, SwRI’s
1999 report and the 
Columbia 
investigation; there is 
good agreement with 
the theoretical curve.
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RCC Panels 6 and 8 Tests
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Final Estimates of Foam Path
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Leading Edge Test Article
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Leading Edge Structural Subsystem
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Test Article
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Interior Cameras and Gages

• Up to 16 high-
speed video 
cameras were 
used per test (up 
to 8 outside of 
the target, up to 
8 inside the 
target).

• Up to 250 
channels of 
strain gage, 
accelerometer 
and load cell 
data were 
collected.
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Exterior Cameras
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RCC Panel 6 Test

• RCC Panel 6 had flown 30 flights on Discovery.
• The test resulted in a cracked rib.
• Damage thought insufficient to cause the loss of the vehicle.
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RCC Panel 8
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RCC Panel 8

• RCC Panel 8 had flown 26 missions on Atlantis.
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RCC Panel 8

9.6”+/-0.1”

16.0”+/-0.1”

16.75”+\-0.1”

8.3”+/-0.1”

JSC200e46792
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Modeling Foam Insulation Impact on
RCC Panels 6 and 8
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Experimental Results RCC Panel 6
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Replicating RCC Panel 6 Test

0.225 ms 1.5 ms
• The impact point 0.83” left from the 5-6 T-seal, 18.7” up from the carrier panel.
• Flight direction: α=5.5° (bottom to top), β=2.5° (away from center). 
• The impact velocity was 768 ft/s, computation carried out to 5 ms.
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Replicating RCC Panel 6 Test

2.7 ms 3.7 ms
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Experimental Results RCC Panel 8
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Replicating RCC Panel 8 Test

0.1 ms 1.2 ms
• The impact point 7.3” left from the 7-8 T-seal, 25.5” up from the carrier panel.
• Flight direction: α=5.5° (bottom to top), β=5.0° (away from center), 30° clocking. 
• The impact velocity was 777 ft/s, computation carried out to 5 ms.
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Replicating RCC Panel 8 Test

2.5 ms 2.5 ms
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Loading Footprint

RCC panel 6 impact RCC panel 8 impact
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Stresses RCC Panels 6 and 8
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Investigation Conclusions

• The component of velocity 
normal to the impact surface 
determines the local loading 
pressure.

• Modeling and experiments 
showed that an impact on the 
underside of the wing was not the 
cause of the accident.

• Forensics, experiments and 
modeling showed that the loss of 
Columbia was due to a foam 
impact on RCC panel 8. 
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The Physical Cause

The physical cause of the loss of Columbia and its crew was a 
breach in the Thermal Protection System on the leading edge of the 
left wing.  The breach was initiated by a piece of insulating foam 
that separated from the left bipod ramp of the External Tank and
struck the wing in the vicinity of the lower half of Reinforced 
Carbon-Carbon panel 8 at 81.9 seconds after launch.  During re-
entry, this breach in the Thermal Protection System allowed 
superheated air to penetrate the leading-edge insulation and 
progressively melt the aluminum structure of the left wing, 
resulting in a weakening of the structure until increasing 
aerodynamic forces caused loss of control, failure of the wing, and 
breakup of the Orbiter.
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SwRI Three-Pronged Approach
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Return to Flight
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CAIB Recommendations R3.2-2
Estimate Risk

• Initiate a program designed to increase the Orbiter’s 
ability to sustain minor debris damage by measures such 
as improved impact-resistant Reinforced Carbon-Carbon 
and acreage tiles. This program should determine the 
actual impact resistance of current materials and the 
effect of likely debris strikes. [RTF]
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CAIB Recommendation R3.8-2
Impact Damage Models

• Develop, validate, and maintain physics-based computer 
models to evaluate Thermal Protection System damage from 
debris impacts. These tools should provide realistic and 
timely estimates of any impact damage from possible debris 
from any source that may ultimately impact the Orbiter.
Establish impact damage thresholds that trigger responsive 
corrective action, such as on-orbit inspection and repair, 
when indicated. 
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Foam and Ice on the External Tank
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Impacts into Thermal Tiles
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Physics-Based Impact Models: 
Inputs and Outputs

Foam, Ice and Ablator 
Impact Models

Specific Impact Event Input:

Impactor denstity: ρp

Impactor Dimensions:     
Length L, Width W, Height H

Impact Velocity V and Angle θ

Large compression crush-up 
curve required (foam)

Projectile fracture (ice)
Tile Material Properties:

Large compression crush-up 
curve required (stress vs. strain 
in compression up to 90% 
compression)

Output: Computed Crater Dimensions

Depth, Length, Width
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Our Validation Triangle

Both of these models 
are Physics Based

When experiments, 
large-scale numerical 
simulations and the 
analytical physics-
based model agree, 
the physics-based 
model is assumed to 
be validated.

Ldt
d

pρ
σ )v(-v zz=

This is our fast-running, 
physics-based model 

for flight
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Powerful Feature of the Models

• For both the fast-running physics-based model 
and CTH
– The model coding is exactly the same for all 

the different cases that will be shown – only 
the input material properties are changed.

• Thus, it is not a different model for ice or low 
density ice, it is not a different model for LI-900 
or FRCI-12; the impact model is exactly the 
same, only the input material properties change.

• As will be shown, excellent agreement between 
models and test data exists for all impact cases.
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Material Properties for Tiles



68

Thermal Tiles (LI-900)

LRSI White Tile HRSI Black Tiles

Silica foam (white)

Flown tile
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Thermal Tiles

Strain isolation 
pad (SIP)

Filler bar
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Larger strain behavior based on Crush-in-
a-Box Uniaxial Strain Test Data

• Test performed with a cylinder from same tile specimen 
confined with a steel ring.

• Data placed into new tile model within CTH.  Model includes a 
yield at 550 kPa.
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Material Properties for Impactors
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Ice Physical Properties

• The modeling assumed the following properties for ice (obtained 
from typical values found in the literature):

– Modulus of Elasticity (E) = 8000 MPa
– Shear Modulus (G) = 3000 MPa
– Density = 0.914 g/cc (57 lb/ft3)
– Poisson’s ratio = 0.33
– Flow stress = 2.0 MPa
– Tensile strength = 1.0 MPa
– Sound speed (c0) = 2954 m/s
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RT-455 Ablator Model Developed for CTH

Initial density 0.66 g/cm3
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PDL Model for CTH
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Ice into Tile
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Physics-Based Ice into Tile Model

• Given the tile crush-up behavior, the 
model solves the Riemann problem to 
find the stress in the tile versus velocity, 
σzz(v).  A shear term is also included.

• Given this information, F = ma
qualitatively translates into 

(see the rest of these charts for exactly 
how the full equations appear).

• The depth of penetration is calculated by 
integrating this equation with a numerical 
scheme to produce a line-of-sight depth 
of penetration PLOS.

Ldt
d

pρ
σ )v(-v zz=

PLOS

V

L
ρp

θ

P
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Tile Resistance to Penetration

• The model computes a penetration resistance stress of the form

• Here, 
– σHugoniot(v) is the stress as a function of particle velocity along 

the Hugoniot (the idealized one-dimensional planar impact).  
This function is computed based on the large-strain 
compression curves and the Hugoniot jump conditions.  It is 
stored as a table for rapid look-up during the computation.

– σcrush is the crushing strength of the tile
– α(v) is the extent of the deforming region within the tile, and is 

computed with a cavity expansion expression.  It depends on 
the material properties of the tile and the penetration velocity.

)ln(
3
7)()(zz ασσσ crushHugoniot vv +=
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The Hugoniot Contribution to the 
Resistance
• The model solves the Riemann problem 

to find the stress in the tile versus 
velocity, σHugoniot(v).

• This term is found by simultaneously 
solving the Hugoniot jump conditions 
using the tabular data of tile properties

where U is the shock speed and u is the 
penetration speed (U is solved for also).

• The plot shows the value of the 
σHugoniot(v) term (blue) as well as the total 
resisting stress including the shear 
resistance term (red) in terms of 
penetration velocity through the tile.

Uu
U
u

Hugoniot 0

0 1

ρσ
ρ
ρ

=

−=
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Embedment Phase

• When the projectile embeds itself 
into the target, only part of the face 
of the projectile is loaded by the 
target.  Thus, the force on the face is 
reduced by the appropriate factor:

• where
He

H

L
f

dt
d

pρ
σ )v(v zz−=

H
H

f e=
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Equations of Motion

• For completeness, we write the full equations of motion, where x is the direction 
along the surface of the tile and y is the normal direction into the tile:

• These equations are integrated forward in time until either the impactor speed v drops 
below the speed required to crush tile (i.e., it comes to rest) or the impactor is forced 
back to the tile surface (i.e., it ricochets).

2
y

2
x

zzy

zzx

vvv

)cos()sin(
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Developing the 95% Bounding Model

• Since the fast-running physics-based 
model is based on material properties, 
the only way to adjust the model is by 
adjusting those material properties.

• We provide a “bounding model” by 
adjusting the tile strength – that is, 
making the tile weaker.

• In particular, each point in the data 
curve is shifted down by the 
multiplicative scale factor, and then 
the Hugoniot and shear terms are 
recomputed.

We multiply each stress 
term by the scale factor, 
shifting the stress (hence 

strength of the tile) 
downward)



82

Bounding Model: 95% Bounding

• Based on the experimental data, 95% bounding 
is achieved when only 9 data points lie above the 
curve.

• With the earlier version of the model, this level 
of bounding was achieved with a scale factor of 
0.615.  We have chosen to stick with this scale 
factor.  For the updated model, at a scale factor 
of 0.615, 7 points lie above the curve.

• On page 13 of Material Properties Data, Volume 
3, Thermal Protection System Materials Data, 
the in-plane compressive strength of the LI-900 
tile material is listed:
– average is 70 psi, 
– 90% minimum is 53 psi, corresponding to a 

scale factor of 0.76
– 99% minimum is 41 psi, corresponding to a 

scale factor of 0.59.
• Thus, the scale factors from the material testing 

are in reasonable agreement with that found 
from the ice impact tests.

from impact tests

From tile Properties

95% bounding
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F: L=0.5”   W= 0.5”  H =0. 5”  30o

Depth                                             Length
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CTH calculations of Ice impact into LI-
900 Tile

• Work has focused on 3-D 
computations of ice impact  
into LI-900 tile using new 
subroutines in CTH.

• Approximately 350 
computations completed to 
date.

• Six different projectile 
geometries were examined

• Velocities ranged from 10 to 
300 m/s, and impact angles 
varied from 10 to 30 degrees.
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3-D CTH Ice Impact Computations

• 3-D Computations
• 2 upright individual LI900 

tiles included in the 
computation

• 4 mm of SIP material 
included

• Bottom support is rigid
• Cell size 4 mm (0.016 in.) 
• Y=0 is plane of symmetry
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CTH Ablator Numerical Simulations

• Ablator 3’’ x 0.5’’ x 1’’
• Tile 6’’ x 6’’ x 2’’
• 3-D calculations
• Y=0 plane of symmetry 
• Ablator and Tile EOS 

implemented by SwRI.
• No SIP
• 1.5 mm cell size (6 cells across 

ablator thickness)
• Ran a total of 26 cases
• Two examples follow
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30° Impact at 350 ft/s (P2.11.7-1)

0.5 ms 1.0 ms 1.5 ms



88

CTH crush-up profiles

DOP given by the lowest point with alpha = 1.5
Alpha is the current density divided by initial density
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Foam into Tile
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BX-265 Foam Impactors

• A wide range of projectiles were shot:
– Return to flight:

• 1.6”×1”×1”; 1 gram (0.0022 lb)
• 4”×4”×2”; 20 gram (0.044 lb)
• 12”×6”×2”; 90 gram (0.2 lb)

– Columbia Investigation
• 22”×12”×6”; 750 gram (1.67 lb)
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Loading Surfaces

• As the foam projectile impacts the 
tile, only part of the face of the 
projectile is loaded by the target.  
Thus, the force on the face is reduced 
by the appropriate factor:

• The force on the length of the 
projectile acting upwards is
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Equations of Motion

• The equations of motion, where x is the direction along the surface of the tile and y is 
the normal direction into the tile:

• These equations are integrated forward in time until either the impactor speed v drops 
below the speed required to crush tile (i.e., it comes to rest) or the impactor is forced 
back to the tile surface (i.e., it ricochets).

• (There is not a sine term in the first equation because the compliance of the foam 
leads to a nearly flat interface region between the tile and the foam.)
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Tile Resistance to Penetration

• The resisting stress is of the form

• σHugoniot(v) is the stress as a function of particle velocity along the 
Hugoniot (the idealized one-dimensional planar impact).  This 
function is computed based on the large-strain compression curves 
and the Hugoniot jump conditions.  It is stored as a table for rapid 
look-up during the computation.

)()(zz vv Hugoniotσσ =
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Riemann Solver

• A centerpiece of the penetration 
model is a Riemann solver that 
calculates the penetration speed for 
various impact speeds, as well as the 
wave speeds in the material.

• The solver solves the mass and 
momentum forms of the Hugoniot
jump conditions to compute the 
stress and particle velocity at the 
interface between the two colliding 
materials

• The solver uses exactly the same 
equation-of-state tables used by CTH 
for modeling the tile and foam.

• The Riemann solver solves 2-, 3- and 
4-wave problems, all of which can 
arise in foam vs. tile impacts.
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Damage-No Damage Transition

• Explicit expression for the transition velocity for a 90° impact is

• If there were no edge catching, then the transition would be given 
by
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Edge Catch

• The tile is pushed down by the foam, which has inertial resistance as well as 
a spring-like behavior of the SIP (represented by a spring constant k):

• The current critical (transition) velocity is then computed according to

• If the current velocity is above this value, the edge catches and penetration 
into the tile begins.
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Tile Fracture Algorithm

• There is a tile fracture algorithm, in 
an effort to determine when a tile 
breaks, as is seen in the shear-out tile 
failure mode, for example.

• The model is still under examination.
• A cross section is taken through the 

tile, with area A.  If the area loaded 
by the impactor is given by AL, then 
the tile breaks if the force exerted by 
the projectile is greater than the load 
the tile ligament can support (we 
assume that the tensile strength of the 
tile is equal to σcrush-t):

tcrushLL AAvA −−> σσ )()(

Bottom of Tile
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Foam Model Examples
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Test 1.1.9-2, 30 degs, 220 m/s (718 fps) 
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Tile-Out or Pop-Off
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Tile Crush-Up at Bottom of Tile

• In 3d CTH computations, we do not quantitatively see 
as much crush-up at the bottom layer as we see in one-
dimensional computations (to be shown later) (i.e., α
is less): presumably this is due to the larger cell size in 
3D.

• However, we do see crush-up all along the bottom of 
the tile.

• For example (next three charts)...
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BX-265 vs. Tile CTH Computations

• 3-D Computations
• 9 upright individual LI-900 

tiles included in the 
computation

• SIP simulated as a 4 mm 
(0.016 in.) gap

• Bottom support is rigid
• Cell size 4 mm (0.016 in.) 
• Y=0 is plane of symmetry
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Simulation of P1.1.2-4: V=957 ft/s, θ = 20°
Crush-up plots in plane of symmetry
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Simulation of P1.1.2-4: V=957 ft/s, θ = 20°
Crush-up plots in planes perpendicular to impact 

(High resolution)
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Simulation of P1.1.2-4: V=957 ft/s, θ = 20°
Crush-up plots in planes perpendicular to impact

(High resolution)

Yellow at 
bottom is 
crushed tile 
material
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RCC Impact Testing
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CAIB Recommendation R3.3-4
RCC Properties

• In order to understand the true material 
characteristics of Reinforced Carbon-Carbon 
components, develop a comprehensive 
database of flown Reinforced Carbon-Carbon 
material characteristics by destructive testing 
and evaluation.
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Aramis System Allows Direct 
Measurement of Dynamic Displacements

Strains can then be computed, 
and both displacements and 
strains can be compared to 
DYNA Team computations.
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Return to Flight by Discovery
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STS-114

• 114th flight of the Space Shuttle 
Program

• 31st flight of Discovery
• Discovery first flew in August, 1984 

(it is now the oldest operational 
shuttle, as well as the most flown)

• Mission: Tuesday, July 26 – Tuesday, 
August 9, 2005

• Crewed by
– Eileen Collins
– Jim Kelly
– Charlie Camarda
– Wendy Lawrence
– Steve Robinson
– Andy Thomas
– Soichi Noguchi
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Prelaunch Ice Formation
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The Plots

• The following plots from the ice model are for four masses:
– Set Length (1.5” or 2”)

• L=1.5”, H=W=0.767”, mass = 13.2 gram = 0.029 lb
• L=2.0”, H=W=1.02”,   mass = 31.2 gram = 0.069 lb

– Length/Width ratio = 2.5
• L=1.77”, H=W=0.707”, mass = 13.2 gram = 0.029 lb
• L=2.35”, H=W=0.94”,   mass = 31.1 gram = 0.069 lb

• Impact speed in plots goes from 0 to 200 ft/s.  Understand that the model has only 
been baselined for speeds of 80 ft/s to 1500 ft/s.  The concern is that ice may not 
fracture at the lower velocities, and so there may be larger depths of penetration than 
the model predicts (the model assumes the ice fractures).

• Impact angles range from 5° to 55° in 5° increments.
• Blue curves are the nominal model, red curves are the 95% bounding curves.
• (If you want, you can pull the picture out of the presentation and enlarge it.)
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L=1.5”   W= 0.767”  H =0.767”  5° - 55°
Mass = 13.2 gram = 0.029 lb

Depth                                             Length
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L=2.0”   W= 1.02”  H =1.02”  5° - 55°
Mass = 31.2 gram = 0.069 lb

Depth                                             Length
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Torn Thermal Blanket
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Impact of Thermal Blanket on Speed 
Brake

• We performed computations to 
examine the impact of the thermal 
blanket were it to tear free during re-
entry for STS-114 and strike the 
speed brake.

• Computations  were performed with 
the hydrocode CTH.

• The impact computations were 
performed for a velocity of 1600 ft/s.

• “Conservative” issues related to the 
modeling were explored with LS-
DYNA.
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Ribbon Fabric Projectile: 12.7” × 3.8” × 0.18” (.053lb)  
impacting thermal blanket and speed brake at 1600 ft/s 
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Ribbon Fabric Projectile: 12.7” × 3.8” × 0.18” (.053lb)  
impacting thermal blanket and speed brake at 1600 ft/s 
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Ribbon Fabric Projectile: 12.7” × 3.8” × 0.18” (.053lb)  
impacting thermal blanket and speed brake at 1600 ft/s 
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Ribbon Fabric Projectile: 12.7” × 3.8” × 0.18” (.053lb)  
impacting thermal blanket and speed brake at 1600 ft/s 
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Ribbon Fabric Projectile: 12.7” × 3.8” × 0.18” (.053lb)  
impacting thermal blanket and speed brake at 1600 ft/s 

(Last)
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Initial Geometry
Impact speed: 1600 ft/s

0.053 lb / 24 g
12.7”×3.8”×0.18”

0.0177 lb / 8 g
4.23”×3.8”×0.18”

0.0106 lb / 4.8 g
2.54”×3.8”×0.18”

0.0053 lb / 2.4 g
1.27”×3.8”×0.18”
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Post Impact Geometry
Impact speed: 1600 ft/s

0.053 lb / 24 g
12.7”×3.8”×0.18”

0.0177 lb / 8 g
4.23”×3.8”×0.18”

0.0106 lb / 4.8 g
2.54”×3.8”×0.18”

0.0053 lb / 2.4 g
1.27”×3.8”×0.18”
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Examining an “Conservatism” in Our 
Honeycomb Modeling

• Modeling the aluminum honeycomb is difficult.
• In the Eulerian code CTH, we are unable to resolve the structure of 

the front and back sheets of the honeycomb, since our computational 
cell size is 2.5 mm and the thickness of the aluminum sheet is 0.11” 
(0.3 mm).

• To see if the honeycomb fails much more easily than it should, a
series of computations were performed in DYNA to explore with a 
honeycomb we built out of shell elements.
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Conclusions

• Thermal blanket impact into the speed 
brake was modeled using current impact 
tools.

• It was assumed the fabric behaved 
similarly to LRSI LI-900 tiles (the 
density is similar).

• The blanket on the outside of the speed 
brake was modeled as an HRSI LI-900 
tile.

• The honeycomb skin of the speed break 
was modeled with newly-created 
homogenized honeycomb material 
properties placed in the foam model.

• All impacts modeled in CTH (at 1600 
ft/s) resulted in penetration of the tile 
and honeycomb.

• LS-DYNA honeycomb model contained 
a 0.0135 (6.1 g) impact (0.053/4).
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Post Flight Inspection
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Starboard Underside of Shuttle
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Impact Damage to Tile
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Charts to Estimate Debris Environment 
from Ice Damage
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Charts to Estimate Debris Environment 
from Foam Damage
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CAIB Recommendations R3.2-1,2
Reduce Damage and Risk

• Initiate an aggressive program to eliminate all External 
Tank Thermal Protection System debris-shedding at the 
source with particular emphasis on the region where the 
bipod struts attach to the External Tank. [RTF]

• Initiate a program designed to increase the Orbiter’s 
ability to sustain minor debris damage by measures such 
as improved impact-resistant Reinforced Carbon-Carbon 
and acreage tiles. This program should determine the 
actual impact resistance of current materials and the 
effect of likely debris strikes. [RTF]
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STS-121

• 115th flight of the Space Shuttle 
Program

• 32nd flight of Discovery
• Discovery first flew in 1984
• Projected Launch: May 2006
• Crewed by

– Steve Lindsey
– Mark Kelly
– Michael Fossum
– Lisa M. Nowak
– Piers Sellers
– Stephanie Wilson
– Thomas Reiter
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Our Approach to Understanding 
and Our Validation Triangle

Both of these models 
are Physics Based

When experiments, 
large-scale numerical 
simulations and the 
analytical physics-
based model agree, 
the physics-based 
model is assumed to 
be validated.

Ldt
d

pρ
σ )v(-v zz=

This is our fast-running, 
physics-based model 

for flight
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End of Charts
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