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Objectives
XM-982 - Excalibur Projectile

» Challenges
SRV FEM Models

* Results & Impacts to Excalibur Program

«*\Validation & Verification.
s Utility of 3D FE Models.

» Conclusions & Recommendations.
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Objectives
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XM982
155-mm, extended-range, guided munition

» To develop and validate a 3D FE model capable of
simulating launch environment of the Excalibur

projectile.
» To predict component loads and support the design of

artillery launched guided projectile components.
» To support failure investigation of critical projectile

units in an evolving design environment
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XM-982, Excalibur Artillery Launched
Guided Projectile

ISSUES
Dema_ndlng g = Increasing use of
Requirements o, sensitive electronics in
" |n Bore: Axial- 15,800-gs “‘6‘ . a guided projectile.
= Muzzle Exit: Axial - 4,052- gs X// R
and balloting 3,962-gs | S, iy " Survivability of MEMS
9, is a major concern.

Design Development Methods

® | imited field tests

= Virtual simulation of launched
environment using a detailed 3D FEM.
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Cross-sectional [View of
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= Obtain physics-based representation of a highly complex structural
configurations & interactions

» Provide real-time design driving guidance to evolving development of
projectile’s structure

= Achieve “fast-turn-around” version of a representative 3D transient model
inherently “lengthy”

» Obtain accurate & representative validation test data- difficult to keep up with
the test program

= Address “test-based” malfunctions or failures




7 = Artillery Launched Guided Projectile —

; Typical Launch Response Environment
o Demanding
L Environments
= Accel.

: ~ 16 k'g - Barrel axial
oo ~4 k'g - Balloting
: . | ~4 k' g - Exit axial
: 3 Radial ; ; = Pressure
1 fisrhnen NESPONSES miiinyacncor Yot Ui ~ 52 ksi - Base
| | | | | = Frequency (Hz)
B o [ [ - L 33 kHz+ (exit)
"y I S S N

Muzzle
Transition

Zone 2

Transition

Muzzle

Base Exit
Zone 3 Zone 4

Set Forward Free Flight

» High-g transient dynamics
response based design of
guided electronics & their
mountings
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« Geometry

3D FEM of SRV Projectile —

Modeling Barriers & Issues

— Degree of defeaturing
— Degree of compatibility of CAD and CAE platforms
— Art and Science

Material Models L
— Inexact material properties used in projectile / 4
— Correlate with response data | /

Internal constraints

— Ties vs contact of parts within prOJec’rlle-- ':y\;"ﬁm the
gun ’

— Joints and transfer of loads -
Loads :
— Base pressure time hlstgr:&
— Gun & geometry
Boundary Conditions
— Trunions’ effect
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Modeling Cases & Conditions

¢ Over 50 modeling cases were run including:

Projectile systems & variations
Subsystem/components — MU, GNU etc.

Gun barrel interactions

Spinning and balloting effects
Verification/validation/model consistency check
Sensitivity analyses

Joint compliance/joint loads

Gravity gun droop

s+ A selected subset of cases is discussed next.
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3D FEM of SRV Projectile —

NO Gun Barrel in Model (old SRV)

P

Simulated Boundary Conditions (Progressive).

Step 1. Both obturator rings are restrained along radial directions
Restraints (pinned), u2 =u3 =0 Step 2. Only back ring is restrained along radial dir.
Step 3. Free- BCs

Corrected base press:‘rz l\:]i(:hei?tponential smooting at ‘
EAN S
)N i\
0 0.005 0.01 Til;:lf;ﬁ 0.02 0.025 0.03 M wel E p 1- St Ep S-TIE-FTE-VE
ngh-g 1mpu131ve # DOFs 556,680
. # Elermnents 123,399
thrust (Typical s
(Typical) Total weight in Ibs 104.58
Projectile-only” FEM is capable of predicting gafe T:rl: the bottom of Boom 16.87
Design loads for most subsystem design. CPU Time in sec, 8 CPUs -q?_, 748041
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3D FEM of SRV Projectile —

AN
E - Gun Barrel/Projectile Interaction Model
" Pressure History (PIMP +5%) Typical «’ ::j’ 1)

Bearing Supports

0.000 0.005 0.010

Two-phase FEA Analyses Model SR
. . . #DOFs 1,124 979
*Phase 1. ABAQUS Standard gravity analysis ZElemerts 174 997
<Phase 2. ABAQUS EXPLICIT Dynamic Analysis Total weight in Ios (Projectile) 105.78

C.G. from the bottom of Base in 13.78

in. '

CPU time r.t. No baﬁ‘“ ~3-4X
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Sample Analysis Results 3D SRV FEM-

Viewport: 1

ODE:
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Viewport 2
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e Gun Launch Simulation FEM with Barrel

— Increases the computational cost; dof's are almost twice
the no-gun simulation case

— Gun barrel interaction phenomena is critical to
electronics’ survivability analysis

— High-g transient load for design of embedded electronics
components can be predicted using this FEM.
 Gun Launch Simulation FEM without Barrel

— Design loads for stress adequacy of subsystems can be
effectively predicted.
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FEM Validation - during launch process in 155-mm

Comparison of Simulation vs. Test response at OBR Location

Setback Axial Response Muzzle Exit Axial Response
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Multiple FEM Verification — barrel projectile mode

omparison of Simulated Spin vs. NO Spin Responses using Different FE Codes
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=== |ocating suitable mounting locations of sensitive electronics components
Hiroae”
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0 Comparison of simulated responses:

G’s at Forward location ~ 8,500

G’s at AFT location ~ 3,000

Demonstrates the effectiveness of FEM in evaluating design concepts. %A(C}LL)U .
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Utility of 3D Transient SRV FEM -

Sub Modeling Analysis —Micro-Level failure Investigation of IMU

ABAQUS Global
Response From 3D FEM

T s

Top Driven Nodes from
Global Model

T r————,

Bétfdm Driven Nodes
from Global Model

Time Saving N\ Local detail FEM of IMU

Estimate 2 10X

+Global FEM provides input loads
for this Local FEM

 Predicted global Accel. for driven nodes are used for sub modeling
evaluation of the IMU device.

* Local detail FEM of the IMU is used thereby saving computational time.
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o V,Utlllty of 3D Transient SRV FEM —

gl S e e e

Embedded MEMS

Failure Investigation of MEMS
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Predictive Capability of SRV FEM-

General behavior is explained
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Conclusions & Recommendations

L)

Virtual simulation of a system behavior using a
validated and verified FEM provides a flexible and
powerful design evaluation tool for the future
sophisticated systems.

Gradual development of FEM starting with a
simple model and then progressively adding
features to improve the model capability is
important in the development of a complex system
such as the SRV projectile discussed here.

Validation of FEM with measured results is desired,
however, verification with alternative predictive
tools may be used as an alternative.
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