15" Annual NDIA Systems
Engineering Conference
2012

Tell me what you want, what you really
really want ——
A guide to effective requirements
engineering

22 Oct 2012

Dr. William Bail
The MITRE Corporation

The authors’ affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to
convey or imply MITRE's concurrence with, or support for, the positions, opinions or view points expressed by these authors.

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Overview

o Requirements need to managed carefully from the
beginning of development to product delivery
> And into operation (sustainment)

o Current practice falls short in many ways
> Resulting in unnecessary rework and shortcomings in deployed
systems
a This tutorial examines

> Underlying principles beneath the idea of “software system
requirements”

> Practical guidance for defining and handling requirements
» Common pitfalls and traps that plague current practice

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

o Terminology

o IEEE view

Requirements and architecture/design
Types of requirements

Qualities of requirements

Creating requirements

Verifying requirements

Challenges / pitfalls

Q
Q
Q
Q
Q
Q

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Motivation

o Why do we care so much about requirements?
> Why not just start building, figure out what you want later
> Use a Lean Rapid Agile 66 Enterprise Spiral Prototyping process
» Build — Test — Fix

o Yes, but...experience clearly shows that

> Requirements form foundation of all system development
> If we don’t handle them properly, we incur significant risk
» You must respect them

o The longer defects fester in a system, the more expensive to
repair

> To repair a requirements defect during system I&T, cost can be as
large as 130 times the cost of repair during requirements analysis

“You get what you spec, not what you expect”

21 Oct 2012 NDIA System Engineering Conference 2012 4

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Relative cost of repairing defects

o Sources: Davis, Basili, et al

Phase When Defect Introduced into System

Req
Anl Design Code Test IntOperations

= E Req Anl 1
< 8 Design 5 1
= © Code 10 2 1
i g Test 50 10 5 1
£ ‘5 Integration 130 26 13 3 1
Q Qperations 368 64 37 7 3 NA.

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Motivation — Defense Science Board

o Defense Science Board Task Force on Defense Software, Nov
2000
> Requirements management viewed as being a fundamental
problem

> Requirements setting and management are still the hardest parts
of SW development

> Problem seen with overspecification of requirements

> Underutilization of modern technical and management practices
for requirements

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Agenda

o Motivation
- Terminology
o IEEE view
0 Requirements and architecture/design
o Types of requirements
Qualities of requirements
Creating requirements
Verifying requirements
Challenges / pitfalls

Q
Q
Q
Q

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Basic terminology

What is a requirement?

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Requirements...

21 Oct 2012 NDIA System Engineering Conference 2012 9

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

“Requirements”

o The word is generic and vague - many meanings
> “This is what we require”

o Our industry has grabbed on this word and overloaded it
o But what do we really mean?

o Word used in many different ways:
> The capabilities we need
> The behaviors/functions we want
> The programmatics we expect (cost, schedule,...)
> What the system actually does
> The system design we want
> The systems it will interact with

a Pitfall - Lack of a consistent and accurate definition results
in misunderstandings and inefficiencies

21 Oct 2012 NDIA System Engineering Conference 2012 10

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Clarification

0 In general English usage, a requirement is something that is
necessary or desired
> With software, generally used to denote a system or development
attribute that is to be realized when the system is built
o Systems have many different types of attributes, incl:

> Behavior - “Alert fire department when smoke detected”

> Schedule to develop - “System is ready for use on Sep 1”

> Appearance - “User interfaces are easy to use”

> Development location - “Development took place in Philadelphia”
> Design/architecture - “System uses a layered architecture”

a Each of these can be defined as a “requirement” for the
system and its development if this is what the
customer/stakeholders want

21 Oct 2012 NDIA System Engineering Conference 2012 "

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

System attributes

o A “requirement” is simply a statement about a system
attribute that is needed / desired / envisioned / ...

o When we say

> “the system must measure the current temperature in a room, and
adjust the heater or air conditioner appropriately to maintain a
temperature defined by the user”
0 We are saying that we require the system to have this

specific attribute
o Why is that important???
> There is a temporal aspect to a “requirement”

> The implication is that it is stated before the system is built

> Once the system is built, the actual attributes can be referred to as
existing characteristics and defined in a product specification

21 Oct 2012 NDIA System Engineering Conference 2012 12

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Time-scale nature of attributes

o Up-front, stakeholders define what they want the system to

be

> “Build-to” attributes that document what the software is supposed
to do (and what it is supposed to be like)

o These guide the development of the software
> And inform the developers about what needs to be built

o After the system is built, “As-built” attributes document what
the software actually does

> What was really built
> To support maintenance, enhancements, user manuals, ...

21 Oct 2012 NDIA System Engineering Conference 2012

13

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Build-to vs As-Built

o Often (usually), they differ

21 Oct 2012

> Requirements do not end up being implemented exactly as
originally envisioned

> Sometimes less than the attributes that were required
> Sometimes more than ...

What was
not

Implement
Zd

What the
SW
actually

What is required
“build to”

What needed to be changed

NDIA System Engineering Conference 2012

14

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Agenda

o Motivation
o Terminology
mm) IEEE view
0 Requirements and architecture/design
o Types of requirements
o Qualities of requirements
o Creating requirements
o Verifying requirements
o Challenges / pitfalls

21 Oct 2012 NDIA System Engineering Conference 2012

15

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

IEEE definition of “requirement”

o IEEE Std. 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology

~ » (1) A condition or capability needed by a user to solve
a problem or achieve an objective.

—= > (2) A condition or capability that must be met or
possessed by a system or system component to satisfy

-~ a contract, standard, specification, or other formally
_{ imposed documents.

> (3) A documented representation of a condition or
capability as in (1) or (2).

> See also: design requirement; functional requirement;
implementation requirement; interface requirement; performance

requirement; phyS|c equirement.
resent — “as-built”

_ Crucial distinction
Future - “build-to”

21 Oct 2012 NDIA System Engineering Conference 2012 16

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

A refinement from IEeEE Std 830

o IEEE Std 830-1998 - IEEE Recommended Practice for
Software Requirements Specifications:

> “A requirement specifies an externally visible function or attribute
of a system”

o We can see inputs and the outputs, but not what happens
inside
o For any product (SW, HW, total system), the behavioral
requirements for that product specify its externally visible
behavior
> as seen by other systems outside

o Specifically, behavioral attributes
> Important concept

o This brings in more detailed viewpoints
o Stay tuned

21 Oct 2012 NDIA System Engineering Conference 2012 17

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Agenda

o Motivation
o Terminology
o IEEE view
‘Requirements and architecture/design
o Types of requirements
o Qualities of requirements
o Creating requirements
o Verifying requirements
o Challenges / pitfalls

21 Oct 2012 NDIA System Engineering Conference 2012

18

OYSLeIT] M u-@I@ 1 D-a ki ve
architectures

o There is a close relationship between a system'’s
requirements and a system’s architecture
> Not just in the requirements driving the architecture

o In fact, developing an architecture is closely related to
developing requirements
> Hand-in-hand

o Failing to recognize this raises risk of inefficiencies
o Exploiting this relationship opportunities for efficiencies

21 Oct 2012 NDIA System Engineering Conference 2012 19

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Architecture

a From the Greek Gpyitéktov!

\ J \ J
| Y

chief Workman,
apXOQ builder

o "The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software elements, the externally visible
properties of those elements, and the relationships among
them.” Bass, Clements, Kazman. Software Architecture in
Practice (2nd edition). Addison-Wesley 2003

a0 “The fundamental organization of a system embodied in its
components, their relationships to each other and to the
environment and the principles guiding its design and

.. evolution.” IEEE-1471 =

NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Context of requirements

o All requirements are defined in context of a specific item -
like a “black box”

> E.g., component, module, system, unit, subsystem

y 4
e , o==p

o Any specific item may consist of additional internal
components

> Each of which has its own attributes/behaviors/interfaces

o Hence there are multiple levels of requirements based on
level of component
> System level, subsystem level, software configuration item (SCI)
level, component level, software unit level,...

> Requirements from higher levels are allocated to components at
lower levels

21 Oct 2012 NDIA System Engineering Conference 2012

21

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

System/software architecture

o Component design (its architecture) consists of:

> The requirements for behavior of each constituent component
> The interrelationships between the components

o Interaction of components produces the behavior of parent
component

o Architectural design is the process of defining requirements
for constituent components, down to the smallest unit
> AKA allocated requirements

16 dySten

T
Input
 — A . Output

(

Component A “allocated”
21 0ct 2012 NDIA System Engineering Conference 2012 requirements 22

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Design

0o The system
> Something that provides services according to what we need
> Services defined by the system’s behavioral attributes

o The system’s input and output behavior (its stimuli and
responses)

> To build the system, we need to define what is inside of the box

stimuli :> System :>responses

21 Oct 2012 23

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Designing the system

stimuli :> System :> responses

stimuli

stimuli

21 Oct 2012 NDIA System Engineering Conference 2012

responses

responses

24

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Levels of design

a At each stage, system/subsystem/components are
decomposed into constituent parts

a The behavior of the system is determined by the aggregate
behavior of its subsystems

» The behavior of each subsystem is determined by the aggregate
behavior of its components

o and so on “down” to the software code and the hardware

stimuli :> System > responses

- @Eﬂ -

responses

stimuli >

21 Oct 2012 25

NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Key points

o "The software architecture of a program or computing
system is the structure or structures of the system, which
comprise

» software elements,
» the externally visible properties of those elements, and

» the relationships among them.* 7

The behaviors of the elements

¥ 12

The interfaces .
and
interactions —— |

among the
2100t 2012 NDI?SIy%m%Qi;&onference 2012 26

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

External versus internal requirements

o0 Some system components
> are visible only internally to system
> are visible both internally and externally to a system
> have attributes that are visible only externally to system
o System behavioral attributes consist of the collection of
behavioral attributes of its components that have external-

visibility

System

External
< Component N Component Users
systems B c
Component
External < <] Component
systems A

D

21 Oct 2012 27

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Why is this important?

o The practice of requirements engineering needs to extend
into and be intertwined with the architectural design
practices

o Advantages include the capability of an integrated modeling
approach

o The rigor applied as a part of requirements engineering
assists in clearly establishing the required attributes of the
successive components and subcomponents

o The concepts (to be explained in this tutorial) will provide
effective support to the design process

21 Oct 2012 NDIA System Engineering Conference 2012 28

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Agenda

o Motivation

o Terminology

o IEEE view

0 Requirements and architecture/design
-Types of requirements

o Qualities of requirements

o Creating requirements

o Verifying requirements

o Challenges / pitfalls

21 Oct 2012 NDIA System Engineering Conference 2012

29

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Nature of system attributes

o Terminology recap:

> “Requirements” is a term we use to refer to the set of system
attributes that customer / users desire for a system to be acquired

> “Attributes” is a term we use to refer to the characteristics /
conditions / capabilities of a system
o We will use “requirements” to denote desired attributes

> Once the product is built, the as-built attributes need to be
documented in a product specification

> and are rarely the same as the initial requirements
o There are several different types / categories of system

attributes that we deal with

> When expressing an acquirers requirements for a system, we
must ensure that we cover all types to ensure completeness

21 Oct 2012 NDIA System Engineering Conference 2012 30

IVid)Ol' Cateyulies 1oy ot v
requirements

o Four major categories

> Behavioral— address externally-visible behaviors,
dynamic properties of the product as seen through the
component’s interfaces

o E.g., “shall turn on fan when temperature is greater than 90°
within 2 secs of reaching that temperature zone”

> Supportability — address working with the product as a
product — static properties (AKA quality of construction)
o E.g., maintainability, portability, extensibility
> Implementation constraints — address design and
construction attributes, constrain the internals of the
component
o E.g., specific architectural styles, specific algorithms
> Programmatic — address the resources used and other
non-system-specific elements used to develop and

21 0ct 2012 mMmaintfain thoa o\/ct o VA System Engineering Conference 2012 31

Types of software system attributes

/ Behavioral %

System
Attributes

_<

Supportability —<

(" Functional

utilization

\. Usability —

Trustworthiness —

Reliability

Safety

Availability

Integrity of operation

Interface .
Temporal Protection of
Ce po_ a ~ information

apacity Performance
Resource

(.
Ease of learning
Efficient to use
Easy to remember
Forgiving

(Maintainability
Portability
Extensibility
Reusability

Implementation

21 Oct 2012

\ Programmatic {

Delivery Schedule
Cost

_ Integrity of construction

32

System
Attributes

21 Oct 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Behavioral attributes

/ Behavioral %

(" Functional

_<

Supportability —<

\. Usability —

Trustworthiness —

Reliability
Safety
Availability

Integrity of operation

Interface .
Temporal Protection of
c P _ -~ information
apacity Performance
Resource . _
utilization Ease of learning

Efficient to use
Easy to remember
Forgiving

(Maintainability
Portability
Extensibility
Reusability

Implementation

\ Programmatic {

_ Integrity of construction

Delivery Schedule
Cost

NDIA System Engineering Conference 2012

33

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Behavioral

o Behavioral requirements consist of the product’s externally-
visible behaviors, which can be caused by
> Externally-supplied stimuli
> Autonomous (self-generated once activated)
> Mixed
o Stimuli provided by the component’s environment
> Sometimes chaotic and disorganize®# Sometimes unexpected
» Sometimes organized and deliberate Sometimes nefarious
> Sometimes expected and planned
o Interfaces define what stimuli are “seen” and what
responses are produced -
> no interface — no input or output

21 Oct 2012 NDIA System Engineering Conference 2012 34

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Behavioral attributes

a Deal with the interactions between an item and the world
outside
> As seen through the its interfaces
o Express desired externally-visible actions / attributes of the
item
o Visibility provided via interfaces which provide the means for

> Stimulating the item
> Observing item’s responses

Input
Input —)>

Input and Output

1 Output

21 Oct 2012 NDIA System Engineering Conference 2012 35

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

The world outside - the environment

No interface — component

/ sees nothing from the plane

ﬂ‘ [\ xternal
== g_ Interfaces Systems
\)“ , / What the component “sees”

21 Oct 2012 NDIA System Engineering Conference 2012

36

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Responses to the world outside

88 g

xterna
>y Stems

NDIA System Engineering Conference 2012 37

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Interfaces

o The interfaces allow interactions with the world outside and
provide the means for receiving and exporting data

o To define behaviors, must first define the environment(s) in
which the component will operate
> If only part of the environment is defined, surprises will happen

0 Includes defining input data characteristics :

> Format » Range of values

» Time characteristics > Distribution of values
o Frequency of arrival » Semantics

o Periodicity of arrival » Other characteristics
> Volume

o Pitfall: failure to adequate describe the system’s operating
environment will result in awkward moments
> “Where did that input come from?”

21 Oct 2012 NDIA System Engineering Conference 2012 38

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Interfaces

o Three major types

> Peer-to-peer —

> User interface '- ;
uman
-,l.t

> Computing infrastructure - Element(s)

- Human-Machine

interface(s)

< E— 7

| | |
ﬁ >

Element Element —> External
I A Element

S —— > \\

Computing
Infrastructure ~..__ Peer-to-peer
Infrastructure interfaces
interface

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Defining interface requirements

o The data items that are input
o The source of the input data - where the data is obtained
o The format of the input data (signature)

a The information content of the input data (semantics)
> Types of data
> Data units
> Data ranges and distributions
> Precision / accuracy

a The occurrence patterns of the input data, i.e., the
operational data environment
> Arrival timing
> Data distribution
> The timing of the input data
o I.e., the operational data environment

21 Oct 2012 NDIA System Engineering Conference 2012

40

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Functional attributes

o Input-output behavior in terms of responses to stimuli - maps
data received to data transmitted
> Output = f(input)
o Two types
> Simple /O (stateless) — this input produces this output, e.g.

X { Element] X2

> State-based - the history of inputs defines the output, e.g.

21 Oct 2012 NDIA System Engineering Conference 2012 41

time

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Functional attributes

o Simple 1/0 (stateless) - can be defined using tables,
functions,
> f(a,b,c)=y
o State-based - can be defined using state machines

Decrease-speed-cmd /
ow./ & Set-speed = Set-speed - 1
Increase-speed-cmd /

Set-speed = Set-speed + 1

On/ Light on

Car-speed < set-speed /
Increase-throttle-position

Suspend-cmd or
out-of-gear or
brake-pedal-pressed / A

Car-speed = Set-Speed /
Maintain-throttle

Car-speed > set-speed /
decrease-throttle-position

Car-speed = Set-Speed /
Maintain-throttle

Off / Light off

Suspend-cmd or
out-of-gear or
brake-pedal-pressed / A

Suspend-cmd or
out-of-gear or
brake-pedal-pressed / A

Off / Light off

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Can be complex

> 2
X > (X #%)* [X5
> 2
X > (X1+X35)4 I X;
Element x2
> y2
X1 X3 X3 X4 X5 ﬁu X

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Attributes of functional behavior /7.2

o Attributes constrain and characterize the behavior

0 Some associated within individual functional behaviors

>

Some associated with collective functional behaviors

a Six attributes

>
>
>

YV V V V

21 Oct 2012

Inputs - source of the data, via the incoming interface
Outputs - the destination of the data, via the outgoing interface

Temporal — the timing of the responses - speed, latency,
throughput

Capacity — the amount of processing that can be performed
Resource utilization — the computing resources required
Trustworthiness — the degree of dependability

Usability — the ease of use by operators

NDIA System Engineering Conference 2012 44

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Attributes of functional behavior 2.2

o All of these six must be addressed to ensure requirements
are complete

> Even if they are not “relevant”

> Often, attributes are not important or not of particular concern
interest to the users - when specifying requirements, a positive
response to that fact is required

o Failure to evaluate them can lead to forgetting to address
them in the system
> “Oh. | forget to mention that”

o Late surprises are costly, often requiring rework

21 Oct 2012 NDIA System Engineering Conference 2012 45

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Temporal

o A performance-related requirement

0 Addresses behavior of component regarding time
> Establishing time characteristics of functional responses

a Such as:

> Speed - rate at which response events occur
o e.g., display refreshed screen every 0.5 sec,

> Latency (delay) — the time between initiation of a function and its
completion

o e.g., time between user hitting key (reception of data) and
appearance of key stoke effect on display (response)

o Not the same as speed
> Throughput — number of items processed (volume) per unit time
o €.g., process 10,000 database requests per hour

21 Oct 2012 NDIA System Engineering Conference 2012

46

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Capacity

o A performance-related requirement
o Amount of information that can be handled

0 Defined in terms of
> System operation — e.g., 25 simultaneous users
> System data objects
o e.g., a minimum of 20,000 employee records
o €.g., a minimum of 1000 tracks

21 Oct 2012 NDIA System Engineering Conference 2012

47

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Resource utilization

o A performance-related requirement

o Limitations on execution resources available to the
component

o Defined in terms of hardware and other items that provide
resources to allow the system to operate

o Examples
> Memory usage - limits to the amount of memory that can be used,
in all categories
o RAM - system can use no more than 100 mb of RAM (volatile
memory)
o Disk — system can use no more than 2 tb of disk
o Non-volatile — system can use no more than 5 mb of read-only
memory
> Processor usage — limits to how many processor resources can be

used
21-0ct-2012 b e~ A~ O N OVIAEPSENy Engineering Prajepange 2012 97 48

WO r(] Oemwhat- y-opt,@ ma@r mﬂ@@’;’é”fs Engineering. W. Bail.
requirements

a Term used to denote two different contexts

o Execution performance

> Relates to the behavior of the executing code relative to time,
space, resources

> e.g., latency from receipt of input to the time its presence appears
on a user screen
a Functional performance

> Relates to the ability of the system to meet operational objectives
in terms of its delivery of functional behavior

> e.g., ability to recognize words within spoken dialog at a specific
success rate (“required to recognize 99% of all words spoken ...")

a Both are behavioral

> Functional performance falls into the Trustworthiness category
> See next slides

21 Oct 2012 NDIA System Engineering Conference 2012 49

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Trustworthiness (dependability)

o Degree of confidence in product’s delivery of functions

>

Inherently qualitative — cannot be definitively proven but can be
inferred based on evidence and assurance cases

a Types

21 Oct 2012

>

Reliability — probability of operation without failure for a specified
time duration under specified operational environment (e.g., 0.001
failures/hr)

Availability — proportion of time a system is ready for use over a
defined period of time (e.g., 0.9999999 over 1 year)

Safety — avoidance of actions that could lead to harm to humans or
property

Integrity of operation — system features that protects against

corruption during operation, unauthorized, intentional or
unintentional

Protection of information — features that protect against
unauthorized disclosure of information
Intearitv of informationessteatitreethab nrotect aaainet iinatithorized 5°

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Usability

o The ease of system use by an operator

a Two different flavors based interacting agent -- human or
other systems

o When applied to system-to-system interfaces

> Deals with the complexity of the interfaces, their ease of
implementation, and their efficiency of operation

o When applied to human operators

> Deals with the complexity of the interfaces relative to the how
operators can operate with them, the ease of learning, and the
efficiencies with which operators can exploit the services provided
by the system.

o Usability requirements cannot be directly verified

> Involve inherently subjective behaviors that often have to be
observed over time (e.g., via a usability analysis)

21 Oct 2012 NDIA System Engineering Conference 2012 51

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Supportability

/ Behavioral %

(" Functional

System
Attributes

_<

Supportability —<

\. Usability —

Trustworthiness —

Reliability
Safety
Availability

Integrity of operation

Interface .
Temporal Protection of
= P _ ~ information
apacity Performance
Resource . _
utilization Ease of learning

Efficient to use
Easy to remember
Forgiving

(Maintainability
Portability
Extensibility
Reusability

Implementation

21 Oct 2012

\ Programmatic {

NDIA System Engineering Conference 2012

_ Integrity of construction

Delivery Schedule
Cost

52

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Supportability requirements

o AKA Quality of construction requirements

o Attributes of the product itself and its construction

o Deals with how product can be handled, not its operation
o Inherently qualitative - cannot definitively verify

o Often not directly observable or measurable

> Measures exist that provide insight into these qualities,

o Help to infer level of quality based on related quantitative
system attributes

> But direct measures do not in general exist

o Examples:

> Portability — ease with which component can be ported from one
platform to another

> Maintainability — ease with which product can be fixed when
defects are discovered

zoaz: > EXtensibility — ease with ywhich.preduet can be enhanced with new s

System
Attributes

21 Oct 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Implementation

/ Behavioral %

(" Functional

_<

Supportability —<

\. Usability —

Trustworthiness —

Reliability
Safety
Availability

Integrity of operation

Interface .
Temporal Protection of
= P _ ~ information
apacity Performance
Resource . _
utilization Ease of learning

Efficient to use
Easy to remember
Forgiving

(Maintainability
Portability
Extensibility
Reusability

Implementation

\ Programmatic {

_ Integrity of construction

Delivery Schedule
Cost

NDIA System Engineering Conference 2012

54

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Implementation requirements (7072

0 Restrictions placed on developers that limit design space
and development process (AKA implementation constraints,
design constraints)

> e.g., use of specific software components

> e.g., imposition of specific algorithms

> e.g., customer-mandated architectures

> e.g., imposition of certain development techniques

o Two general types:

> Product constraints — restrictions on the product construction
o Design constraints — restrictions on design / architecture

o Implementation constraints — restrictions on coding or
construction

» Process constraints — restrictions on how the product is built,
constraints on the processes to be used

21 Oct 2012 NDIA System Engineering Conference 2012

55

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Implementation requirements zorz

o An implementation constraint to a system might be a
requirement to a SW component within that system

o While these are required characteristics of development
effort, they are not characteristics of the product’s behavior
> But will likely affect behavior

o Examples
> Use of specific software components
> Imposition of specific algorithms
o But sometimes algorithms can be used to define functionality
> Required use of specific designs
o Technical architectures
o Certain internal standards (VME at system level)
> Imposition of specific coding styles

21 Oct 2012 NDIA System Engineering Conference 2012 56

System
Attributes

21 Oct 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Programmatic

/ Behavioral %

(" Functional

_<

Supportability —<

\. Usability —

Trustworthiness —

Reliability
Safety
Availability

Integrity of operation

Interface .
Temporal Protection of
= P _ ~ information
apacity Performance
Resource . _
utilization Ease of learning

Efficient to use
Easy to remember
Forgiving

(Maintainability
Portability
Extensibility
Reusability

Implementation

_ Programmatic {

_ Integrity of construction

Delivery Schedule
Cost

NDIA System Engineering Conference 2012

57

— TOgl dlTHtla bl 6N U atckalg o v
requirements

o Terms and conditions imposed as a part of a contract
exclusive of behavioral requirements
> aka contractual requirements

o Address project environment aspects of product
development

o Examples
> Cost » Key people
> Schedule » Locations

> Qrganizational structure

o While these are required characteristics of development
effort, they are not characteristics of the product

> But can directly affect ability to achieve product characteristics
o (not enough time, not enough budget)

21 Oct 2012 NDIA System Engineering Conference 2012 58

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Interrelationships

o The categories and subcategories are interrelated

o e.8., Budget and schedule (programmatic) affect what
functions can be implemented (behavioral)
> With limited budget, some functional requirements might not be
possible
o e.g., Portability (supportability) affects internal design
(implementation)

> Need to be able to rehost might negate some implementation
constraints

o Required use of a COTS product which does not run on
VxWorks contradicts a requirement to be able to rehost
system to a VxWorks environment

o Performance (behavioral) affects desigh (implementation)

> Tight latency requirements might make a required infrastructure
unusable

NN g g oy g g wpwyg\ _NDIgSystemnginegring Cqnference 2012 . _ g w4 e ¥

59

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Quality requirements

o What about requirements that address the quality of the
system
> The quality of a system is directly related to how well it meets its
requirements
o But you might say: “Some systems meet all of their
requirements and are of poor quality”

0 Response: “The requirements for that system are deficient
and incomplete,”

o Better assertion;
> The quality of a system is related to
o The quality of its requirements
o The degree of adherence of the system to its requirements
o The suitability of the system to what the users need

o We sometimes refer to the -ilities

21 Oct 2012 NDIA System Engineering Conference 2012 60

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

The “-ilities”

o Commonly, “requirements” that end with “-ility” are
classified as quality requirements
> Reliability, maintainability, portability, extensibility, availability,
marketability, schedulability, authenticability, yada yada yada
o However — A lexical similarity does not mean that there is a
semantic similarity

> Just because a word ends with -ility does not mean that it has a
similar effect on a system’s requirements

o Some deal with behavior, some deal with construction, some
deal with manageability

o Should not be classified and handled together and alike

21 Oct 2012 NDIA System Engineering Conference 2012 61

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Sampling of -ilities

Avabitiy Avatabitty Asbreviabiliy Abdicabily Avdominabiliy Averationabilly Creneliabily Criminabitiy Criminobgicabilty Criticabiliy Critcizabili Crocodilty Inatienabilty nanimabiliy Inappreciabilly Inappropribilty narticulabiliy Inaudiility
Abiliy Ablabilky Aonegabily Abnormabili Apolishabiliy ‘Avominability Cros-polliebiley Cruciabilly Crucibilty rystabilty Crystallizabilty Cubicab naugurabily ncalculabilly Incapabilty Incapacitabitly ncarcerability Incamaility
Avoriginabily Abracabilty iliy ‘Absorptionabiley tabilly stractioebily Culminatilty Culpability Cultiabilly Cultivasbilky Culurbiliy Cumulabiity inchoabiliy incidencbiliy Incirerabiliy inclinabilly incommensurabilty Incommunicabilty
usailiy Abysmailty ‘Acacemicabiliy Aocelerability ‘Accentuatilly ‘Acceptability Curabilty Cylindricabilty Cymbabily Cynicabiliy Dabili Damability
Aecesibiliy Aecesionbilly ‘Accidentabilly Aeclimabily Acclimatizabili commodabilly Danceabilly Deabiliy Deactivabily Debabil Debatabily Debilitabilly ncorsiderailty ncorsolabilly incontesbily ncontovertivilly ncorporabillty ncorporeabilly
Accomplidsbiliy Accountailiy Accreditabliy Accnabiliy ‘Acculturatonabilky ‘Accumulabilly Decabil Decapitabiliy Decelerability Decentralizabilt Decility Decimability Incorrigibilty ncoruptioliy Increcibiliy Incriminabilis abiliy nculcabilly
urabiliy Accusbilky ‘Accustoriabilty Acerbabiliy biliy Acousicaility Decipherabilty Declinabilty ontamiraitly corabily Dedicabiliy ucibilty inculpedi Indecipherabiliy indeclirmbiliy ndefatigabiliy ndefinabilty
Acquirabilty Acquittatily ‘Acrobaticabilty ‘Acrosicabiliy Actabily ‘Actionabiity Deductibiity Defecability Defensi Deferertiabiliy oefilty Definability ndelibilty ndelicabilty ndicabilty
Aotivabilty Aotuabilty Actaariabiliy plabil Adaptatonability Additionability Deflabiliy Defrayabiliy Degenerabiliy Dehumanizabilly Denycrabiliy Delectability indigesioiley Indiscriminbilty Idispensabiliy ndisputabily Indistinguishabiliey ndividuability
abiliy Adhesionabily ‘Adjectivabilly Agjudicabilly ‘Adjusabilly ‘Administrabilty Delegabiliy Deliterabiliy Delicabiliy Delineabilty indivisiiliy Indoctrirabliy indomitabilty indubitabilty indusriability
Administratonabiley Admirabili imissibili abilty ‘adorability enabilty inebrit Ineducabilly ineffabiliy neffaceabillty neffectuability
ability Adulability Adulterabilty /Adumbrability Adverbiabiliyy Advisability Demoralizabiliy Deniabilty Denigrabiliy Denominability Denominatonability Dentabilty Ineligibilty Ineluctabiliy Inertiabiliy Inescapability Inestimabiliy Inevitabilty
Advcabilly il eriabi Aeronauicabity Aestheticabilly Aestivabilty Deodorizatily Departmentabily Dependabilly Deplorablty Depopulabilty Deprecability nexcusiliy nexhaustibily Inexorabilty inexpibiliy inexplicbi Inexpressbiliy
Affability Affectionabiliy Affiliabiliy Affimabiliy Affordability Agability Depreciabiliy Depredabilty Deputizabilty Derogability Describabiliy Desecrability Inextricabiliy Infallibili Infantiliy Infatuabiliy liy Y
Aggravability Aggregability illity Desegregabilty Desiccabiliy Designability Desirability Desolability Desperability Infiltrabiliy Infinitesimabiliy Inflabiliy Inflammability Inflatabiliy Inflectionabily
Agitabilty ‘Agonizabilly Agreeabiliy ‘Agriculturabitty Alchemicabiliy Alenabily cabilty Destructbilly Detachabiliy Detectabiliy Deteriorabily Determinability inflexibilly influentiabilty Informabiliy nformationabilty Infuriabiliy usibily
Alleviabilty Alliterabiliy Allocabilty Detestabiliy Detonability Detrimentabilig Devaluabilty Devastability Deviabilty Ingrabiliy Ingratiabilty Inhabiwbility Inhospitabiliy Inimicabiliy Inimitability
Allovabiliy Allwiabiliy ‘Alphabetiabilly ‘Alphabetibiliy Alercabiliy ‘Altemability Devitalizabi Devationabily abil Diabolicabily Discriticabilt Disgonabiliy Initiabily Initializabilit Inmabiliy Imabiliy Innomirebiliy Innovabiliy
‘Amalgamabiliy ‘Ambrosabiliy ‘Ambulabilty ‘Ameliorabiliy ‘Amenabiliy ‘Amendailty Oiagrammaticability Dictabilly Dictatoriabily Differentiabiliy Digesibilty Digitabilly Inamerabiliy noculbilly Inoperabilty nordinabiliy Insatabilly Inscrutabilty
Americanizabilit Amiabiliy Amicabiliy Amorabiliy Amortizabiliy Amputabilty Dilabiliy Dimensionability Directionabiliy Dirigibilty isability Disagreeability Insensability Insensibility Inseparabilty Insinuability Inso lvability Inspirationability
‘Analyticablity Discernibilty Discombobulabiliy Diszonsolatilty Indabiliy Instigabiliyy
Anatomicabiliy Anatomizabiliy Ancestrabiliy Anecdotability Anesthetizabili Angelicabilty i litabil Discussability il iabili Insufferabiliy Insulability Insuperability Insupportability irabill
Anginability Anglicizablity Ang lophili Animabiliy Anneability Annihilabilty Dislocabilty Disloyability Dismabiliy Dismissability Disorganizabiliy Disparability Insurmountability Intangibility Integrabiliy Integrity Intellectuabity Intelligiblity
Amotabilty Amuabiliy ‘Amunciabi Ansuerablity ‘Antagonizabitty Antedabilty Dispassionabilly Dipensabiliy Dispersabilty Displayabilly Disposbility g Itercalabiliy
Antenatabifty Antepenultimabilty Anthropologicabiliyy Anticipatility Anticlimacticabilyt Antiphonability Disputability Disreputabi ity Disseminabilty Dissimulabilty Dissipabiliy Dissociability. Interminabiliy Intemabiliy Intematiombility
Antipocabliy Antiquabilty ‘Antisociabil abiliy nabily Divagabi Divisonabilty Dacility Intemationalizbiliy Interpolbily Interaciability Interelabily Interrogabilly Intersability
Apoliticaily ‘Apologizabilty ‘Aposabilly ‘Apostrophizabilty ‘Appabilly ‘Appeabilty Doctorabliy Doctrinabilty Domestcabiliy Domiciliy Dominabilty Donability Intersitiabilip Intertidabil Intervabil Intesabilly Intestinatiliy ntimability
Appellability Applicability Appraisability Appreciabilty Apprizabiliy Approach: Doorpl ability Dorsability Dramatizability Drinkability Dropsicability Duability Intimidabilfy Intolerabilty Intoxicability Intractabiliy Intramurabiliy Intrastability
Approbability ‘Appropriabil iy Approvabilty Approximabiliy abil i Asitrabili Ducabiliy Ductiliy Duodenability Duplicability Durability Dutiabilty Intricabiliy Intrinsicabilty Inundabiliy Invalicebiliy Invalusbiliy
Arboreability Arguability Avrithmeticability Eatal Inve: ility Inveterabiliy Invigorability Invincibility
Armoriabiliy Arousability Arivabiliy Arrogability Arsenability Avrsenicabili Edibilty Editoriabilty Educabilty Educatonability Effaceability Effectuability Invisibiliy Invulnerabiliy Irability Irascibiliy Ironicabiliy
Aterability Aticulabiliy Arificiabily Ascerainabiliy Ascibabilly Aexuaility Effeminability Efficency Egoisicaily Egotistiabilly Ejaculzbily ilty Irationabiliy
Asp hyxiability Assailability Assass inability Asseverability Assimilability Elaborabilty Electorabil i Electricability Electroplabikyy Elementabilit Elevability Irrefragabiliy ity Irremediabiliy Irremovabilty Irreparability
abilty Asaciabiliy ‘Asarability y ‘Asrologicabilty sronauticabiliy Eligibilly Eliminabiliy Elliptcabity Elongailiy Elucidabilty Emaciabilty irepressbily Irteproachabiliy resitibiliy Inetrievability
Atranomicabilty Agmmetricatily ‘Atomizabiliy rizbilly ‘Atainabilty Emanabiliy Emancipabiliy Emasculabily Intevocabiliy abiliy talicizabili
Ateruabi Atitudnizabilly ‘Atibutabilly Auctoriabilty Audibilty Emigrabiliy Emationabily Empiricabily Emulabilly Emuisifiabilty Herability ckabilty Seopardizzbliy iy
v udiovisuabilky diabily biliy strabi Enabiliy Encapsubbilty Endurabilty Energizabil Enervability ridicabiity wrisdctionabiliy sifiabilty Karabil
Authenticablty Authorizabilly Autobiographicabiliy Automabilty Automaizabilly Automobilty Enforceabiliy Erigmaticabilit Ensily Ensuribiliy Entomologicabilty Knovability rowedgeatilty Kraabiliy Labiabiliy abili
Autumnability Availabilty Avoidability wability ili dabilty Enumerabiliy ility Lachrymabiliy Lackadaisicabiby Lacrimability Lactabiliy Lacteabily
by Baccalaureabilit Bacteriabiliy Bacteicicabilit Bacterologiabiliy Baizability Episcopbiliy Epitheliabify Epoctabiliy Equabiliy Equalizabitiy Laminabiliy abiliy Laryngeabilty Laterability Laudabilty pebility
Banabilty Baptismabilty Baptizabilly Barbiturabilly Baroniabl Basabil Equatorisbity Eaquilaterabitly Eaquitabilty Equivocabilty Eradicabilty Laureabiliy Legabiliy Legalizabily Legibiliy Legistabilly Legitimabilty
Bearabiliy Beguiliy Behaviorabily Believabilly Beneficiabily Benzaability hiliy Esophage: Espousabilty Esentiabl biliy iy Levitabiliy Lexicoprahicabilty Liabiliy L Liberalizability
Berabiliy Besiabilty Bestonabiliy Betreyabilty Betrothati Biamuabiley Esimabilly Etemabiliy Ethicabiliy Etymologiabiliy Eulogizility Libidirbiliy Licentiablit Likabilly Likeabiliy Linguabiliy
sibiley Biblicabilly Bibliographicabilty Bibliohiliy Bicamerability Bicarborabiliy Evacuabilty Evaluabilly Evangelizbiliy Evaporabilty Eventusbility Liorizabilty Liauidsbilly Literabily Litigabilly Livability
Bienniability Bifocabilty Bifurcabiliy Bilaterabil i Bilinguability Bility Eviscerabiliy. Exacerbabiliy Exaggerabilty Exasperabilty Excavabilty Exceptonability Liveabiliy Locabiliy Localizabilit Logicabilty Lovabiliy
Billabilly Billgsgabily y Binomiatiliy Exciabiliy Excogiubiliy Excommunicabitly Excoriabilly Exculpabilit Loveabilty Loyabiliy Lubricabilty Lusiabily Lyricabi
Biologicabilty Biraciabil Bissctnabilty Bisswuabilky Bloodmabilin Excusabilly Exccrabilly iy Exilaratiliy Exil Exisentabillty Nabiliy Nacadaizabilly Nacerabilty Nachinabilty gicability
Bookmobility Bookplability Botanicability Botanizability Bowdlerizabi ity Exonerabilty Expandability Expatiabiliy Expatriabiliy Expectorabiliy Expendability Magisteriabiliy Magistrabiliy Magnability Magretizabilfy Maizability
reaiabiliy Breasplabilly Bridgeabilty Bronchiability Brutabilly Experientiabity Experimentabily abilty Explicabilly Exponentiabiliy Exportaviity Najesticabiliy Nalariabily Malleabiliy Nammability Nanageriabilty
Burglarizabilfy Buriabilty Cabiliy Calculabilty Calibrabilty Expostulability Expropriability Expurgability Extemporizabily Extendability Extenuability Mandabi lity Mandibilty Maniacabiliy Manipulability Manuability
Caliphability Callabiliy. Calumniabilty omilit il ‘Camphorabiity Exter iy Externabilty Extirguishability Extirpabilty Extortinability Extractability Marginabilty Marinabiliy Maritabiliy Marketabiliy Marriageability
Canabiliy Canalizatilly Candidabiliy Cannvabiliy Cannivalizabilly Canonicabilly p Extricabiliy Exudbility rhabiliy apiabiliy Martabiliy Nasticabiliy Materiabiity
Canonizabilty Cantabilty Cantonability ability Capacitabiliy Capitabilty Fability Fabricabiity Faciabiliy Facilitabiliy Faciliy Facsimility Materializability Matemailiy Mathematicabilit Matriarchabiliy Matriculabiliy Matrimoniability
Capitlizabity Capitubbiliy Capsulabilty Captiebilly arbonycirbility Factuabilly Faecabiliy Fallbiliy Familiabiliy Familiarzability Fanaticabilly urabiliy Natutinabilly Maximabiliy Nayorabilly ity
Carbonability Cardinabiity Cardinalzbilty Camabilty Camivabilty Carousability Fantastcabilly Farcicabilly Faszinabilty Fasnionabilty Fatabi Fathomabilty Neaurabilly Nechanicabily Mechanizabilly Nedabiliy Mediabiliy Mediaevabilly
Castigabilif trabiilit suabili Casuisticability Catarrhabiliy Catechizabil Faunability worabi it Feasibility Febrility abiliy Fecundability Medicabiliy Medicinahil ity Medievabilty Meditabiliy Meliorabiliy Memorability
Categoricabilly Categorizabilly Cathedrabitty Caudbiliy Causbiliy Cauterizabilty Federabilly Federalizabilip Felicitabily Fentility Ferilizabiliy Festability Nemoriabiliy Nemorializabily Memorizabiliy Neniabiliy Mensbiliy Mensruabiley
Cecabiliy Celebrabilty Celestiabilly Celibabilty Censoriabiliy Censurabilit Festivability tabiliy Feudability Fictionability Filiabiliy Fility Mensurability tabiliy Mercantility i
Centenniabilty Centrabilty Cereability Filterabiliy Filtrabiliy Finability Finalizabilty Financiatility First-rability Mercuriabiliy Mesmerizability Messmability Metabiliy ‘Metabolizabitiy Metalloidabi ty
Cerebrabily Ceremoniabilly Cenificabiliy Chamoiliy Changeabiliy Chamelizabily Fisabiliy Fissionabiliy Flagellabily Flammability Flexibiliy Florability
Characterizabilit Charcoabilty Chargeabilty Charitabilty Cheapskability Checkmabilty Fluctuability idability Flyability Focabilit Foetabilty Metricabiliy Miasmabili Microbiabilty Microscopicabiliy Migrabiliy Migrationability
Chelabilly Chemicabiliy Crevabiliy Chiliy Chimericabiliy Chloraility ibilty Forcemulticabiliy reibiliy Foresceatiliy Forgivabily Fomability Nilitabli Nilitarizabilit Mility Ninerabiliy Nineralogicabilly Minimability
Chiorinabiley Chocolabilty Crorabiliy Christianiabiliy Chronalogicailly Circulabilty Formalizabily Fomnidabilty Fomulabilty Fortunabilty Fosilizabilly Foundationability Minimizabiliy iscbiliy iserability
i i Civilizablity Classicabilty Fractionabilty Fragiliy Frangibility Fraternabil iy Fraternizabil iy Friability Misfility Missability Missility Misstability Mistakabilty Mistrability
Clasicizatilty Classmabilty Clericabiliy Climabily Clinicabilty Cloisrabiity Frictiorabilly Frigabiliy Frontabily Frugability Frusrabiliy Fulminabilty Misriabiliy Nitigabilty Mixabiliy Nobility Nobilizabilty Nodabiliy
Closabil Coatilky Congulabilty Constabilly Condiabily Cochineabilty Fumigabiley Functionabilly Fundamentabilly Funerabilty Funereabilty Fungicicbillty erabiliy Nodernizabilty Modifiablty Nodulabiliy Nonarchicabilly Monasterabilly
Coeducatonabilky Cocauabiley Coevabiliy Cogitabiliy Cognabiley Cogpitionabil Fusibilly Fuiliy Gabi Nonaurabily Morability
Coincidentabiliy Collabilty Callaborabily Collpsibiliy Collaterabitly Collectabily Generabiliy Generalizabilip Geniabilty Genitabilty Geniliy Geographicbiliy Moralizabiliy Norphologicabilty Mortabiliy Ntil Motivabilty Notorizabilly
Collectiblity Collegibility Colloidability Colloquiabilty. Coloniability Colonizabilty. Germinabiliy. Gestabiliy Gesticulabilty Mountability /abil Moveability Multinatonability Municipability Murability
Colosabilty Combirabliy Combusiviley Comesibilty Comfonabiliy Comicability Glciabiliy Gleanabiliy Globability Musicabilky Musicologicatility Mutabiliy Nutationbiliy uabiley
13 ¢ Glosariabiliy Glottabilly Goabiliy Mysticabi Mythicabilty Mythologicabiliy Nameplability
Committabily Commonilky i Governabiliy Governmentail Grabi Gradabiliy Grammatcabiliy Grarulabilly Narcatizabily Narrability Nervhabiliy Nasabilly atab
Comparabilty Compartmentalizabity Compassionabiliy Compaitliy Compenabiliy Compilty Graphicabilty Gravitabiliy Gravitationbiliy Guberatorabiliy Guility Gulliilty Natatoriabiliy Nationabilty Nationalizabity Naturabiliy Nauseabiley
picabil Conceabliy Conceivabiliy Gutturabilty Gynecologicabiliy Gyravily Fabilitabilly Fabilly Febitatilty Nauticabilly Navabiliy Navigabilty Nearderthabilty Necesitability
Concentrabilty Conceptuabiliy Concilibilky Habituabilty Hallucinabity Fardenablty Harmonizabiliy Heabilly Helicabili Negabiliy Negligili Negatiabiity Neoclassicabilty Neonatabilly
Confessionabiliy Confidenticbily Confiscabiliy Conformabiley Congeabilty Congeniability Helpmabiliy Hemisphericabiliy Herbicidabilty Hereticablig Heritabily Hermeticability Neurabiliy Neurologicabilty Neutrabiliy Neutralizabilip Nitrabliy Nocturmabil ty
greg: Herniabiliy Heroicabiliy tabilly Heterosxuabiliy Hexagonabilty Hibernabilly Nominabilty Noncommittabily Nonmetabilly Nonsensicabilty Normalizabilty
Conicability Conjecturat Conjugability Connubiability Consecrabiliy Consequentiatility Hierarchicabili Hillbilliy Historicabilty Notabil Notariabi Notarizabiliy Noticeabilty Notionability Novelizabilty
i il C Constability Constipabiliyy Constitutionability Honor ability Horizontability Hormonability Horologicabilty Horribility Horticulturablity 1% Numerabiliy Numericabiliy Nuptiabiliy Nutritionability
Consiabiliy Hosptabiliyy Hosptalizbilly Hostility Humanizabilly Humerabilly Humiliability Catmanbiliy peurabil Obfuscabiliy Ojectionbilty Objurgabiliy
Continuability Contractilty Hydrability Hymeneabiliy nability Hypercriticabil i Hyphenability Obligabiliy Obliterabiliy Observability Obstetricabilty Obstinabiliy Obtainability
Converibilly Comiviabiliy P Owviabilyy atilty Occidentabily Occipitabilly Occupatinabilky agonebilty
Cooperabilty Coordinabiliy Copulabilty Corabiliy Cordiabil Cormeabilty lcesabiliy deadily Idealizabilip denticabilly dentifiabilly deologicabilly offabiity Officiability Ofusatabiliy Oligarchicadilly Opability Operability
Cornmeabilty Coronability Corporabiliy reabilit rabil it Correlability Idolizabilty Illegabiliy Ilegibiliy Ilegitimabilit Illiberabiliy Ilimitability Operationability Opiabilit I Opticabiliy Optimabiliy. Optionability
Corrctnes Corroborabilly Comgavili Cormuptibiiy Corticabilly Conszabilty ilierabily Illogicabilly Hiuminabitty ilusrabiliy Imaginabilty imbecility orailiy Oratoricabiliy Onitabiliy Orchestrabiliy Ordeabilly Ordinabil
Cosmologicability Countability Court-martiabilig Courts-martiabiliy Crabiliy Craniabilty Imbricabiliy Imitability hy i y Organizabilty Orgs 0 Orientabiliy Originabilty Ornabiliy (Ornamentability
reabiliy Credentiablity libilty Creditabilty Cremabiliy Crenelabilty Immemoriabiliy Immigrability Immiscibility Immitigabilit Immobiliy Immobilizability Omithologi Oscillabi Osculability Ostensibiliy Ostracizabiliy
Crenellabilty Criminabiliy Criminobgicailly Criticabiliy Criticizabilie Crocodilty Immoderabiliy Immolability immorability Immortatility Immortalizability Immovability Ougeneratilty Outsizabilty Ovability Overemphasizabily Overloadatility Ovrability
Cross-pollirebility Cruciabilty Crucibilty Crystallizabiliy Cubicabili Immunizabiliy Immutabili Impalpabiliy Impartiabiliy Impassabili my Oversizabiliy rstabiliy Owulability Oxidizability abili Palability
Culminatiiy Culpabiliy Cultiabilty Cultivasbiliy Culturbiliy Cumulabiity Impeccabiliy Impenetraviliy impercepribily Imperiabiliy Imperishabily Impermeability Palatabily Palatiailiy aliabily Paimabiliy Palpabilty Palpitabily
Curabilty Cylindricabitly Cymbabilty icabiliy abiliy amnability Imperscnabilty Imperturbabiliy implacabilip Implausivilty Implicabily Imponderabilly abiliy rabiliy 3 Pardonabilty
Danceabiliy Deabiliy Deactivabilly Debabiliy Debatabiliy Debilitabily Importunabily Impossibilty impracticability Imprecability Impregnabily Impressibility Parentabiliy Parentheticabitly Parctabilly Parochiabilty Paroxysmabilly Partiability
Decabiliy Decapitabiliy Decelerability Decentralizabiit ecility Decimability Impressonabilty Improvabilty naccessbilly Inaccurabiliy Inactivabiliy Inadequabiliy Paribiliy ity Paricipiabily Particularizabili Passability Passionabiley

21 Oct 2012

NDIA System Engineering Conference 2012

62

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Interrelationships

programmatic

behavioral implementation

manageability

21 Oct 2012 NDIA System Engineering Conference 2012

63

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Agenda

o Motivation
o Terminology
o IEEE view
0 Requirements and architecture/design
o Types of requirements
- Qualities of requirements
o Creating requirements
o Verifying requirements
o Challenges / pitfalls

21 Oct 2012 NDIA System Engineering Conference 2012

64

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

IEEE Qualities of requirements (7 or2)

o IEEE Std 830-1993* defines nine qualities for requirements
specifications

> Complete — All external behaviors are defined

> Unambiguous — Every requirement has one and only
one interpretation

> Correct— Every requirement stated is one that software
shall meet

> Consistent— No subset of requirements conflict with
each other

> Verifiable — A cost-effective finite process exists to
show that each requirement has been successfully
Implemented

> Modifiable — SRS structure and.siydlge arg.suGdRat, any
changes to requirements can beHadE ersHyy; Spectfications

~Aarmnloatalyvy anAd ~AAM eskeFecsnddazee i la rataininAa octriicti ira 65

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

IEEE Qualities of requirements 2or2)

o |IEEE Std 830-1993 qualities of requirements (cont’d)

> [raceable — Origin of each requirement is clear,
structure facilitates referencing each requirement within
lower-level documentation

> Ranked for importance — Each requirement rated for
criticality to system, based on negative impact should
requirement not be implemented

> Ranked for stability — Each requirement rated for
likelihood to change, based on changing expectations
or level of uncertainty in its description

o These qualities are associated with how the requirements
are defined and documented

o Failure to assess requirements against these criteria raises
risk of subsequent problems

21 Oct 2012 NDIA System Engineering Conference 2012 66

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Requirements maturity

o Maturity level - a measure of how well the requirement
meets key qualities

o Requirements generally mature over time

> As we learn more about what we want the system to do

> Important to understand the maturation path as a system is
developed

o Key factors:

> Correctness

o Does the requirement express a product attribute that is
needed?

o Are we certain, or are we guessing / approximating? Is it
accurate?

> Unambiguity (specificity)
o Does the requirement express a precise attribute that cannot
be interpreted in more than one way?
21 00t 2012 o Would a programmerkaew, exactly what code to write to

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Correctness / accuracy

o Not always possible to determine up-front
o Independent of ambiguity

a Criterion: does the requirement express an attribute that
needed for the product?

o E.8.
> “The elevator shall stop smoothly at each floor”
> Clearly ambiguous and vague, but certainly desirable and correct

o E.g. 2

> “Upon receipt of signal from the temperature sensor that indicates
the temperature is greater than 110° C, the system shall initiate a
shutdown of the burner unit within 0.1 sec.”

> Precise and unambiguous, but it turns out that 140° C is the critical
temperature and 1 sec is the shutdown tolerance.

» Hence, incorrect.

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Maturity path

0 Requirements generally start at lower left and hopefully
progress towards upper right of maturity graph

o Far too often the ambiguity is decided by the programmers
while writing code, resulting in less-than-optimal
interpretation of requirement

Level of correctness
L OV e High
High

®
‘ Desired path

Level of unambiguity

-
O

Low

21 Oct 2012 NDIA System Engineering Conference 2012 69

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Derived requirements

o These are additional requirements that are created to

> Support the baseline requirement(s) by providing necessary detail
> Expand on the baseline requirements with additional behaviors

o Derived requirements provide a mechanism to achieve
maturity

0 Note that they refer to the same component as the baseline
requirements
> They are not allocated to lower-levels of the architecture

Derived requirements

Baseline requirement

—
—
——

21 Oct 2012 NDIA System Engineering Conference 2012 70

U OlNCTIelellead - @ dydd Fuis vea
requirements

o Level of detail may vary
> Ranges from vague and general to very specific (& directly
testable)

o The system shall require authentication for all users to gain
access (vague)

o Users shall enter their username followed by their password to
gain access to the system (more concrete)

o At some point, the detail will be defined, either

> informally by the programmer and perhaps neither documented
nor reviewed/approved, or

> Formally and documented prior to and during implementation

o Important note - if the detail addresses externally visible
behavior, it will never be design

> Design is internal to the component

> If it addresses externally visible behavior, it is always a
21 et 2012 “requirement”

NDIA System Engineering Conference 2012

71

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Requirements tracing

o Each and every requirement defined at each level must be

> Based on a requirement at next higher-level (else it has no reason
to exist)

> Supported by a requirement/design feature at next lower-level
(else it will not be achieved)

> Hence all requirements are derived
o0 Sometimes mapping is simple (1-1 or 1-few)

o0 Sometimes mapping is complex and/or indirect (1-to-many
or many-to-1)

o Use of automated tools recommended

RN RN RN RN
Mission :;;r;:: Operational System System
Requi nt Requi t i
needs B equirements equirements Design
A A S S

21 Oct 2012 NDIA System Engineering Conference 2012 72

Component
Component
Requirements

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Agenda

o Motivation

o Terminology

o IEEE view

0 Requirements and architecture/design

o Types of requirements

o Qualities of requirements
-Creating requirements

o Verifying requirements

o Challenges / pitfalls

21 Oct 2012 NDIA System Engineering Conference 2012

73

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Requirements engineering

o A discipline all its own

o Must consider all aspects of the system and its environment,
such as:
> Feasibility to effectively and efficiently build system
o Requires knowledge of hardware, software, and people
> Fitness for purpose
o Requires knowledge of operational domain
> Adoption of potentially reusable elements (including upgrades to
existing systems)
o Requires knowledge of precedent assets and how their specs
will affect requirements
> Relationship to other interacting elements in the environment
o Requires knowledge of existing and emerging systems
> Ability to elicit, listen, and interpret

21 Oct 2012 NDIA System Engineering Conference 2012 74

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

In particular...

o Defining requirements must involve all affiliated subject-
matter experts (SMEs) - risk otherwise

o Cannot allocate to and define requirements for system
elements unless you consider what the engineers who will
build these elements need

> Hardware, software, operator interactions
> Incl. domain experts (radar, thermal, legal, sonar, guidance,
accountants, ...)

0 Hence, requirements engineers must be involved from the
beginning

> Once requirements allocated to SW components, SW

requirements analysis (SRA) needed to derive specific SW
requirements and place into form suitable for implementation

21 Oct 2012 NDIA System Engineering Conference 2012 75

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Requirements analysis techniques

Q

Q

Q

Q

Q

21 Oct 2012

Different techniques/processes are used
> ad hoc techniques
> Functional techniques
> Object-oriented techniques

New processes arrive every day

> Agile Unified Process
> Extreme Programming
» Cleanroom Software Engineering

Many tools exist
> DOORS, Analyst Pro, Rational Rose

All should produce the same result — a description of
behavior of the system and all other desired attributes

Important to select technique to be appropriate to system

NDIA System Engineering Conference 2012

76

21 0ct 2012 (“Thraade” cranarinc DA System Engineering Conference 2012

A NOLE OkAJO - bd Db -atlld:wmms s
requirements

o Booch, Rumbaugh, Jacobson. The Unified Modeling
Language Users Guide:

> “A use case specifies the behavior of a system or part of a system
and is a description of a set of sequences of actions, including
variants, that a system performs to yield an observable result of
value to an actor”

> “A use case describes what a system ... does but it does not
specify how it does it.”

o Can be misleading

a Provide some information about behavioral requirements
but not at level of detail sufficient for development

a Use cases are important to requirements definition
> Especially in the form of scenarios
> Help to describe how system will be used
> How various capabilities and functions will be used together

77

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Scenarios to functional attributes

Scenarios Scenarios Scenarios Scenarios Scenarios
Use cases Use cases Use cases Use cases Use cases Functional
Threads Threads Threads Threads Threads attributes

VAR

A
N

(
\y

U U
(
\

MM

M
v U

Fa
v VU

(N
(N
A\
Y
-
W
\

M
V
M
V
M
W

M
VU
M
V
/N
NV
\
ER D RR BB

MMM
v U WV
\%

N
Y
N
Y
(N
\V
N
\V

21 Oct 2012 NDIA System Engineering Conference 2012 78

Ke y I n TO Ema”:["lo rejlly fM@@@@ iremFt@iF;rmg. W. Bail.
requirements

0 Need - why is the system needed? What role will the system
play?

o Operational environment - what is the environment in which
the system will operate?

o Strategy for satisfying need - given the environment, how is
it expected that the system will support the needs?

o System capabilities to implement strategy - what does the
system need to do to satisfy need?

o Usage profile - how will the system be used?

o Technical requirements - what specific behaviors will the
system provide to deliver desired capabilities?

21 Oct 2012 NDIA System Engineering Conference 2012 79

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Key factors in defining requirements

7 Need Al é’%ﬁ P4

—
NN —
JWUHUUJ‘J j N
Operational | =
environment |~ -
\\\\ v ”’,/
% Strategy <[
! |
\\\ v
2 Capabilities]
Usage/
scenarios

] Technical e
] é‘_——_-
requirements

21 Oct 2012 NDIA System Engineering Conference 2012

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Crucial steps

o Understand user needs via active requirements elicitation
o Characterize the operational environment
o Define a strategy for fulfilling user needs

o If strategy involves building a system:

» Derive necessary system capabilities based on needs and strategy
o Involve users, develop scenarios that cover needs

> Define scenarios depicting how users will employ the system to
fu|f||| needs 7fi?f§;f5 e
o Include low likelihood as well as common situatioési;zfé
> Use scenarios to derive specific required attributes
o Incl behavioral, implementation, programmatic, and
manageability
> Apply same techniques throughout system design
> Continue to revisit required attributes as understanding matures

»> Document attributes throughout, until completed

21 Oct 2012 NDIA System Engineering Conference 2012 81

Tell me

what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Requirements “life cycle”

o Important to understand how we get to the requirements

21 Oct 2012

System
definition

Yy

'l Wission Why system is needed, what the overall problem is
needs B _ysi)
Overall system Role of the system(s) in solving the problem
concept jum ysi

Operational Capabilities system needs to solve the problem
Requirements il ysi
-, s -

System Functions necessary to achieve capabilities
. Requirements il ysi __________________

System design

Software
development

Overall design of system,

i | e

i

_____________________ = S
to build system /ﬂ\

Major :

ajor :

Component {5t 2ol . ajor !

Requirements i o _p°"e“t ponent
irements |;
irements .

NDIA System Engineering Conference 2012

L ECISION=-pUH RO I It el 1S
definition

o Each step involves deciding between alternative approaches

o Continual refinement of system behavior

o Decisions based on many constraints

> Schedule/budget, staffing, risk, operator preferences, alignment to

mission, reused components, ...

Decision Process

Requiremen_ts selected represeﬁt 0
possible approach to deliverin

21 Oct 201

System
Concept

System
Concept
SetC

Capabilities
Set A
Capabilities
Gl

Capabilities
SetC

Decision Process

Decision Process /‘/

NDIA

System
Reqgs
System
Regs

>

e

| Del:isil:mQI| I;ss \\/\ \’\

| Decision B*/,é P/ . \4

'stem Engineering Conference 2012

<4+—— System design ——»

Software
design

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Requirements spectrum

o As the requirements mature through their life cycle, they
cross the spectrum from
> Mission and operational context
> T0
> Specific, detailed behaviors

Requirements spectrum

| -

Mission Capabilities General Detailed

And Roles The kinds of Requirements Requirements
things that the The behaviors that the Very specific
system needs to system needs to definition of
do in order to implement in order to input/output
support the deliver the capabilities behaviors
mission

21 Oct 2012 NDIA System Engineering Conference 2012 84

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

“Capability”

o “The system shall have the capability of reading the room
temperature sensor and adjusting the heat in the room to
correspond to the desired setting”

o Just because it has the capability does not mean that it has
to
> Most people have the capability of adjusting the thermostat if the
room is too cold. They may just decide not to do so.
o The system meets the requirement if:

> It adjusts the heat 2 days later
> It adjusts the heat to within £10°
> It reads your mind and guesses what the desired setting is

o Defining capabilities useful in early stages

> On way to defining more specific required attributes

> Need to mature these to be more specific as development
proceeds

21 Oct 2012 NDIA System Engineering Conference 2012 85

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Agenda

o Motivation
o Terminology
o IEEE view
0 Requirements and architecture/design
o Types of requirements
o Qualities of requirements
o Creating requirements
-Verifying requirements
o Challenges / pitfalls

21 Oct 2012 NDIA System Engineering Conference 2012

86

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Verification / validation

0 Systems are verified to determine overall acceptability

> Is the system suitable for operation?
o Despite any identified shortcomings

o While building a system, continual tradeoffs need to be

performed to reconcile actual attributes to desired attributes
> Systems rarely implement every requirement

o Trades to be based on acceptability framework

o All requirements to be evaluated against

> How realized in developed product (complete, partial)
> Priority (importance) of each requirement
> QOverall fitness for use

0 Best practice is to create a requirements verification matrix
(RVM)
> Where each requirement is mapped to a verification approach

21 Oct 2012 NDIA System Engineering Conference 2012 87

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Acceptability framework

/ Behavioral %

(" Functional

A

o

4

5

o

S

A

£
System i
Attributes

Supportability —<

\. Usability —

(Maintainability

Trustworthiness —

Reliability
Safety
Availability

Integrity of operation

Interface .
Temporal Protection of
= P _ ~ information
apacity Performance
Resource . _
utilization Ease of learning

Efficient to use
Easy to remember
Forgiving

Portability
Extensibility
Reusability

Implementation

21 Oct 2012

\ Programmatic {

Delivery Schedule
Cost

NDIA System Engineering Conference 2012

_ Integrity of construction

88

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Requirements and verification

o Each and every requirement needs to be verified

> Thatis, need to be able to construct a valid argument that the
requirement has been satisfied by the as-built system

> Argument needs to be supported with sufficient objective
evidence
0 A requirement is verifiable if such an argument can be
constructed

o There are multiple techniques to construct these
arguments

o Each type of requirement may require the application of
multiple techniques to provide a full, sufficient argument

o When defined, each requirement must be correlated to the
approach(s) to be used to verify that requirement

o Note that ALL requirements need to be verified

21 Oct 2012 - — _ _ f 4 L L _ = _NDIA System Engineering Conference 2012 89

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Verification techniques

0 We define five types of verification techniques (note that this
list is not necessarily the same as used elsewhere)

> Test

> Product analysis
> Inspection

»> Demonstration
>

Process analysis ——— _
Verification techniques

|
| | | |
Test Product Inspection Demonstration Process
Analysis Analysis

Definitive Analytic

21 Oct 2012 NDIA System Engineering Conference 2012 90

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Verifying requirements — test

o With test, we execute the product, challenge with stimuli,
and observe behavior (responses)
> Collect the responses

> Compare responses to desired responses (oracle) to determine
degree of adherence

> Desired responses specified by the requirement statement

o Execution environment may include actual operational
environment of product

» May also include simulations of other systems in the environment

21 Oct 2012 NDIA System Engineering Conference 2012

91

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Categories of test

o Two types of test based on the ability to determine
conformance to requirements:
> Definitive
o Results are quantitative
o Can be compared directly to the requirements
o Results can be stated as pass/fail
> Analylic

o For requirements that cannot be definitively verified

— Mathematical and other forms of analysis must be used to make
an argument for compliance.
o Test results from one or more tests may support an argument
for either pass or fail, but do not provide an absolute
determination of conformance.

o Such arguments serve to establish the levels of trust that can
be placed on the system’s performance

21 Oct 2012 NDIA System Engineering Conference 2012

92

V elllying:+e4ul i el lid am iU Cl
analysis

o Product is not executed (nhot tested)

o System attributes evaluated analytically, often supported
mathematically
> e.g., RMA (Rate Monotonic Analysis)
> e.g., architecture analysis
o Results used to create arguments of compliance for those
requirements that are inherently non-deterministic

> dependability
> to establish levels of trust

21 Oct 2012 NDIA System Engineering Conference 2012

93

V e rl Ty I n ge” "r @QMt Iorr'@em @um && ReTtMeMments Engineering. W. Bail.
demonstration

a Product is manipulated to demonstrate that it satisfies a
quality of construction requirement

o Such requirements express certain attributes of the product
but not how these attributes are achieved

o e.g., portability

> A portability requirement states a desire to be able to rehost a
product to a different computational environment with minimal
effort and cost

> Usually achieved by imposing certain design constraints (modular
architecture, low coupling, high cohesion)

o Perhaps separately stated as a design constraint

> To verify that the product is portable, a demonstration of rehosting
the product from one computer to another may be performed.

21 Oct 2012 NDIA System Engineering Conference 2012 94

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Verifying requirements — inspection

a Visual examination of product, its documentation, and other
associated artifacts to verify conformance to requirements

o Often used in conjunction with other techniques to complete
argument

o Particularly useful for verifying adherence to
design/implementation constraint requirements

> e.g., a software component may be inspected to verify that makes
no operating calls other than to a POSIX-standard interface

21 Oct 2012 NDIA System Engineering Conference 2012

95

Vv elllying+4ul i el s eSS
analysis

o Analysis of the techniques and processes used by developers
to determine if they are adhering to any required project
standards and plans

> Particularly those that correlate to stakeholder requirements for
specific processes

> May involve examination of the various intermediate and final
products as well as programmatic artifacts and records

> E.g., adherence to safety standards (DO 178B/C, 882C)

21 Oct 2012 NDIA System Engineering Conference 2012

96

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Verification approaches

Type of Requirement Verification Approach
Definitive Analytic Analysis Demon- Inspection Process
Testing Testing stration Analysis
Behavioral
Functional \/ \/ \/
Interface \/
Temporal \/
Capacity \/
\/

Resource utilization

Trustworthiness

Usability

L2 | £ | <L | <2
S I - I

Supportability

Implementation
Constraints

Product constraint

< L || (2| <2<

Process constraint

< | <

21 Oct 2012

NDIA System Engineering Conference 2012

97

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Limitations to verification

o Vague requirements cannot be effectively verified
> Because valid responses not clearly defined

o Good, complete, and unambiguous requirements inherently
contain the information necessary for verification

o Explicit, concrete, and detailed requirements generally can
be directly verified
> All input and output details fully defined

o A requirement could be very explicit and concrete yet not be
directly verifiable

> The system shall be available for 0.9999999 over a one year
operating duration

21 Oct 2012 NDIA System Engineering Conference 2012 98

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Agenda

o Motivation

o Terminology

o IEEE view

0 Requirements and architecture/design
o Types of requirements

o Qualities of requirements

o Creating requirements

o Verifying requirements

-Challenges / pitfalls

21 Oct 2012 NDIA System Engineering Conference 2012

99

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Some typical challenges and pitfalls

Fear of detail
Human Interfaces (HMIs)

a
a
o Failure to manage volatile and late-defined requirements
o Failure to recognize unknown “physics”

u

Overspecified / over-constrained / unbounded

21 Oct 2012 NDIA System Engineering Conference 2012 100

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Levels of detall for requirements (703

o When developing a system, requirements typically start at
general level

> List of capabilities — what users want to be able to do

o “The product shall allow users to perform word processing”
> Sometimes, detailed behaviors known up-front

o e.g., preexisting external interfaces

o e.g., required screen formats and display icons

o As development proceeds, general requirements are refined

(should be) to become specific behaviors

> More detail added as more is understood

> E.g., “Pressing Ctrl and | at the same time results in the selected
text being converted to an italics font within 0.5 sec”

21 Oct 2012 NDIA System Engineering Conference 2012 101

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Levels of detall for requirements 2or3)

0 Regardless of level and amount of detail, as long as
descriptions address external behavior, they are
“requirements” and not design

> Including GUI screens and formats, interface formats, and
protocols
o (Note that “interface design” is actually part of requirements
definition)
> Remember, practice tends to use the word “requirement” to refer
to externally-visible behavior

o Where design is internal to the item

o Why is this important?
> Externally-visible behaviors tend to create dependencies on
external entities (systems, people)
> Design features tend to be created based on design tradeoffs
made by the developers without dependencies on external
— systems -

- NDIA System,Engineering Conference 2012

”~ I'H |

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Levels of detalil for requirements (3073

o When product complete, all system attributes implemented
and should be known in full detail, to support

> Training and operator manuals
> Maintenance manuals
> Reuse of system and its components

o Failing to recognize this results in

> Immature requirements being built into software
> Disconnects with external systems with dependencies

Don’t fear detail - no matter how much detail is provided, “requirements”
are never design (for a specific component)

21 Oct 2012 NDIA System Engineering Conference 2012 103

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Human Machine Interfaces (7o0r2)

o Human Machine Interface (HCI, MMI, HIS, ...)

> Refers to interface between the system and humans
> How information is conveyed between humans and the system
» How control is achieved by operators over system

o HMis are externally visible — hence are part of
system/software requirements
> Failure to treat as requirements can lead to problems

o If HMI is awkward and ineffective, system will be a failure

> If system cannot be effectively and efficiently used, its role will be
diminished
> Operators will ignore it

21 Oct 2012 NDIA System Engineering Conference 2012 104

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Human Machine Interfaces ©2or2)

o Recommendations:
> Where applicable, human performance must be a part of system
performance
o Define performance regs which include human-in-the-loop
> Involve users early with design of user interfaces
o Exploit dynamic prototypes, avoid prolonged use of static
displays
> Perform usability analysis to determine how well users can learn
and interact with system
o Measure overall performance

> Obtain formal agreement on HMI once defined as part of
requirements

o Avoids second-guessing during system acceptance
> Defer some HMI features as run-time configuration option
o |f appropriate, to avoid code rework
> Rely on standards and standard tools to help create common view

21 Oct 2012 NDIA System Engineering Conference 2012 105

t— A Gigea to Effective Requi

Volatile and late-defined requirements
(10f4)

0 Requirements always change
» Some don'’t change, but are defined Iatg

0 Not necessarily bad but careful
management necessary to avoid
> Expensive rework (and cost and schedt |
impact)
> Compromises to functionality
o Crucial to associate levels of risk to levels of change

> Some changes are low-risk
> Other may be high risk
> Related to amount of rework require
o Developers better able to design defensively if they know

> Which requirements are likely to change
> Degree of change that could be expected

m

Num of Require

106

21 Oct 2012 NDIA System Engineering Conference 2012

Volatile and late-defined requirements
(2 0f 4)

o Depends on attributes of the requirement and its linkage to
design
> Some can be defined early or late

> Some must be defined early
» Some should be defined later

a Important attributes (i.e., how to decide...)

> If level of understanding of desired behavior is low (exact
behaviors not well understood or unknown) — delay in definition
may reduce risk

o If defined and frozen early, later changes may impact design
and cause rework

> If high likelihood that requirement will change — delay in definition
may reduce risk

o Avoids rework due to late changes

21 Oct 2012 NDIA System Engineering Conference 2012 107

Volatile and late-defined requirements
(3 0f4)

o Important attributes (cont’d)
> If a requirement has high or complex external component
dependencies — early resolution may reduce risk
o Late changes likely to affect external systems/components
> If a requirement has strong internal design dependencies — early
resolution may reduce risk
o Late changes may force extensive rework due to design

dependencies
Early definition Late definition
Level of understanding of desired behavior | high low
Likelihood that requirement will change low high
External component dependencies complex simple
Internal design dependencies strong weak

21 Oct 2012 NDIA System Engineering Conference 2012 108

Volatile and late-defined requirements
(4 of 4)

o0 Recommendations to address requirements volatility:

> Define requirements with priorities and likelihood to change
o Allows designers to insulate themselves from unexpected
change
> Ensure design accommodates expected changes

> Where possible, allow run-time reconfiguration to allow changing
behavior without changing requirements

o e.g., screen color options
> Assess dependencies between requirements and design

o Some requirements deeply affect design globally

o Others have limited design impact (GUI formats)
> Ensure inter-requirements dependencies are well understood
> Define and monitor requirements stability with metrics

o Track immature requirements, undefined requirements, and
changing requirements

0 Different types of changes have different impacts

21 Oct 2012 AgA System Engineering Conference 2012 109

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Types of requirements changes

o 9 types of changes

21 Oct 2012

> Addition — new requirement statement added to existing set,

increasing functionality
o Potentially increases work scope, can cause rework

> Extension — existing requirement statement is changed to extend

functionality

o Potentially increases work scope, can cause rework, not as
risky as addition

Correction - changes existing requirement statement to correct a
defect in its description (thereby modifying the functionality
described).

o Beneficial but may contribute to a change in scope

Deletion — remove an existing requirement statement with
corresponding removal of functionality

o Might not require extensive changes, depending on work
already performed

Deferred — defer an existing.sequitement from requirements 110

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Types of requirements changes

0 9 types of changes (cont’d)

21 Oct 2012

> Clarification — change an existing requirement statement to clarify
functionality

o Common, should be expected and encouraged

o Includes expansion of description, refinement of detail, and
removal of ambiguity

> Split — an existing requirement statement is split into multiple
statements

o No change in behavior, little risk

> Merge — two or more requirement statements are merged into a
single statement, without changing intended functionality

o No change in behavior, little risk

> Editorial - an existing requirement statement is modified by
correcting defects in language or notation, but with no change to
functionality

o No change in behavior, little risk
o Common should besexneated-amd encouraaed

111

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Typical pattern of changes

100 -

90 -

80 -

70 -
e
8
82 i
T 60
A 10 10 10 10 10 10
c 14
© 50 -
ey
(@)
) 24
% 40 31

36

% 20 38 38
= | 37 37 37 37 37 37
5 30
(o
@ 12
14

20 -

25
10 19 8 8
- o] [o]
7 7 7
-10 H H -11 -11 -11 -11 -11 -11
-20 T T T T T T T T T
Feb-10 Mar-10 Apr-10 May-10 Jun-10 Jul-10 Aug-10 Sep-10 Oct-10 Nov-10 Dec-10 Jan-11
Date

21 Oct 2012 NDIA System Engineering Conference 2012

I Added
[Extended
[Corrected
[Clarified
B Editorial
[Unchanged
[Deferred
[Deleted

e Total

112

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Unknown “physics” (7or2

o Sometimes we don’t know what the behavior of the software

should be

> Due to lack of detailed/accurate knowledge of real world (typical
for embedded systems)

0 Results in changing or late-defined requirements

0 Need to use software product to explore physics and mature
product based on discoveries (like a prototype)

a Frequently, discoveries are at fine grain level (adjustments to
constants, changes to algorithms)

0 Requirements statements must explicitly recognize need for
experimentation

> Design (and process) must allow for experimentation / exploration
> Need to incorporate provisions for data extraction and collection

21 Oct 2012 NDIA System Engineering Conference 2012 113

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Unknown “physics” or2)

o Mitigation strategies include:

> lterative development of system, and use of iterations to probe and
explore the environment

> Use of executable models and prototypes

> Use of simulations to depict external environment

> Use of data logging functions to collect relevant data

21 Oct 2012 NDIA System Engineering Conference 2012

114

vvelrl-speuiheu/VvetWtlathdi1ed
/unbounded

o0 Sometimes requirements are too ambitious, too restrictive,
or too general
» Too ambitious — results in gold-plating
o Unneeded capabilities created, unattainable functions defined
> Too restrictive — results in narrow, point solutions
o System rapidly becomes outdated when mission changes

o Sometimes you just don’t know up front the exact details (“is 5
sec OK or do | need 2 sec response time?”

> Too general — results in inefficient system that does everything but
not well

o Result is wasted resources

21 Oct 2012 NDIA System Engineering Conference 2012

115

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

Recommendations

o General but important

21 Oct 2012

> Be clear about what you know and what you don'’t
Know

o Don’t feel you have to define everything up front
> Be willing to start general and incrementally refine
> Focus on prioritization of requirements

o Some are always more important than others
> Ensure what is needed is emphasized

o Avoid “gold plating” — advice often provided and
often ignored

o Do you really need a 0.1 sec response time?
> Build system in a series of increments

o Incrementally commit to requirements and apply
early lessons-learned

NDIA System Engineering Conference 2012 116

Tell me what you want, what you really really want — A Guide to Effective Requirements Engineering. W. Bail.

End

o Any questions?....

21 Oct 2012 NDIA System Engineering Conference 2012

117

