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wesnavene |lities Tradespace and Affordability Analysis

m) Critical nature of the ilities

— Or non-functional requirements; quality attributes
— Major source of project overruns, failures
— Significant source of stakeholder value conflicts
— Poorly defined, understood
— Underemphasized in project management
— Need for ilities ontology

 llity synergies and conflicts analysis
— Stakeholder value-based, means-ends hierarchy
— Synergies and Conflicts matrix and expansions
— Affordability means-ends hierarchy



Importance of ility Tradeoffs

Research Center Major source of DOD system overruns

e System ilities have systemwide impact
— System elements generally just have local impact
 ilities often exhibit asymptotic behavior
— Watch out for the knee of the curve
* Best architecture is a discontinuous function of ility level
— “Build it quickly, tune or fix it later” highly risky
— Large system example below
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Research Center

senaeene V@lue Conflicts: Security IPT

e Single-agent key distribution; single data copy
— Reliability: single points of failure

Elaborate multilayer defense
— Performance: 50% overhead; real-time deadline problems

Elaborate authentication
— Usability: delays, delegation problems; GUI complexity

e Everything at highest level
— Modifiability: overly complex changes, recertification

10-30-2014



ssrvsvoncenne PrOlif@ration of Definitions: Resilience

Research Center

 Wikipedia Resilience variants: Climate, Ecology, Energy Development,
Engineering and Construction, Network, Organizational, Psychological, Soil

 Ecology and Society Organization Resilience variants: Original-ecological,
Extended-ecological, Walker et al. list, Folke et al. list; Systemic-heuristic,
Operational, Sociological, Ecological-economic, Social-ecological system,
Metaphoric, Sustainabilty-related

* Variants in resilience outcomes

— Returning to original state; Restoring or improving original state;
Maintaining same relationships among state variables; Maintaining
desired services; Maintaining an acceptable level of service; Retaining
essentially the same function, structure, and feedbacks; Absorbing
disturbances; Coping with disturbances; Self-organizing; Learning and
adaptation; Creating lasting value



Example of Current Practice

Research Center

e “The system shall have a Mean Time Between Failures of
10,000 hours”

e What is a “failure?”

— 10,000 hours on liveness

— But several dropped or garbled messages per hour?
e What is the operational context?

— Base operations? Field operations? Conflict operations?
 Most management practices focused on functions

— Requirements, design reviews; traceability matrices; work
breakdown structures; data item descriptions; earned value
management

e What are the effects on other —ilities?
— Cost, schedule, performance, maintainability?



SYSTEMS ENGINEERING Need for ilities Ontology
 Oversimplified one-size-fits all definitions

— ISO/IEC 25010, Reliability: the degree to which a system,
product, or component performs specified functions under
specified conditions for a specified period of time

— OK if specifications are precise, but increasingly “specified
conditions” are informal, sunny-day user stories. Satisfying
just these will pass ISO/IEC, but fail on rainy-day use cases

— Need to reflect that different stakeholders rely on different
capabilities (functions, performance, flexibility, etc.) at
different times and in different environments

* Proliferation of definitions, as with Resilience

e Weak understanding of inter-ility relationships
— Synergies and Conflicts



sseenawene [NitiAl SERC ilities Ontology
 Modified version of IDEF5 ontology framework
— Classes, Subclasses, and Individuals
— States, Processes, and Relations

* Top classes cover stakeholder value propositions
— Miission Effectiveness, Resource Utilization, Dependability, Flexibiity
e Subclasses identify means for achieving higher-class ends
— Means-ends one-to-many for top classes
— ldeally mutually exclusive and exhaustive, but some exceptions
— Many-to-many for lower-level subclasses
e States, Processes, and Relations cover sources of ility variation
e States: Internal (beta-test); External (rural, temperate, sunny)

* Processes: Operational scenarios (normal vs. crisis; experts vs. novices)
e Relations: Impact of other ilities (security as above, synergies & conflicts)



wesnavene |lities Tradespace and Affordability Analysis

e Critical nature of the ilities

— Or non-functional requirements; quality attributes
— Major source of project overruns, failures
— Significant source of stakeholder value conflicts
— Poorly defined, understood
— Underemphasized in project management
— Need for ilities ontology

m) llity synergies and conflicts analysis
— Stakeholder value-based, means-ends hierarchy
— Synergies and Conflicts matrix and expansions
— Affordability means-ends hierarchy



s aneenns Otakeholder value-based, means-ends hierarchy

Res

earch Center

Mission operators and managers want improved Mission Effectiveness

— Involves Physical Capability, Cyber Capability, Human Usability, Speed, Accuracy,
Impact, Endurability, Maneuverability, Scalability, Versatility, Interoperability

Mission investors and system owners want Mission Cost-Effectiveness

— Involves Cost, Duration, Personnel, Scarce Quantities (capacity, weight, energy, ...);
Manufacturability, Sustainability

All want system Dependability: cost-effective defect-freedom, availability, and
safety and security for the communities that they serve

— Involves Reliability, Availablilty, Maintainability, Survivability, Safety, Security

In an increasingly dynamic world, all want system Flexibility: to be rapidly and
cost-effectively changeable

— Involves Modifiability, Tailorability, Adaptability



senavene X7 Synergies and Conflicts Matrix

Research Center

Mission Effectiveness expanded to 4 elements

— Physical Capability, Cyber Capability, Interoperability, Other
Mission Effectiveness (including Usability as Human Capability)

Synergies and Conflicts among the 7 resulting elements
identified in 7x7 matrix

— Synergies above main diagonal, Conflicts below

Work-in-progress tool will enable clicking on an entry and
obtaining details about the synergy or conflict

— ldeally quantitative; some examples next

Still need synergies and conflicts within elements
— Example 3x3 Dependability subset provided
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Software Development Cost vs. Reliability
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Software Ownership Cost vs. Reliability
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SYSTEMS ENGINEERING

COCOMO IlI-Based Tradeoff Analysis

Better, Cheaper, Faster: Pick Any Two?
9
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wesnavene |lities Tradespace and Affordability Analysis

e Critical nature of the ilities
— Or non-functional requirements; quality attributes
— Major source of project overruns, failures
— Significant source of stakeholder value conflicts
— Poorly defined, understood
— Underemphasized in project management
— Need for ilities ontology

 llity synergies and conflicts analysis
— Stakeholder value-based, means-ends hierarchy
— Synergies and Conflicts matrix and expansions
=) Affordability means-ends hierarchy



Affordability
Improvements
and Tradeoffs

Affordability and Tradespace Framework
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ERRRERRREEN

Value- and Architecture-Based
Tradeoffs and Balancing

10-30-2014

Staffing, Incentivizing, Teambuilding
Facilities, Support Services
Kaizen (continuous improvement)

Tools and Automation
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Collaboration Technology

Lean and Agile Methods

Task Automation
Model-Based Product Generation
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Domain Engineering and Architecture
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—— Legacy System Repurposing

r——Automate Operations Elements
— Design for Maintainability, Evolvability

——Streamline Supply Chain
——Anticipate, Prepare for Change



Costing Insights: COCOMO Il Productivity Ranges
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SYSTEMS ENGINEERING CO n C | u S i O n S

Research Center

 |lities or non-functional requirements are success-critical
— Major source of project overruns, failures
— Significant source of stakeholder value conflicts
— Poorly defined, understood
— Underemphasized in project management

 llities ontology clarifies nature of ilities
— Using value-based, means-ends hierarchy
— ldentifies sources of variation: states, processes, relations
— Relations enable ility synergies and conflicts identification

e Continuing SERC research creating tools, formal definitions
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Affordability
Improvements
and Tradeoffs

Tradespace and Affordability Framework

Get the Best from People

Make Tasks More Efficient

Eliminate Tasks

Eliminate Scrap, Rework

Simplify Products (KISS)

Reuse Components

Reduce Operations, Support Costs

Value- and Architecture-Based
Tradeoffs and Balancing

10-30-2014
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Facilities, Support Services
Kaizen (continuous improvement)

Tools and Automation
Work and Oversight Streamlining

Collaboration Technology

Lean and Agile Methods

Task Automation
Model-Based Product Generation

Early Risk and Defect Elimination
Evidence-Based Decision Gates

Modularity Around Sources of Change
Incremental, Evolutionary Development
Value-Based, Agile Process Maturity

Risk-Based Prototyping

Value-Based Capability Prioritization
Satisficing vs. Optimizing Performance

Domain Engineering and Architecture
Composable Components,Services, COTS
Legacy System Repurposing

Automate Operations Elements
Design for Maintainability, Evolvability
Streamline Supply Chain

Anticipate, Prepare for Change



MR Value-Based Testing: Empirical Data and ROI

— LiGuo Huang, ISESE 2005
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weesnonene Value-Neutral Defect Fixing Is Even Worse

Research Center

Automated test

Pareto 80-20 Business Value generation tool
- all tests have equal value
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Value-neutral defect fixing:
Quickly reduce # of defects

Customer Type
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SYSTEMS ENGINEERING
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Product Line Engineering and
Management: NPS

10-30-2014

Preferences
Systems Product Line Flexibility
SYSTEMS ENGINEERING Value Model

Aesearch Centar

Welcome SERC Collaborator

(o) (Gave) (Gaver)

System Costs
Average Product Development Cost (Burdened $M) 5 Ownership Time (Years) 3
Annual Change Cost (% of Development Cost) 10 Interest Rate (Annual %) 7

Product Line Percentages Relative Costs of Reuse (%)
Unique % a0 Relative Cost of Reuse for Adapted a0

Adapted % 30 Relative Cost of Reuse for Reused 5

Reused % 30

Investment Cost

Relative Cost of Developing for PL Flexibility via Reuse 1.7

| Calculate )
Results
# of Products 1 2 3 4 [ [ 7 Return on Investment
Development Cost ($M) §7.1 [$27 %27 [$2.7 |27 |$2.7 [327

Ownership Cost ($M) $2.1 |$0.8 |508 |$0.8 |$0.8 |$0.8 [$0.8

Cum. PL Cost (3M) $9.2 |$12.7|516.2|1519.7|523.1|$26.6/530.1

PL Flexibility Investment ($M)[$2.1 |30 |30 |$0 |30 [$0 |$O

PL Effort Savings ($2.7)|50.3 |$3.3 |$6.3 |$9.4 |$12.4]|515.4

Return on Investment -1.30 |0.14 [1.58 [3.02 |4.46 |5.90 [7.34 .I
-_

1.3 0116|3045 5973
1 2 34867

Product #
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e COSt-Schedule Tradespace Analysis

Research Center

e Generally, reducing schedule adds cost
— Pair programming: 60% schedule * 2 people = 120% cost
* Increasing schedule may or may not add cost
— Pre-planned smaller team: less communications overhead
— Mid-course stretchout: pay longer for tech, admin overhead
e (Can often decrease both cost and schedule
— Lean, agile, value-based methods; product-line reuse
e Can optimize on schedule via concurrent vs. sequential processes
— Sequential; cost-optimized: Schedule = 3 * cube root (effort)
e 27 person-months: Schedule = 3*3=9 months; 3 personnel
— Concurrent, schedule-optimized: Schedule = square root (effort)
e 27 person-months: Schedule = 5.5 months; 5.4 personnel
e (Can also accelerate agile square root schedule
— SERC Expediting SysE study: product, process, people, project, ris!<8

10-30-2014



s CONTEXE: SERC ITAP Initiative Elements

HH.’::I:!:]I

e llities Tradespace and Affordability Project (iTAP) foundations

— More precise ility definitions and relationships
— Stakeholder value-based, means-ends relationships
— llity strategy effects, synergies, conflicts
— USC, MIT, U. Virginia

m) Next-generation system cost-schedule estimation models
— Initially for full-coverage space systems (COSATMO)
— Extendable to other domains
— USC, AFIT, GaTech, NPS

 Applied iTAP methods, processes, and tools (MPTs)
— For concurrent cyber-physical-human systems
— Experimental MPT piloting, evolution, improvement
— Wayne State, AFIT, GaTech, NPS, Penn State, USC

10-30-2014 29



Research Center

COSATMO Concept

e Co-sponsored by OSD, USAF/SMC
 Focused on current and future satellite systems

Accommodating rapid change, evolutionary development, Net-Centric

SoSs, families of systems, future security and self-defense needs,

microsats, satellite constellations, model-based development

Recognizes new draft DoDI 5000.02 process models

e Hardware-intensive, DoD-unique SW-intensive, Incremental SW-

intensive, Accelerated acquisition, 2 Hybrids (HW-, SW-dominant)

Covers full life cycle: definition, development, production, operations,

support, phaseout

Covers full system: satellite(s), ground systems, launch

Covers hardware, software, personnel costs

e Extensions to cover systems of systems, families of systems
e Several PhD dissertations involved (as with COSYSMO)

Incrementally developed based on priority, data availability

e Upcoming workshop at USC Annual Research Review April 29-
May 1
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Based on SEAri research
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MIT: ilities in Tradespace Exploration
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GaTech — FACT Tradespace Tool

Being used by Marine Corps

Sort By: (O) Name (@ Score

» Configure vehicles | oo

pyrimary Engine System 01

from the “bottom up ¥ Move (land)

Primary Engine Systam g

o — Time to Accelerate to Land Cruise (s
b QUICkIy asseSS Primary Engine Systam 00 4 e [ ] 2.25
. ) i e '
Impacts on Primary Engine System IR a EO O_.m

Primary Engine System d1

pe rformanc Max Speed on Grade (mph)

Cummins K38-M

54.16
Primary Engine System E 8.00 90.00
Frimary Engine System a3
Land Range at Cruise (miles)

150.47
N 29.86 600.00 =

“sa

» Satisfy Form Factor
» Move (Water)

» Transportability
» Cost




SYSTEMS ENGINEERING

GaTech-USC Work in RT46 Phase 2 (Oct-Dec 2013)

SysML Building Blocks for Cost Modeling

 Implemented reusable SysML building blocks

— Based on SoS/COSYSMO SE cost (effort)
modeling work by Lane, Valerdi, Boehm, et al.

e Successfully applied building blocks to
healthcare SoS case study from [Lane 2009]

* Provides key step towards affordability trade studies
involving diverse “-ilities” (see MiM slides)
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Healthcare SoS Case Study [Lane 2009] Implemented
Using SysML Building Blocks: Selected SysML Diagrams

bad [Package] 303 Level[ |5 505 Level - view! U ‘

Adapted from [Lane 2009] Value Types
(COSYSMO Library Supporting fems)

<blocks o — L~ Tk
SoS Total Effort Model =] r
constainty
g Effort Totsl Egn S
ani2a : Effort Sum Egn oy . .
eonizb - Effort Sum Egn bud = e -]
ond - SoS Effort Egn
i ] S5 i 5 B ] [ S G5 v - 1] RS Treq Bon i
parts P -
Cauation 4 r fana 2006] -

PL values
ci_& : Real = 38.55
a1 E5 et L - . 9
[oforts A8 (1 5, Sotuap [ (555 COakeis Tty ci_B: Real=106 -
i om_wes £ Cont Dewern o Ty B - constiuent systems effort © person-morths
= _ s i SESE: ] SoS Total Effort Model e e v e e
componRe effert mndiphes | LR em_S05-MR - Real e L
e Cotod | infrasiructure components effort - person-months - r -
" st Real
St sose effort : person-months P T
Sdn_wen  Cont Devemrn s0s_CR - Real t N Pesmas v
companhe elle ratipies || | CELTs g s0s_MR : Real - - . =
I J = I s0s_Treq : Real
. (] ltotal effort © person-morihs ahlacks cids_S0S-C —
Cost Drivers P
wi_nen_wea : are Bvavesn G5 Trowiast fan
- 3 - L= » 5 _portiat) |
e | | 1 o] constiuent systems |0 # e s0e
{ ahlacks =
SoS-affected CS Effort Model tis_non_sos: cds
e constraints
1 eqni : C5_TregSoSE Exn
oot musres of s voan || 1 sqni -GS Effort Ean
vakes
cf_A: Real = 33.53
cf_B: Real=1.06
cs_SoSsup : Real sos_s0s  shlocks lsds SoSCR
cs_TreqSoSE : Real Size Drivers
effort | persan-manths stds_non_sos slz_SoS-MR
Primitive SOI Effort Model \
infrastructure components (0.
block:
Primitive SOl Effort Model ads
sorsh@ints SoS-affected CS Effort Model
eqni : Effort Eon
w
cf A Real = 35.55
par [Block| Primitive SOl Etfort Model [ 5§ Primtive SOI Effort Mode! y cf B:Real =108
eifort - person-morths
/ P k] 5w Cvvara | g e Drveers 1]
[ eam:Effort Eqn ] st
cds : Cost Drivers {effort = A * EM * size"B /152} e amiter of wpwem reqs : Se i)
Paramate: S
o — -
sffort o5 - f
size ]
m A7 mummbed of wywiomn weriacen b '
B Far et Bt jesizn = 901+ W0 » 3001 ¢ ]
ot st | L onin
sds : Size Drivers )
e
ez =
Par amater B -

pr——r— s

2 s 1 s s
weemari  Sare P amter S

10-30-2014

ecpabetent i | 1

34



SERC Expediting SysE study:
Product, process, people, project; risk factors
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Final Database
Over 30 Interviews with Gov't/ Industry Rapid Development

Organizations
Over 23,500 words from interview notes

Product, Process, People ... all in a Project Context
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sisrewsevoneerne. CORADMO-SE Rating Scales, Schedule Multipliers

Research Center

acceplance

Accelerators/Ratings Very Low Low Nominal High Very High Extra High
Product Factors 1.09 1.05 1.0 0.96 0.92 0.87
Simplicity Extremely Highly Mod. complex M()_dcnl.lely Hipghly simple 1 '.xfrcrnc]y
commplex complex simple simple
. _— Moderate Consideratle Extensive
; " © a o
Ilement Reuse MNone (0%%) Minimal (15%%) Some (30%%) (50%) (70%) (90%)
L.ow-Priority . - . .
Defermals MNever Rarcly Somctdmces Often Usually Anytme
L. Modcrate Considerate Extensive
= = 2 - u 2 - = an, 4 - B,
Models vs Docurments None (0%6) Mimarnal (15%6) Sorme (30%0) (50%) (70%) (90%)
Key Technology =0 TRL 1.2 or 1 TRL 3 or =1 1 TRL 4 or =2 1-2TRL 5 or ey T
Mabhuarity =1 TRI. 3 TRI. 4 TRI. S =2 TRI. & 1-2 TRL. 6 Al = TRL. 7
Process Factors 1.09 1.05 1.0 0.96 0.92 0.87
Concurrent g . i g
Operational Concept, Highly Mosthy 2 mxtifacts 3 mxtifacts All axtifacts Fully
. 4 - mostly mostly mosthy
Requirernents, sequenbial sequenbial conct nt concurrent concurrent concurrent
Architecture, V&V
- i s IHeavily lLarpgely Conservative Moderate Mostly Fully
Process Streamlining burcaucratic bureaucratic burcaucralic streamline strearmlined strearnlined
General SE tool Simple tools
support CIM weak Minirnal CIM Some CIM Moderate CIM Considerable Extensive CIM
{(Coverage, integration I
Intepration, Maturity)
Project Factors 1.08 1.04 1.0 0.96 0.93 0.9
>y H T
Project size (peak # of Over 300 Over 100 Over 30 Over 10 Over 3 <3
personnel)
(_)lu_ba] ly MNationally R:cg:l_urml ly Metro-arca Simple Largely
“ - distributed P distributed, s - collocated,
Collaboration support . distributed, distributed, CAIMPALS, i
weak comm. . soune sharing moderate good sharing strong sharng Very strong
data sharing ) ) sharing ) ) ) sharing
Single-domain Simple
MMPTs (Model s, MMPTs, .. - - - . Considerable . .
Methods, Processes, weak Minimal CIM Some CIM Modcrate CIM CIM Extensive CIM
Tools) integration
Mul G—-doanmn Simple; weak - , Some CIM or . Considerable : -
MMPTs intep ion Minimal C TN not 1ed Moderate CIM CTM Extensive CIM
People Factors 1.13 1.06 1.0 0.94 0.89 0.84
General SE KSAs .
(Knowledpe, Skills, Weak KSAs Some KSAs M()dfzralc Good KSAs Strong KSAs Very ;"tr()ng
s KSAs KSAs
Agpility)
Single-Doman KSAs Weak Sorne Maoderale CGood Sirong Very sirong
. . . - Moderate or .
Mult-IDomain KSAs Weak Some not 1 led Good Strong Very strong
. . R . A Basically . . . 3 ens .
Team Compatibility \{(,ry dll'!"u,ult ;'.‘)f)lll{, dll_ﬁ(.,u]t cooperative I,dx}_»,t.,l)_r 1 llghl)r ) bt.,.nnlf:,bb
interactions mteractons . . cooperalive cooperalive interaction:s
interactions
Risk Acceptance Factor 1.13 1.06 1.0 0.94 0.89 0.84
Highly risk- Partly nisk- Balanced nisk Moderately Considerably Strongly risk -
AVerse AVCTSC aversion, risk-acccepting risk-accepting accepling




Tresee CORADMO-SE Calibration Data

Mostly Commercial, Some DoD

Application Type Technologies ;[::?l:ls &3?;:) n;]\(];:l[m Product | Process | Project | People | Risk h:;::: E';Lm
Insurance agency system | HTML/VB 34.94 38| 065 VH VH XH VH | N | 068 5%
Scientific/engmeering CH 18.66 3721 086 L VH VH VH | N | 080 | -T%
Complance - experl HIML/VB 17.89 336 079 VH VH XH VH | N | 068 | -15%
Barter exchange SQL/VB/HIML | 11258 9541 090 VH H H VH | N | 075 | -16%
Options exchange site HTML/SQL 13.94 267 072 VH VH XH VH | N | 068 | -5%
Commercial HMI CH 205.27 1381 | 096 I, N N VH | N | 093 | 3%
Options exchange site HIML 4241 448 | 0.69 VH VH XH VH | N | 068 | -1%
Time and billmg C+/VB 26.87 480 | 093 L VH VH VH | N | 080 | -14%
Hybrid Web/client-server | VB/HIML 70.93 862 | 1.02 L N VH VH | N | 087 | -15%
ASP HTML/VB/SQL 9.79 139 | 04 VH VH XH VH | N | 068 | 53%
On-line billing/tracking | VB/ITTML. 17.20 2701 065 VII Vil X1l VI | N | 068 4%
Palm email client CHIML 453 145 | 068 N VH VH VH | N | 076 | 12%
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@ Case Study: From Plan-Driven to Agile
* Aesearch Conter Initial Project: Focus on Concurrent SE

H VIEL XE
0.92 0.87

A ccelerators/Ratings VL | )
Product Factors 1.09 1.0S
Simplicity

Element Recuse
T.ow-Priority Deferrals >
Models vs Documents xX
Key Technology
Maturity
Process Factors 1.09 1.0S 1.0 | 0.96 0.92 0.87

Concurrent Operational

Concept, Requirements, =
Aachitecture, VEEWV

Process Streamlining >
General SE tool support

CIM (Coverage, >
Integration, Maturity)

Project Factors 1.08 1.04 1.0 0.93 0.9
Project size (pecak # of

X|a|2
=
v
)

0.96

Ppersonncl) x
Collaboration support =X
Single-domain MMPTs
(Models, Mecethods, =
Processes, Tools)
Multa-domain MMPTs =

People Factors 1.13 1.06 1.0 0.94
General SE KSAs
(Knowledge., Skills, = ‘
Apility)
Single-IDomain KSAs =

Multa-Domain KSAs =
Team Compatibility = p
Risk A cceptance Factor 1.13 1.06 1.0 .94 0.89 0.84
=

Expected schedule reduction of 1.09/0.96 = 0.88 (green arrow)
Actual schedule delay of 15% due to side effects (red arrows)
Model prediction: 0.88*1.09*1.04*1.06*1.06 = 1.13

10-30-2014 38

0.89 0.84




Case Study: From Plan-Driven to Agile

Next Project: Fix Side Effects; Reduce Bureaucracy

SYSTEMS ENGINEERING
Research Center

10-30-2014

Accelerators/Ratings

V' H

XH

Product Factors

0.92

0.87

Simplicily

Hlecmoentl Roeocusce

I.ow-IPriority 1Jcferrals

XX

Modcls vs Documaoenis

Kcy Technology
Matlurity

Process Factors

1.09

0.87

Concurrent Opcecrational
Conccept. Requircmeoents,
Architecturce, V&V

Process Strecamlbiming

Goeneral Sk tool support
CIM (Coveragsce,
Intcgration, Maturity)

Project Factors

Projcct sizc (pcak # of
pcrsonncl)

Collaboration support

Single—domain MMPI's
(Modcls, Mcthods,
Processes, Tools)

Multidomain MMPI's

People Factors

General SE KSAs
(Knowledgce, Skills,
Agility)

Singlc-1Jomain KSAs

Multi-IDomain KSAs

TTcam Compatibility

Risk Acceptance Factor

1.06

1.0

>

Model estimate: 0.88*(0.92/0.96)*(0.96/1.05) = 0.77 speedup
Project results: 0.8 speedup
Model tracks project status; identifies further speedup potential
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