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Why Soft-Recovery?

• Improved design of EFPs (Explosively Formed Projectiles) using state-of-
the-art constitutive descriptions require ab initio information of the high-
rate, multi-axis stress deformation path

• Explosive shock effects

• Predominate crystallographic orientation (i.e. texture) and its dynamic 
evolution

• Classical flash radiography and high-speed photography only captures 
geometry information

• Collaboration with Dr. Paul Maudlin, Los Alamos National Lab., TCG-I

Recovered 
EFP

Cross-section of 
recovered EFP

Flash Radiograph of 
an EFP in flight

Code simulation, EPIC
Anisotropic MTS

Example EFP Formation
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Explosive Metal 
Forming 

Experiments
Shock loading

High-rate
Tri-axial stress

Calculations by Dr. Paul Maudlin, LANL, under TCG-I 
“Computational Mechanics and Material Models”,  EPIC-3D

Developmental Engineering ToolsDevelopmental Engineering Tools
3D, Anisotropic Material Descriptions3D, Anisotropic Material Descriptions

Material Processing
• Conventional
• Unconventional

Physical
Characterization

Grain size
Chemistry

Crystallography

Mechanical
Characterization

Low Rate & High Rate
Temperature

Uniaxial
Taylor Impact

Yield Surface Projections
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The Approach Taken Here

• Apply a simplistic, but adequate equation-of-motion for the 
projectile through the media

• Arrange mathematical relationships that relate to the physical 
experiment and instrumentation capability

• Conduct experiments from which the data is used to calibrate the
soft-recovery media

• Compare results of the general model with specific experiments

• Use the model and calibrated media constants for tailored design
and construct of soft-recovery apparatus
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Region 2: Poncelet Form

Mathematical Model

Region 1: Drag Force Model
2

2
1 vACvm D ρ−=& ,    cvv >

)( 2 RvAvm +−= β&   ,    cvv <
vc

Allen, et al. J. Applied Physics, 1957

• m is mass of the projectile
• v is current projectile velocity, 
• A is projectile cross-section area
• ρ is the density of the target medium
• CD is a dimensionless drag coefficient
• β is a coefficient (dim. of density)
• R is a target strength factor (dim. of stress)
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Mathematical Model (cont’d)

Direct integration of the Drag-Force model gives: 

and

where: 
• z is the displacement into that section of the soft catch
• t is the experimentally obtained time at the displacement z
• vo is the entrance velocity to that section
• v is the exit velocity from that section

Assumptions made on the solution:
• Model will be applied for  soft-catch sections where v > vc

• Drag coefficient is not dependent on velocity
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Mathematical Model (cont’d)

• By dividing the prior two equations, a single relationship is 
obtained, dependent only on parameters that can be directly 
obtained during an experiment.
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where: 
• z is the displacement into that section of the soft catch
• t is the experimentally obtained time at the displacement z
• vo is the entrance velocity to that section
• v is the exit velocity from that section
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Solution Steps
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Is applied to each catch section with experimental 
time-position data, using Newton’s method for 
convergence on an iterative root solution to get the 
ratio vo/v, where vo is the exit velocity from the 
previous section and v is our unknown

The ratio vo/v is then put back into this equation to 
obtain a CD for each penetrator/soft-catch material 
combination
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The CD for sections of each material are averaged, 
and then used to obtain an estimated exit time, t,  for 
comparison to the experimental values0
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Step 1:

Step 2:

Step 3:
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The Soft-Catch Process

• A gradient in the media density safely decelerates the projectile

• Instrumented shotline captures the time, position, and velocity data to 
feed the transcendental relationship

• The section of water not only provides a gradual increase in media 
density, but also serves to quench the projectile

• Dual, orthogonal radiographs were used in pre-impact, free-flight to 
establish external geometry and entrance velocity

-12-ft  Polystyrene
(32kg/m3) 

8-ft Vermiculite
(126kg/m3)

8-ft Fiberboard
(256kg/m3)

8-ft Water 
(1000kg/m3)

Sand

Time of arrival sensors
Decelerates to rest and 
quenched in the water

12inch cross-section
1/2inch steel wall
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Experimental Setup

1. Three warhead liner types were shot
• 3 shots with “Tantalum Design 1”
• 2 shots with “Tantalum Design 2”
• 1 shot with “Cu EFP”

2. Fine Grain Octol explosive (65%HMX, 35% TNT)
3. Design was for a simple ‘fold-over’ projectile

• Explosive shock conditions
• Representative strain-rate and strain paths

Rear RP-1 
Initiator

Explosive Fill 
(Octol)

Steel Case

Warhead 
Liner
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Results from Applying the Model

TABLE I.  DRAG COEFFICIENTS, CD, FOR ALL EFP TYPES

0.760.940.77
Cu EFP
(1 shot)

0.860.880.84
Ta Design 2

(avg. of 2 shots)

0.3951.5340.777
Ta Design 1

(avg. of 3 shots)

Fiberboard

(ρ = 256 kg/m3)
Vermiculite©

(ρ = 126.4 kg/m3)
Polystyrene

(ρ = 32.0 kg/m3)

0.760.940.77
Cu EFP
(1 shot)

0.860.880.84
Ta Design 2

(avg. of 2 shots)

0.3951.5340.777
Ta Design 1

(avg. of 3 shots)

Fiberboard

(ρ = 256 kg/m3)
Vermiculite©

(ρ = 126.4 kg/m3)
Polystyrene

(ρ = 32.0 kg/m3)
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Comparison with the Theory

TABLE II.  MODEL COMPARISON WITH “TA DESIGN 2, SHOT 1”

Tantalum Design 2, Shot 1:    Impact Velocity = 1440 m/s

Media
Experiment 

Velocity (m/s)
est. Exit 

Velocity (m/s)
Experiment 

Exit time (us)
est. Exit time 

(us)
Difference in 

time (%)
1395 1381 437 432 -1.1%
1382 1324 878 883 0.6%

Polystyrene 1273 1270 1357 1353 -0.3%
1229 1218 1853 1844 -0.5%
1212 1168 2356 2355 -0.1%
1146 1120 2888 2888 0.0%
1039 941 3475 3482 0.2%
872 791 4174 4190 0.4%

Vermiculite 721 665 5019 5032 0.3%
615 559 6010 6033 0.4%
512 469 7201 7225 0.3%
419 395 8656 8644 -0.1%
325 280 10529 10488 -0.4%

Cellotex 235 198 13119 13092 -0.2%

• Excellent results validate the assumption of simple drag-force 
relationship, v > vc

• Note, penetration velocities are below that reported in Mayfield, 
et al for vc
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Recovered Projectiles
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Discussions/Conclusions

Areas for further investigation:

1. Determine if the tacit assumption that v > vc used is valid 

– Find vc in these media

2. Determine if CD is independent of velocity as assumed 
(velocities were in a relatively narrow band)

– Find CD for a wider range of velocities in each media and 
compare

3. Use constants for predictive design of soft-catch build up 
and capture higher velocity, more tactical (collapsed) 
projectiles
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Discussions/Conclusions

An alternative approach to calibrating projectile/media constants:

1. Construct a soft catch with just one catch material at a time to
obtain CD for all velocities above and below vc

2. Place velocity screens at closer intervals for better resolution
such that vc might be obtained

Total penetration depth z = S is found when v = 0, i.e. projectile comes 
to rest

The original equations of motion can be arranged to solve for total 
penetration into the single media and extract vc
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Summary

• A simple theory has been successfully applied for the 
design of a soft-catch apparatus

• Model, thus far, yields excellent agreement with 
experimental time data

• Further experiments needed to support underlying 
assumptions

• These interest items will be the subject of future 
experiments
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