
Tell me what you want, what you really 
really want −− 

A guide to effective requirements 
engineering 

 
22 Oct 2012 

 

Dr. William Bail 
The MITRE Corporation 

 
 

15th Annual NDIA Systems 

Engineering Conference 

2012 

The authors’ affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to   

convey or imply MITRE's concurrence with, or support for, the positions, opinions or view points expressed by these authors. 



2 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Requirements need to managed carefully from the 

beginning of development to product delivery 

 And into operation (sustainment) 

 Current practice falls short in many ways 

 Resulting in unnecessary rework and shortcomings in deployed 
systems 

 This tutorial examines 

 Underlying principles beneath the idea of “software system 
requirements” 

 Practical guidance for defining and handling requirements 
 Common pitfalls and traps that plague current practice 

Overview 



3 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Motivation 

 Terminology 

 IEEE view 

 Requirements and architecture/design 

 Types of requirements 

 Qualities of requirements 

 Creating requirements 

 Verifying requirements 

 Challenges / pitfalls 

 

Agenda 



4 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

“You get what you spec, not what you expect” 

 Why do we care so much about requirements? 

 Why not just start building, figure out what you want later 
 Use a Lean Rapid Agile 6 Enterprise Spiral Prototyping process 
 Build – Test – Fix  

 Yes, but…experience clearly shows that 

 Requirements form foundation of all system development 
 If we don’t handle them properly, we incur significant risk 
 You must respect them 

 The longer defects fester in a system, the more expensive to 

repair 

 To repair a requirements defect during system I&T, cost can be as 
large as 130 times the cost of repair during requirements analysis 

Motivation 



5 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Sources: Davis,  Basili, et al 

Relative cost of repairing defects 

  Phase When Defect Introduced into System 

  Req 

  Anl Design Code Test IntOperations 

 

Req Anl  1      

Design  5 1     

Code  10 2 1    

Test  50 10 5 1   

Integration  130 26 13 3 1  

Operations  368 64 37 7 3 N.A. 

P
h

a
s
e

  
W

h
e

n
 

 D
e

fe
c
t 

R
e

p
a

ir
e

d
 



6 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Defense Science Board Task Force on Defense Software, Nov 

2000 

 Requirements management viewed as being a fundamental 
problem 

 Requirements setting and management are still the hardest parts 
of SW development 

 Problem seen with overspecification of requirements 
 Underutilization of modern technical and management practices 

for requirements 

 

Motivation – Defense Science Board 



7 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Motivation 

 Terminology 

 IEEE view 

 Requirements and architecture/design 

 Types of requirements 

 Qualities of requirements 

 Creating requirements 

 Verifying requirements 

 Challenges / pitfalls 

 

Agenda 



8 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Basic terminology 

What is a requirement? 



9 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Requirements… 

Needs 

Threshold 

Huh? 



10 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 The word  is generic and vague – many meanings  

 “This is what we require” 

 Our industry has grabbed on this word and overloaded it  

 But what do we really mean? 

 Word used in many different ways: 

 The capabilities we need 
 The behaviors/functions we want 
 The programmatics we expect (cost, schedule,…) 
 What the system actually does 
 The system design we want  
 The systems it will interact with 

 Pitfall - Lack of a consistent and accurate definition results 

in misunderstandings and inefficiencies 

“Requirements” 



11 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 In general English usage, a requirement is something that is 

necessary or desired 

 With software, generally used to denote a system or development 
attribute that is to be realized when the system is built 

 Systems have many different types of attributes, incl:  

 Behavior - “Alert fire department when smoke detected” 
 Schedule to develop - “System is ready for use on Sep 1” 
 Appearance - “User interfaces are easy to use” 
 Development location - “Development took place in Philadelphia” 
 Design/architecture - “System uses a layered architecture” 

 Each of these can be defined as a “requirement” for the 

system and its development if this is what the 

customer/stakeholders want 

Clarification 



12 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 A “requirement” is simply a statement about a system 

attribute that is needed / desired / envisioned / …  

 When we say 

 “the system must measure the current temperature in a room, and 
adjust the heater or air conditioner appropriately to maintain a 
temperature defined by the user” 

 We are saying that we require the system to have this 

specific attribute 

 Why is that important???    

 There is a temporal aspect to a “requirement” 
 The implication is that it is stated before the system is built 
 Once the system is built, the actual attributes can be referred to as 

existing characteristics and defined in a product specification 

 

System attributes 



13 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Up-front, stakeholders define what they want the system to 

be 

 “Build-to” attributes that document what the software is supposed 
to do (and what it is supposed to be like) 

 These guide the development of the software 

 And inform the developers about what needs to be built 

 After the system is built, “As-built” attributes document what 

the software actually does 

 What was really built 
 To support maintenance, enhancements, user manuals, … 

 

Time-scale nature of attributes 



14 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Often (usually), they differ 

 Requirements do not end up being implemented exactly as 
originally envisioned 

 Sometimes less than  the attributes that were required 
 Sometimes more than … 

 

Build-to vs As-Built 

What is required 
“build to” 

What the 
SW 
actually 
does 
“as built” 

What was 
not 
implement
ed 

What needed to be changed 



15 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Motivation 

 Terminology 

 IEEE view 

 Requirements and architecture/design 

 Types of requirements 

 Qualities of requirements 

 Creating requirements 

 Verifying requirements 

 Challenges / pitfalls 

 

Agenda 



16 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 IEEE Std. 610.12-1990, IEEE Standard Glossary of Software 

Engineering Terminology 

 (1) A condition or capability needed by a user to solve 
a problem or achieve an objective. 

 (2) A condition or capability that must be met or 
possessed by a system or system component to satisfy 
a contract, standard, specification, or other formally 
imposed documents. 

 (3) A documented representation of a condition or 
capability as in (1) or (2). 

  See also: design requirement; functional requirement; 
implementation requirement; interface requirement; performance 
requirement; physical requirement. 

IEEE definition of “requirement” 

Present – “as-built” 
Crucial distinction 

Future – “build-to” 



17 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 IEEE Std 830-1998 – IEEE Recommended Practice for 

Software Requirements Specifications:  

 “A requirement specifies an externally visible function or attribute 
of a system” 
o We can see inputs and the outputs, but not what happens 

inside 

 For any product (SW, HW, total system), the behavioral 

requirements for that product specify its externally visible 

behavior 

 as seen by other systems outside 

 Specifically, behavioral attributes 

 Important concept 

 This brings in more detailed viewpoints 

 Stay tuned 

A refinement from IEEE Std 830 



18 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Motivation 

 Terminology 

 IEEE view 

 Requirements and architecture/design 

 Types of requirements 

 Qualities of requirements 

 Creating requirements 

 Verifying requirements 

 Challenges / pitfalls 

 

Agenda 



19 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 There is a close relationship between a system’s 

requirements and a system’s architecture 

 Not just in the requirements driving the architecture 

 In fact, developing an architecture is closely related to 

developing requirements 

 Hand-in-hand 

 Failing to recognize this raises risk of inefficiencies 

 Exploiting this relationship opportunities for efficiencies 

System requirements and 
architectures 



20 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Architecture 

 From the Greek  ἄrcitέktwn  

 

 

 
 "The software architecture of a program or computing 

system is the structure or structures of the system, which 
comprise software elements, the externally visible 
properties of those elements, and the relationships among 
them.“  Bass, Clements, Kazman. Software Architecture in 
Practice (2nd edition). Addison-Wesley 2003 

 “The fundamental organization of a system embodied in its 
components, their relationships to each other and to the 
environment and the principles guiding its design and 
evolution.” IEEE-1471  

 chief 
ἄrcς

Workman, 
builder 



21 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

A 

 All requirements are defined in context of a specific item – 

like a “black box” 

 E.g., component, module, system, unit, subsystem  
 

 

 Any specific item may consist of additional internal 

components 

 Each of which has its own attributes/behaviors/interfaces 

 Hence there are multiple levels of requirements based on 

level of component 

 System level, subsystem level, software configuration item (SCI) 
level, component level, software unit level,... 

 Requirements from higher levels are allocated  to components at 
lower levels 

Context of requirements 



22 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Component A “allocated” 

requirements 

Output 
Input 

 Component design (its architecture) consists of: 

 The requirements for behavior of each constituent component 
 The interrelationships between the components 

 Interaction of components produces the behavior of parent 

component  

 Architectural design is the process of defining requirements 

for constituent components, down to the smallest unit 

 AKA allocated requirements 

 

System/software architecture 



23 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

System stimuli responses 

 The system 

 Something that provides services according to what we need 
 Services defined by the system’s behavioral attributes   

o The system’s input and output behavior (its stimuli and 
responses) 

 To build the system, we need to define what is inside of the box 

 

Design 



24 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

System stimuli responses 

stimuli responses 

stimuli 

responses 

Designing the system 



25 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Systemstimuli responsesSystemstimuli responses

stimuli responsesstimuli responses

stimuli

responses

stimuli

responses

 At each stage, system/subsystem/components are 
decomposed into constituent parts 

 The behavior of the system is determined by the aggregate 
behavior of its subsystems 

» The behavior of each subsystem is determined by the aggregate  
behavior of its components 

 and so on “down” to the software code and the hardware 

Levels of design 



26 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 "The software architecture of a program or computing 

system is the structure or structures of the system, which 

comprise  

» software elements,  

» the externally visible properties of those elements, and  

» the relationships among them.“ 

 

 

 

 

 

 

Key points  

The behaviors of the elements 

The interfaces 
and 
interactions 
among the 
elements 



27 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

System 

Users 

External 

systems 

External 

systems 

Component 

A 

Component 

B 

Component 

D 

Component 

C 

 Some system components  

 are visible only internally to system 
 are visible both internally and externally to a system 
 have attributes that are visible only externally to system 

 System behavioral attributes consist of the collection of 

behavioral attributes of its components that have external–

visibility 

 

 

External versus internal requirements 



28 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 The practice of requirements engineering needs to extend 

into and be intertwined with the architectural design 

practices 

 Advantages include the capability of an integrated modeling 

approach 

 The rigor applied as a part of requirements engineering 

assists in clearly establishing the required attributes of the 

successive components and subcomponents 

 The concepts (to be explained in this tutorial) will provide 

effective support to the design process 

Why is this important? 



29 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Motivation 

 Terminology 

 IEEE view 

 Requirements and architecture/design 

 Types of requirements 

 Qualities of requirements 

 Creating requirements 

 Verifying requirements 

 Challenges / pitfalls 

Agenda 



30 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Terminology recap: 

 “Requirements” is a term we use to refer to the set of system 
attributes that customer / users desire for a system to be acquired 

 “Attributes” is a term we use to refer to the characteristics / 
conditions / capabilities of a system 

 We will use “requirements” to denote desired attributes 

 Once the product is built, the as-built attributes need to be 
documented in a product specification 

 and are rarely the same as the initial requirements 

 There are several different types / categories of system 

attributes that we deal with 

 When expressing an acquirers requirements for a system, we 
must ensure that we cover all types to ensure completeness 

Nature of system attributes 



31 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Four major categories 

 Behavioral – address externally-visible behaviors, 
dynamic properties of the product  as seen through the 
component’s interfaces 
o E.g., “shall turn on fan when temperature is greater than 90 

within 2 secs of reaching that temperature zone” 
 Supportability – address working with the product as a 

product – static properties (AKA quality of construction)  
o E.g., maintainability, portability, extensibility 

 Implementation constraints – address design and 
construction attributes, constrain the internals of the 
component 
o E.g., specific architectural styles, specific algorithms 

 Programmatic – address the resources used and other 
non-system-specific elements used to develop and 
maintain the system 

Major categories of system 
requirements 



32 21 Oct 2012 

Types of software system attributes 
Reliability 

Safety 

Availability 

Integrity of operation 

Protection of  

     information Behavioral 

Programmatic 

Ease of learning 

Efficient to use 

Easy to remember 

Forgiving 

…… 

Delivery Schedule 

Cost 

…. 

Functional 

Supportability 

Implementation 

Interface 

Temporal 

Capacity 

Resource 

     utilization 

Trustworthiness 

Usability 

Maintainability 

Portability 

Extensibility 

Reusability 

Integrity of construction 

System 

Attributes 

Performance 



33 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Behavioral attributes 
Reliability 

Safety 

Availability 

Integrity of operation 

Protection of  

     information Behavioral 

Programmatic 

Ease of learning 

Efficient to use 

Easy to remember 

Forgiving 

…… 

Delivery Schedule 

Cost 

…. 

Functional 

Supportability 

Implementation 

Interface 

Temporal 

Capacity 

Resource 

     utilization 

Trustworthiness 

Usability 

Maintainability 

Portability 

Extensibility 

Reusability 

Integrity of construction 

System 

Attributes 

Performance 



34 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Behavioral requirements consist of the product’s externally-

visible behaviors, which can be caused by 

 Externally-supplied stimuli 
 Autonomous (self-generated once activated) 
 Mixed 

 Stimuli provided by the component’s environment 

 Sometimes chaotic and disorganized 
 Sometimes organized and deliberate 
 Sometimes expected and planned 

 Interfaces define what stimuli are “seen” and what 

responses are produced –  

 no interface   no input or output 

Behavioral 

 Sometimes unexpected 
 Sometimes nefarious  



35 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Deal with the interactions between an item and the world 

outside 

 As seen through the its interfaces 

 Express desired externally-visible actions / attributes of the 

item 

 Visibility provided via interfaces which provide the means for  

 Stimulating the item 
 Observing item’s responses 

 

Behavioral attributes 

Input 

Input 

Output 

Output 

Input and Output 



36 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

The world outside - the environment 

External 

Systems 
External 

Systems 
External 

Systems 
External 

Systems Interfaces 

What the component “sees” 

No interface  component 

sees nothing from the plane 



37 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Responses to the world outside 

External 

Systems 
External 

Systems 
External 

Systems 
External 

Systems 



38 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 The interfaces allow interactions with the world outside and 

provide the means for receiving and exporting data 

 To define behaviors, must first define the environment(s) in 

which the component will operate 

 If only part of the environment is defined, surprises will happen 

 Includes defining input data characteristics : 

 Format 
 Time characteristics 

o Frequency of arrival 
o Periodicity of arrival 

 Volume 

 Pitfall: failure to adequate describe the system’s operating 

environment will result in awkward moments 

 “Where did that input come from?” 

Interfaces 

 Range of values 
 Distribution of values 
 Semantics 
 Other characteristics  



39 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Three major types 

 Peer-to-peer  
 User interface 
 Computing infrastructure 

 

Interfaces 

Software 

Element 

External 

Elementa 

External 

Elementb 

Computing 

Infrastructure Peer-to-peer 

interfaces Infrastructure 

interface 

Human-Machine  

interface(s) 

Human 

Element(s) 

External 

Elementa 
External 

Element 

External 

Elementb 
External 

Elementb 
External 

Element 



40 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 The data items that are input 

 The source of the input data – where the data is obtained 

 The format of the input data  (signature) 

 The information content of the input data (semantics) 

 Types of data 
 Data units 
 Data ranges and distributions 
 Precision / accuracy 

 The occurrence patterns of the input data, i.e., the 

operational data environment 

 Arrival timing 
 Data distribution 
 The timing of the input data 

o i.e., the operational data environment 

Defining interface requirements 



41 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Element x x2 

Element x1  x2  x3  x4  x5 (x1+x3)
2 / x5 

time 

 Input-output behavior in terms of responses to stimuli - maps 

data received to data transmitted 

 Output = ƒ(input)  

 Two types 

 Simple I/O (stateless) – this input produces this output, e.g. 
 
 
 
 

 State-based – the history of inputs defines the output, e.g. 
 

Functional attributes 



42 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Off

Know

speed

Ready
Controlling

Suspended

Set-speed / 

Off / Light off

o.w. / 

Initializing

o.w. / 

On / Light on

Off / Light off

o.w. / 

Curr speed / 

In-gear /  

Not-In-gear

/ 

o.w. / 

o.w. / 

Off / Light off

Off / Light off

Car-speed < set-speed /

Increase-throttle-position

Car-speed > set-speed /

decrease-throttle-position

Suspend-cmd or 

out-of-gear or 

brake-pedal-pressed  /  

Resume-cmd / 

Increase-speed-cmd /

Set-speed = Set-speed + 1

Decrease-speed-cmd /

Set-speed = Set-speed - 1

Increasing

Speed

Decreasing

Speed

Car-speed = Set-Speed  / 

Maintain-throttle

Car-speed = Set-Speed  /

Maintain-throttle

Off / Light off

Off / Light off

Suspend-cmd or 

out-of-gear or 

brake-pedal-pressed  /  

Suspend-cmd or 

out-of-gear or 

brake-pedal-pressed  / 

o.w. / 

o.w. / 

 Simple I/O (stateless) – can be defined using tables, 

functions,  

  (a,b,c) = y 

 State-based – can be defined using state machines 

Functional attributes 



43 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Can be complex  

(x1+x3)
2 / x5 

Element x2 

x 

x1  x2  x3  x4  x5 

x1  x2  x3  x4  x5 

x1  x2  x3  x4  x5 

x 

x 

x2 

x2 

x2 

(x1+x3)
2 / x5 

(x1+x3)
2 / x5 



44 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Attributes constrain and characterize the behavior 

 Some associated within individual functional behaviors 

 Some associated with collective functional behaviors 

 Six attributes 

 Inputs - source of the data, via the incoming interface  
 Outputs - the destination of the data, via the outgoing interface 
 Temporal – the timing of the responses - speed, latency, 

throughput 
 Capacity – the amount of processing that can be performed 
 Resource utilization – the computing resources required 
 Trustworthiness – the degree of dependability 
 Usability – the ease of use by operators 

Attributes of functional behavior (1 of 2) 



45 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 All of these six must be addressed to ensure requirements 

are complete 

 Even if they are not “relevant” 
 Often, attributes are not important or not of particular concern 

interest to the users - when specifying requirements, a positive 
response to that fact is required 

 Failure to evaluate them can lead to forgetting to address 

them in the system 

 “Oh. I forget to mention that” 

 Late surprises are costly, often requiring rework 

 

Attributes of functional behavior  (2 of 2)  



46 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 A performance-related requirement 

 Addresses behavior of component regarding time 

 Establishing time characteristics of functional responses 

 Such as: 

 Speed – rate at which response events occur 
o e.g., display refreshed screen every 0.5 sec,   

 Latency (delay) – the time between initiation of a function and its 
completion 
o e.g., time between user hitting key (reception of data) and 

appearance of key stoke effect on display (response) 
o Not the same as speed 

 Throughput – number of items processed (volume) per unit time 
o e.g., process 10,000 database requests per hour 

 

Temporal 



47 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 A performance-related requirement 

 Amount of information that can be handled 

 Defined in terms of 

 System operation – e.g., 25 simultaneous users 
 System data objects 

o e.g., a minimum of 20,000 employee records 
o e.g., a minimum of 1000 tracks 

 

Capacity 



48 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 A performance-related requirement 

 Limitations on execution resources available to the 

component 

 Defined in terms of hardware and other items that provide 

resources to allow the system to operate 

 Examples 

 Memory usage – limits to the amount of memory that can be used, 
in all categories 
o RAM – system can use no more than 100 mb of RAM (volatile 

memory) 
o Disk – system can use no more than 2 tb of disk 
o Non-volatile – system can use no more than 5 mb of read-only 

memory 
 Processor usage – limits to how many processor resources can be 

used 
o “no more than 80% CPU utilization” 

Resource utilization 



49 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Term used to denote two different contexts 

 Execution performance  

 Relates to the behavior of the executing code relative to time, 
space, resources 

 e.g., latency from receipt of input to the time its presence appears 
on a user screen 

 Functional performance 

 Relates to the ability of the system to meet operational objectives 
in terms of its delivery of functional behavior 

 e.g., ability to recognize words within spoken dialog at a specific 
success rate (“required to recognize 99% of all words spoken …”) 

 Both are behavioral 

 Functional performance falls into the Trustworthiness category 
 See next slides 

A word on “performance” 
requirements 



50 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Degree of confidence in product’s delivery of functions 
 Inherently qualitative – cannot be definitively proven but can be 

inferred based on evidence and assurance cases 
 Types 

 Reliability – probability of operation without failure for a specified 
time duration under specified operational environment (e.g., 0.001 
failures/hr) 

 Availability – proportion of time a system is ready for use over a 
defined period of time (e.g., 0.9999999 over 1 year) 

 Safety – avoidance of actions that could lead to harm to humans or 
property 

 Integrity of operation – system features that protects against 
corruption during operation, unauthorized, intentional or 
unintentional 

 Protection of information – features that  protect against 
unauthorized disclosure of information  

 Integrity of information – features that protect against unauthorized 

Trustworthiness (dependability) 



51 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 The ease of system use by an operator 
 Two different flavors based interacting agent -- human or 

other systems 
 When applied to system-to-system interfaces 

 Deals with the complexity of the interfaces, their ease of 
implementation, and their efficiency of operation 

 When applied to human operators 
 Deals with the complexity of the interfaces relative to the how 

operators can operate with them, the ease of learning, and the 
efficiencies with which operators can exploit the services provided 
by the system. 

 Usability requirements cannot be directly verified 
 Involve inherently subjective behaviors that often have to be 

observed over time (e.g., via a usability analysis) 

Usability 



52 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Supportability 
Reliability 

Safety 

Availability 

Integrity of operation 

Protection of  

     information Behavioral 

Programmatic 

Ease of learning 

Efficient to use 

Easy to remember 

Forgiving 

…… 

Delivery Schedule 

Cost 

…. 

Functional 

Supportability 

Implementation 

Interface 

Temporal 

Capacity 

Resource 

     utilization 

Trustworthiness 

Usability 

Maintainability 

Portability 

Extensibility 

Reusability 

Integrity of construction 

System 

Attributes 

Performance 



53 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 AKA Quality of construction requirements  

 Attributes of the product itself and its construction 

 Deals with how product can be handled, not its operation 

 Inherently qualitative – cannot definitively verify 

 Often not directly observable or measurable 

 Measures exist that provide insight into these qualities,  
o Help to infer level of quality based on related quantitative 

system attributes 
 But direct measures do not in general exist 

 Examples: 

 Portability – ease with which component can be ported from one 
platform to another 

 Maintainability – ease with which product can be fixed when 
defects are discovered 

 Extensibility – ease with which product can be enhanced with new 
functionality 

Supportability requirements 



54 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Implementation 
Reliability 

Safety 

Availability 

Integrity of operation 

Protection of  

     information Behavioral 

Programmatic 

Ease of learning 

Efficient to use 

Easy to remember 

Forgiving 

…… 

Delivery Schedule 

Cost 

…. 

Functional 

Supportability 

Implementation 

Interface 

Temporal 

Capacity 

Resource 

     utilization 

Trustworthiness 

Usability 

Maintainability 

Portability 

Extensibility 

Reusability 

Integrity of construction 

System 

Attributes 

Performance 



55 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Restrictions placed on developers that limit design space 

and development process (AKA implementation constraints, 

design constraints) 

 e.g., use of specific software components 
 e.g., imposition of specific algorithms 
 e.g., customer-mandated architectures  
 e.g., imposition of certain development techniques 

 Two general types: 

 Product constraints – restrictions on the product construction 
o Design constraints – restrictions on design / architecture 
o Implementation constraints – restrictions on coding or 

construction 
 Process constraints – restrictions on how the product is built, 

constraints on the processes to be used 

Implementation requirements (1 of 2) 



56 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 An implementation constraint to a system might be a 

requirement to a SW component within that system  

 While these are required characteristics of development 

effort, they are not characteristics of the product’s behavior 

 But will likely affect behavior 

 Examples 

 Use of specific software components 
 Imposition of specific algorithms 

o But sometimes algorithms can be used to define functionality 
 Required use of specific designs 

o Technical architectures 
o Certain internal standards (VME at system level) 

 Imposition of specific coding styles 

Implementation requirements (2 of 2) 



57 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Programmatic 
Reliability 

Safety 

Availability 

Integrity of operation 

Protection of  

     information Behavioral 

Programmatic 

Ease of learning 

Efficient to use 

Easy to remember 

Forgiving 

…… 

Delivery Schedule 

Cost 

…. 

Functional 

Supportability 

Implementation 

Interface 

Temporal 

Capacity 

Resource 

     utilization 

Trustworthiness 

Usability 

Maintainability 

Portability 

Extensibility 

Reusability 

Integrity of construction 

System 

Attributes 

Performance 



58 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Terms and conditions imposed as a part of a contract 

exclusive of behavioral requirements  

 aka contractual requirements 

 Address project environment aspects of product 

development 

 Examples 

 Cost 
 Schedule 
 Organizational structure 

 While these are required characteristics of development 

effort, they are not characteristics of the product 

 But can directly affect ability to achieve product characteristics  
o (not enough time, not enough budget) 

Programmatic (contractual) 
requirements 

» Key people 
» Locations 



59 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 The categories and subcategories are interrelated 

 e.g., Budget and schedule (programmatic) affect what 

functions can be implemented (behavioral) 

 With limited budget, some functional requirements might not be 
possible 

 e.g., Portability (supportability) affects internal design 

(implementation) 

 Need to be able to rehost might negate some implementation 
constraints 
o Required use of a COTS product which does not run on 

VxWorks contradicts a requirement to be able to rehost 
system to a VxWorks environment 

 Performance (behavioral) affects design (implementation)  

 Tight latency requirements might make a required infrastructure 
unusable 

 Behavioral (usability) affects behavioral (interface and 

Interrelationships 



60 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 What about requirements that address the quality of the 

system 

 The quality of a system is directly related to how well it meets its 
requirements 

 But you might say: “Some systems meet all of their 

requirements and are of poor quality” 

 Response: “The requirements for that system are deficient 

and incomplete, ….” 

 Better assertion; 

 The quality of a system is related to 
o The quality of its requirements 
o The degree of adherence of the system to its requirements 
o The suitability of the system to what the users need 

 We sometimes refer to the -ilities 

 

Quality requirements 



61 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Commonly, “requirements” that end with “-ility” are 

classified as quality requirements 

 Reliability, maintainability, portability, extensibility, availability, 
marketability, schedulability,  authenticability, …. yada yada yada 

 However  A lexical similarity does not mean that there is a 

semantic similarity 

 Just because a word ends with -ility does not mean that it has a 
similar effect on a system’s requirements 

 Some deal with behavior, some deal with construction, some 

deal with manageability 

 Should not be classified and handled together and alike 

 

The “-ilities” 



62 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Sampling of -ilities 

Abability Abatability Abbreviability Abdicability Abdominability Aberrationability 

Ability Ablability Abnegability Abnormability Abolishability Abominability 
Aboriginability Abradability Abrogability Absorp tionability Abstractability Abstractionability 

Abusability Abysmability Academicability Accelerability Accentuability Acceptability 

Accessibility Accessionability Accidentability Acclimability Acclimatizability Accommodability 

Accomplishability Accountability Accreditability Accruability Acculturationability Accumulability 
Accurability Accusability Accusatoriability Acerbability Acetability Acousticability 

Acquirability Acquittability Acrobaticability Acrosticability Actability Actionability 

Activability Actuability Actuariability Adaptability Adaptationability Additionability 

Adequability Adhesionability Adjectivability Adjudicability Adjust ability Administrability 
Administrationability Admirability Admissibility Adoptability Adorability Adrenability 

Adsorb ability Adulability Adulterability Adumbrability Adverbiability Advisability 

Advocability Aerability Aeriability Aeronauticability Aestheticability Aestivability 

Affability Affectionability Affiliability Affirmability Affordability Agability 
Agglomerability Agglutinability Aggrandizability Aggravability Aggregability Agility 

Agitability Agonizability Agreeability Agriculturability Alchemicability Alienability 

Alkalinizability Alkaloidability Allegoricability Alleviability Alliterability Allocability 

Allowability Alluviability Alphabeticability Alphabetizability Altercability Alternability 
Amalgamability Ambrosiability Ambulability Ameliorability Amenability Amendability 

Americanizability Amiability Amicability Amorability Amortizability Amputability 

Anaesthetizability Analogicability Analogizability Analyticability Anarchicability Anathematizability 

Anatomicability Anatomizability Ancestrability Anecdotability Anesthetizability Angelicability 
Anginability Anglicizability Anglophility Animability Anneability Annihilability 

Annotability Annuability Annunciability Answerability Antagonizability Antedability 

Antenatability Antepenultimability Anthropologicability Anticipability Anticlimacticability Antiphonability 

Antipodability Antiquability Antisociability Antrability Apocalypticability Apocryphability 
Apoliticability Apologizability Apost ability Apostrophizability Appability Appeability 

Appellability Applicability Appraisability Appreciability Apprizability Approachability 

Approbability Appropriability Approvability Approximability Arability Arbitrability 

Arboreability Archaeologicability Archiepiscopability Architecturability Arguability Arithmeticability 
Armoriability Arousability Arrivability Arrogability Arsenability Arsenicability 

Arteriability Articulability Artificiability Ascertainability Ascribability Asexuability 

Asp hyxiability Assailability Assass inability Asseverability Assi gnability Assimilability 

Assizability Associability Assurability Astrability Astrologicability Astronauticability 
Astronomicability Asymmetricability Atomizability Atonability Atriability Attainability 

Attenuability Attitudinizability Attributability Atypicability Auctoriability Audibility 

Audiophility Audiovisuability Auditability Aurability Aureability Austrability 

Authenticability Authorizability Autobiographicability Automability Automatizability Automobility 
Autumnability Availability Avoidability Avowability Awhility Axiability 

Bability Baccalaureability Bacteriability Bactericidability Bacteriologicability Baizability 

Banability Baptismability Baptizability Barbiturability Baroniability Basability 

Bearability Beguility Behaviorability Believability Beneficiability Benzoability 
Berability Bestiability Bestowability Betrayability Betrothability Biannuability 

Bibility Biblicability Bibliographicability Bibliophility Bicamerability Bicarbonability 

Bienniability Bifocability Bifurcability Bilaterability Bilinguability Bility 

Billability Billingsgability Binaurability Binomiability Biochemicability Biographicability 
Biologicability Biraciability Birthrability Bisectionability Bisexuability Bloodmobility 

Bookmobility Bookplability Boreability Botanicability Botanizability Bowdlerizability 

Breakability Breastplability Bridability Bridgeability Bronchiability Brutability 

Burglarizability Buriability Cabability Cability Calculability Calibrability 
Caliphability Callability Calumniability Camomility Campanility Camphorability 

Canability Canalizability Candidability Cannibability Cannibalizability Canonicability 

Canonizability Cantability Cantonability Capability Capacitability Capitability 

Capitalizability Capitulability Capsizability Capsulability Captivability Carbohydrability 
Carbonability Cardinability Cardinalability Carnability Carnivability Carousability 

Castigability Castrability Casuability Casuisticability Catarrhability Catechizability 

Categoricability Categorizability Cathedrability Caudability Causability Cauterizability 

Cecability Celebrability Celestiability Celibability Censoriability Censurability 
Centenniability Centrability Centralizability Centrifugability Centripetability Cereability 

Cerebrability Ceremoniability Certificability Chamomility Changeability Channelizability 

Characterizability Charcoability Chargeability Charitability Cheapskability Checkmability 

Chelability Chemicability Chewability Chility Chimericability Chlorability 
Chlorinability Chocolability Chorability Christianizability Chronologicability Circulability 

Circularizability Circumambulability Circumnavigability Circumstantiability Civilizability Classicability 

Classicizability Classmability Clericability Climability Clinicability Cloistrability 

Closability Coability Coagulability Coastability Coaxiability Cochineability 
Coeducationability Coequability Coevability Cogitability Cognability Cognitionability 

Coincidentability Collability Collaborability Collapsibility Collaterability Collectability 

Collectibility Collegiability Colloidability Colloquiability Coloniability Colonizability 

Colossability Combinability Combustibility Comestibility Comfortability Comicability 
Commemorability Commendability Commensurability Commerciability Commercializability Commiserability 

Committability Commonility Commonweability Communability Communicability Companionability 

Comparability Compartmentalizability Compassionability Compatibility Compensability Compility 

Complicability Comprehensibility Computationability Concatenability Conceability Conceivability 
Concentrability Conceptuability Conciliability Conditionability Confabulability Confederability 

Confessionability Confidentiability Confiscability Conformability Congeability Congeniability 

Congenitability Conglomerability Congratulability Congregability Congregationability Congressionability 

Conicability Conjecturability Conjugability Connubiability Consecrability Consequentiability 
Considerability Consolidability Consonantability Constability Constipability Constitutionability 

Consulability Consummability Contaminability Contemplability Contemptibility Continentability 

Continuability Contractility Contractuability Contrapuntability Controversiability Controvertibility 

Conventionability Conventionalizability Conventuability Conversationability Convertibility Conviviability 
Cooperability Coordinability Copulability Corability Cordiability Corneability 

Cornmeability Coronability Corporability Corporeability Corrability Correlability 

Correctness Corroborability Corrugability Corruptibility Corticability Coruscability 

Cosmologicability Countability Court-martiability Courts-martiability Crability Craniability 
Creability Credentiability Credibility Creditability Cremability Crenelability 

Crenellability Criminability Criminologicability Criticability Criticizability Crocodility 

Cross-pollinability Cruciability Crucibility Crystability Crystallizability Cubicability 

Culminability Culpability Cultivability Cultivatability Culturability Cumulability 
Curability Cylindricability Cymbability Cynicability Dability Damnability 

Danceability Deability Deactivability Debability Debatability Debilitability 

Decability Decapitability Decelerability Decentralizability Decility Decimability 

Crenellability Criminability Criminologicability Criticability Criticizability Crocodility 

Cross-pollinability Cruciability Crucibility Crystability Crystallizability Cubicability 
Culminability Culpability Cultivability Cultivatability Culturability Cumulability 

Curability Cylindricability Cymbability Cynicability Dability Damnability 

Danceability Deability Deactivability Debability Debatability Debilitability 

Decability Decapitability Decelerability Decentralizability Decility Decimability 
Decipherability Declinability Decontaminability Decorability Dedicability Deducibility 

Deductibility Defecability Defensibility Deferentiability Defility Definability 

Deflability Defrayability Degenerability Dehumanizability Dehydrability Delectability 

Delegability Deliberability Delicability Delineability Demagnetizability Demarcability 
Demilitarizability Demobilizability Democratizability Demonetizability Demoniacability Demonstrability 

Demoralizability Deniability Denigrability Denominability Denominationability Dentability 

Deodorizability Departmentability Dependability Deplorability Depopulability Deprecability 

Depreciability Depredability Deputizability Derogability Describability Desecrability 
Desegregability Desiccability Designability Desirability Desolability Desperability 

Despicability Destructibility Detachability Detectability Deteriorability Determinability 

Detestability Detonability Detrimentability Devaluability Devastability Deviability 

Devitalizability Devotionability Diability Diabolicability Diacriticability Diagonability 
Diagrammaticability Dictability Dictatoriability Differentiability Digestibility Digitability 

Dilability Dimensionability Directionability Dirigibility Disability Disagreeability 

Disapprovability Disassoci ability Disavowability Discernibility Discombobulability Disconsolability 

Discountability Discreditability Discriminability Discussability Dishonorability Disintegrability 
Dislocability Disloyability Dismability Dismissability Disorganizability Disparability 

Dispassionability Dispensability Dispersability Displayability Disposability Disproportionability 

Disput ability Disreputability Disseminability Dissimulability Dissipability Dissociability 

Distinguishability Diurnability Divagability Divisibility Divisionability Docility 
Doctorability Doctrinability Domesticability Domicility Dominability Donability 

Doorpl ability Dorsability Dramatizability Drinkability Dropsicability Duability 

Ducability Ductility Duodenability Duplicability Durability Dutiability 

Eatability Ecclesiasticability Ecologicability Economicability Economizability Ecumenicability 
Edibility Editoriability Educability Educationability Effaceability Effectuability 

Effeminability Efficiency Egoisticability Egotisticability Ejaculability Elability 

Elaborability Electorability Electricability Electroplability Elementability Elevability 

Eligibility Eliminability Ellipticability Elongability Elucidability Emaciability 
Emanability Emancipability Emasculability Emblematicability Embraceability Embryologicability 

Emigrability Emotionability Emphasizability Empiricability Emulability Emulsifiability 

Enability Encapsulability Encyclicability Endurability Energizability Enervability 

Enforceability Enigmaticability Enjoyability Ensility Ensuribility Entomologicability 
Enumerability Enunciability Enviability Environmentability Ephemerability Epidermability 

Episcopability Epitheliability Epitomizability Epochability Equability Equalizability 

Equatoriability Equilaterability Equinoctiability Equitability Equivocability Eradicability 

Erstwhility Esophageability Especiability Espousability Essentiability Estability 
Estimability Eternability Ethereability Ethicability Etymologicability Eulogizability 

Evacuability Evaluability Evangelicability Evangelizability Evaporability Eventuability 

Eviscerability Exacerbability Exaggerability Exasperability Excavability Exceptionability 

Exchangeability Excitability Excogitability Excommunicability Excoriability Exculpability 
Excusability Execrability Executability Exhilarability Exility Existentiability 

Exonerability Expandability Expatiability Expatriability Expectorability Expendability 

Experientiability Experimentability Expiability Explicability Exponentiability Exportability 

Expostulability Expropriability Expurgability Extemporizability Extendability Extenuability 
Exterminability Externability Extinguishability Extirpability Extortionability Extractability 

Extramurability Extraoperability Extrapolability Extraterritoriability Extricability Exudability 

Fability Fabricability Faciability Facilitability Facility Facsimility 

Factuability Faecability Fallibility Familiability Familiarizability Fanaticability 
Fantasticability Farcicability Fascinability Fashionability Fatability Fathomability 

Faunability Favorability Feasibility Febrility Fecability Fecundability 

Federability Federalizability Felicitability Fertility Fertilizability Festability 

Festivability Fetability Feudability Fictionability Filiability Fility 
Filterability Filtrability Finability Finalizability Financiability First-rability 

Fiscability Fissi onability Flagellability Flammability Flexibility Florability 

Fluctuability Fluoridability Flyability Foability Focability Foetability 

Foibility Forcemulticability Forcibility Foreseeability Forgivability Formability 
Formalizability Formidability Formulability Fortunability Fossilizability Foundationability 

Fractionability Fragility Frangibility Fraternability Fraternizability Friability 

Frictionability Frigability Frontability Frugability Frustrability Fulminability 

Fumigability Functionability Fundamentability Funerability Funereability Fungicidability 
Fusib ility Futility Gability Galvanizability Gastronomicability Genealogicability 

Generability Generalizability Geniability Genitability Gentility Geographicability 

Geologicability Geometricability Germicidability Germinability Gestability Gesticulability 

Glaciability Gladiatoriability Glamorizability Glamourizability Gleanability Globability 
Glossariability Glottability Goability Gonorrhe ability Gormandizability Gourmandizability 

Governability Governmentability Grability Graduability Grammaticability Granulability 

Graphicability Gravitability Gravitationability Gubernatoriability Guility Gullibility 

Gutturability Gynecologicability Gyrability Habilitability Hability Habitability 
Habituability Hallucinability Hardenability Harmonizability Heability Helicability 

Helpmability Hemisphericability Herbicidability Hereticability Heritability Hermeticability 

Herniability Heroicability Hesitability Heterosexuability Hexagonability Hibernability 

Hierarchicability Hillbillity Historicability Homicidability Homogenizability Homosexuability 
Honorability Horizontability Hormonability Horologicability Horribility Horticulturability 

Hospit ability Hospitalizability Hostility Humanizability Humerability Humiliability 

Hybridizability Hydrability Hymeneability Hymnability Hypercriticability Hyphenability 

Hypnotizability Hypocriticability Hypothecability Hypothesizability Hypotheticability Hystericability 
Ice-skability Ideability Idealizability Identicability Identifiability Ideologicability 

Idolizability Illegability Illegibility Illegitimability Illiberability Illimitability 

Illiterability Illogicability Illuminability Illustrability Imaginability Imbecility 

Imbricability Imitability Immaculability Immateriability Immeasurability Immediability 
Immemoriability Immigrability Immiscibility Immitigability Immobility Immobilizability 

Immoderability Immolability Immorability Immortability Immortalizability Immovability 

Immunizability Immutability Impalpability Impartiability Impassability Impassibility 

Impeccability Impenetrability Imperceptibility Imperiability Imperishability Impermeability 
Impersonability Imperturbability Implacability Implausibility Implicability Imponderability 

Importunability Impossibility Impracticability Imprecability Impregnability Impressibility 

Impressionability Improbability Inaccessibility Inaccurability Inactivability Inadequability 

Inalienability Inanimability Inappreciability Inappropriability Inarticulability Inaudibility 

Inaugurability Incalculability Incapability Incapacitability Incarcerability Incarnability 
Inchoability Incidentability Incinerability Inclinability Incommensurability Incommunicability 

Incomparability Incompatibility Incomprehensibility Incompressibility Inconceivability Inconsequentiability 

Inconsiderability Inconsolability Incontestability Incontrovertibility Incorporability Incorporeability 

Incorrigibility Incorruptibility Incredibility Incriminability Incubability Inculcability 
Inculpability Incurability Indecipherability Indeclinability Indefatigability Indefinability 

Indelibility Indelicability Indescribability Indestructibility Indeterminability Indicability 

Indigestibility Indiscriminability Indispensability Indisputability Indistinguishability Individuability 

Individualizability Indivisibility Indoctrinability Indomitability Indubitability Industriability 
Industrializability Inebriability Ineducability Ineffability Ineffaceability Ineffectuability 

Ineligibility Ineluctability Inertiability Inescapability Inestimability Inevitability 

Inexcusability Inexhaustibility Inexorability Inexpiability Inexplicability Inexpressibility 

Inextricability Infallibility Infantility Infatuability Infernability Infertility 
Infiltrability Infinitesimability Inflability Inflammability Inflatability Inflectionability 

Inflexibility Influentiability Informability Informationability Infuriability Infusibility 

Ingrability Ingratiability Inhabitability Inhospitability Inimicability Inimitability 

Initiability Initializability Inmability Innability Innominability Innovability 
Innumerability Inoculability Inoperability Inordinability Insatiability Inscrutability 

Insensability Insensibility Inseparability Insinuability Insolvability Inspirationability 

Instability Instigability Institutionability Institutionalizability Instrumentability Insubordinability 

Insubstantiability Insufferability Insulability Insuperability Insupportability Insurability 
Insurmountability Intangibility Integrability Integrity Intellectuability Intelligibility 

Intemperability Intentionability Intercalability Interchangeability Intercollegiability Intercontinentability 

Interdenominationability Interdepartmentability Intermediability Interminability Internability Internationability 

Internationalizability Interpolability Interraciability Interrelability Interrogability Interstability 
Interstitiability Intertidability Intervability Intestability Intestinability Intimability 

Intimidability Intolerability Intoxicability Intractability Intramurability Intrastability 

Intricability Intrinsicability Inundability Invalidability Invaluability Invariability 

Invertebrability Investigability Inveterability Invigorability Invincibility Inviolability 
Invisibility Invulnerability Irability Irascibility Ironicability Irradiability 

Irrationability Irreclaimability Irreconcilability Irrecoverability Irredeemability Irreducibility 

Irrefragability Irrefutability Irremediability Irremovability Irreparability Irreplaceability 

Irrepressibility Irreproachability Irresistibility Irresponsibility Irretrievability Irreversibility 
Irrevocability Irrigability Irritability Isolability Italicizability Itemizability 

Iterability Jackability Jeopardizability Journability Jovi ability Judiciability 

Juridicability Jurisdictionability Justifiability Juvenility Karability King-sizability 

Knowability Knowledgeability Kraability Labiability Lability Lacerability 
Lachrymability Lackadaisicability Lacrimability Lactability Lacteability Lamentability 

Laminability Larvability Laryngeability Laterability Laudability Laughability 

Laureability Legability Legalizability Legibility Legislability Legitimability 

Lethability Levitability Lexicographicability Liability Liberability Liberalizability 
Libidinability Licentiability Likability Likeability Lineability Linguability 

Lionizability Liquidability Literability Litigability Liturgicability Livability 

Liveability Locability Localizability Logicability Longitudinability Lovability 

Loveability Loyability Lubricability Lustrability Luxuriability Lyricability 
Mability Macadamizability Macerability Machinability Madrigability Magicability 

Magisteriability Magistrability Magnability Magnetizability Maintainability Maizability 

Majesticability Malariability Malleability Mammability Manageability Manageriability 

Mandability Mandibility Maniacability Manipulability Manoriability Manuability 
Marginability Marinability Maritability Marketability Marmoreability Marriageability 

Marshability Marsupiability Martiability Masticability Masturbability Materiability 

Materializability Maternability Mathematicability Matriarchability Matriculability Matrimoniability 

Maturability Matutinability Maximability Mayorability Meability Meanwhility 
Measurability Mechanicability Mechanizability Medability Mediability Mediaevability 

Medicability Medicinability Medievability Meditability Meliorability Memorability 

Memoriability Memorializability Memorizability Meniability Mensability Menstruability 

Mensurability Mentability Mercantility Mercerizability Merchandizability Merchantability 
Mercuriability Mesmerizability Messmability Metability Metabolizability Metalloidability 

Metallurgicability Metaphoricability Metaphysicability Meteorologicability Methodicability Methodizability 

Metricability Miasmability Microbiability Microscopicability Migrability Migrationability 

Militability Militarizability Mility Minerability Mineralogicability Minimability 
Minimizability Ministeriability Misappropriability Miscalculability Miscibility Miserability 

Misfility Missability Missility Misstability Mistakability Mistrability 

Mistriability Mitigability Mixability Mobility Mobilizability Modability 

Moderability Modernizability Modifiability Modul ability Monarchicability Monasteriability 
Monaurability Monol inguability Monopolizability Monosyllability Monumentability Morability 

Moralizability Morphologicability Mortability Motility Motivability Motorizability 

Mount ability Movability Moveability Multinationability Municipability Murability 

Musicability Musicologicability Mutability Mutationability Mutilability Mutuability 
Mycologicability Mysticability Mythicability Mythologicability Nameability Nameplability 

Narcotizability Narrability Narwhability Nasability Nasopharyngeability Natability 

Natatoriability Nationability Nationalizability Naturability Naturalizability Nauseability 

Nauticability Navability Navigability Neanderthability Nebulizability Necessitability 
Negability Negligibility Negotiability Neoclassicability Neonability Neonatability 

Neurability Neurologicability Neutrability Neutralizability Nitrability Nocturnability 

Nominability Noncommittability Nonmetability Nonsensicability Normability Normalizability 

Notability Notariability Notarizability Noticeability Notionability Novelizability 
Novitiability Nubility Numerability Numericability Nuptiability Nutritionability 

Oatmeability Obdurability Obfuscability Objectionability Objurgability Oblability 

Obligability Obliterability Observability Obstetricability Obstinability Obtainability 

Obviability Occasionability Occidentability Occipitability Occupationability Octagonability 
Offability Officiability Ofuscatability Oligarchicability Opability Operability 

Operationability Opiability Opposability Opticability Optimability Optionability 

Orability Oratoricability Orbitability Orchestrability Ordeability Ordinability 

Organizability Organizationability Orientability Originability Ornability Ornamentability 
Ornithologicability Oscillability Osculability Ostensibility Ostracizability Out-of-dability 

Outgenerability Outsizability Ovability Overemphasizability Overloadability Overrability 

Oversizability Overstability Ovulability Oxidizability Pability Palability 

Palatability Palatiability Palliability Palmability Palpability Palpitability 
Papability Parability Paradisiacability Paradoxicability Parasitizability Pardonability 

Parentability Parentheticability Parietability Parochiability Paroxysmability Partiability 

Partibility Participability Participiability Particularizability Passability Passionability 



63 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Interrelationships 

programmatic 

manageability 

implementation behavioral 

 



64 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Motivation 

 Terminology 

 IEEE view 

 Requirements and architecture/design 

 Types of requirements 

 Qualities of requirements 

 Creating requirements 

 Verifying requirements 

 Challenges / pitfalls 

 

Agenda 



65 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

* IEEE Recommended Practice for  

   Software Requirements Specifications 

 IEEE Std 830-1993* defines nine qualities for requirements 

specifications 

 Complete – All external behaviors are defined  
 Unambiguous – Every requirement has one and only 

one interpretation 
 Correct – Every requirement stated is one that software 

shall meet 
 Consistent – No subset of requirements conflict with 

each other 
 Verifiable – A cost-effective finite process exists to 

show that each requirement has been successfully 
implemented 

 Modifiable – SRS structure and style are such that any 
changes to requirements can be made easily, 
completely, and consistently while retaining structure 

IEEE Qualities of requirements (1 of 2) 



66 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 IEEE Std 830-1993 qualities of requirements (cont’d) 

 Traceable – Origin of each requirement is clear,  
structure facilitates referencing each requirement within 
lower-level documentation 

 Ranked for importance – Each requirement rated for 
criticality to system, based on negative impact should 
requirement not be implemented 

 Ranked for stability – Each requirement rated for 
likelihood to change, based on changing expectations 
or level of uncertainty in its description  

 These qualities are associated with how the requirements 

are defined and documented 

 Failure to assess requirements against these criteria raises 

risk of subsequent problems  

IEEE Qualities of requirements  (2 of 2) 



67 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Maturity level – a measure of how well the requirement 

meets key qualities 

 Requirements generally mature over time 

 As we learn more about what we want the system to do 
 Important to understand the maturation path as a system is 

developed 

 Key factors: 

 Correctness 
o Does the requirement express a product attribute that is 

needed? 
o Are we certain, or are we guessing / approximating? Is it 

accurate? 
 Unambiguity (specificity) 

o Does the requirement express a precise attribute that cannot 
be interpreted in more than one way? 

o Would a programmer know exactly what code to write to 
satisfy the requirement? 

Requirements maturity 



68 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Not always possible to determine up-front 

 Independent of ambiguity 

 Criterion: does the requirement express an attribute that 

needed for the product? 

 E.g. 

 “The elevator shall stop smoothly at each floor” 
 Clearly ambiguous and vague, but certainly desirable and correct 

 E.g. 2 

 “Upon receipt of signal from the temperature sensor that indicates 
the temperature is greater than 110° C, the system shall initiate a 
shutdown of the burner unit within 0.1 sec.”  

 Precise and unambiguous, but it turns out that 140° C is the critical 
temperature and 1 sec is the shutdown tolerance. 

 Hence, incorrect. 

Correctness / accuracy 



69 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Requirements generally start at lower left and hopefully 

progress towards upper right of maturity graph 

 Far too often the ambiguity is decided by the programmers 

while writing code, resulting in less-than-optimal 

interpretation of requirement 

Maturity path 

Le
ve

l o
f u

na
m

bi
gu

ity
 Level of correctness 

High 

Low 

Low High 

Desired path 



70 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 These are additional requirements that are created to 

 Support the baseline requirement(s) by providing necessary detail 
 Expand on the baseline requirements with additional behaviors 

 Derived requirements provide a mechanism to achieve 

maturity 

 Note that they refer to the same component as the baseline 

requirements 

 They are not allocated to lower-levels of the architecture 

Derived requirements 

Derived requirements 

Baseline requirement 



71 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Level of detail may vary 

 Ranges from vague and general to very specific (& directly 
testable) 
o The system shall require authentication for all users to gain 

access (vague) 
o Users shall enter their username followed by their password to 

gain access to the system (more concrete) 

 At some point, the detail will be defined, either  

 informally by the programmer and perhaps neither documented 
nor reviewed/approved, or  

 Formally and documented prior to and during implementation 

 Important note - if the detail addresses externally visible 

behavior, it will never be design  

 Design is internal to the component 
 If it addresses externally visible behavior, it is always a 

“requirement” 

Concreteness property for 
requirements 



72 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Each and every requirement defined at each level must be 

 Based on a requirement at next higher-level  (else it has no reason 
to exist) 

 Supported by a requirement/design feature at next lower-level 
(else it will not be achieved) 

 Hence all requirements are derived 

 Sometimes mapping is simple (1–1 or 1–few) 

 Sometimes mapping is complex and/or indirect (1–to–many 

or  many–to–1) 

 Use of automated tools recommended 

Requirements tracing 



73 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Motivation 

 Terminology 

 IEEE view 

 Requirements and architecture/design 

 Types of requirements 

 Qualities of requirements 

 Creating requirements 

 Verifying requirements 

 Challenges / pitfalls 

 

Agenda 



74 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 A discipline all its own 

 Must consider all aspects of the system and its environment, 

such as: 

 Feasibility to effectively and efficiently build system 
o Requires knowledge of hardware, software, and people  

 Fitness for purpose 
o Requires knowledge of operational domain 

 Adoption of potentially reusable elements (including upgrades to 
existing systems) 
o Requires knowledge of precedent assets and how their specs 

will affect requirements 
 Relationship to other interacting elements in the environment 

o Requires knowledge of existing and emerging systems  
 Ability to elicit, listen, and interpret 

Requirements engineering 



75 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Defining requirements must involve all affiliated subject-

matter experts (SMEs) – risk otherwise 

 Cannot allocate to and define requirements for system 

elements unless you consider what the engineers who will 

build these elements need 

 Hardware, software, operator interactions  
 Incl. domain experts (radar, thermal, legal, sonar, guidance, 

accountants, …) 

 Hence, requirements engineers must be involved from the 

beginning 

 Once requirements allocated to SW components, SW 
requirements analysis (SRA) needed to derive specific SW 
requirements and  place into form suitable for implementation 

In particular… 



76 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Different techniques/processes are used 

 ad hoc techniques 
 Functional techniques 
 Object-oriented techniques 

 New processes arrive every day 

 Agile Unified Process 
 Extreme Programming 
 Cleanroom Software Engineering 

 Many tools exist 

 DOORS, Analyst Pro, Rational Rose 

 All should produce the same result – a description of 

behavior of the system and all other desired attributes 

 Important to select technique to be appropriate to system 

Requirements analysis techniques 



77 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Booch, Rumbaugh, Jacobson. The Unified Modeling 

Language Users Guide: 

 “A use case specifies the behavior of a system or part of a system 
and is a description of a set of sequences of actions, including 
variants, that a system performs to yield an observable result of 
value to an actor” 

 “A use case describes what a system ... does but it does not 
specify how it does it.” 

 Can be misleading 

 Provide some information about behavioral requirements 

but not at level of detail sufficient for development 

 Use cases are important to requirements definition 

 Especially in the form of scenarios 
 Help to describe how system will be used 
 How various capabilities and functions will be used together 

(“Threads”, scenarios) 

A note on Use cases and 
requirements 



78 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Scenarios to functional attributes 

Scenarios 
Use cases 
Threads 

Scenarios 
Use cases 
Threads 

Scenarios 
Use cases 
Threads 

Scenarios 
Use cases 
Threads 

Scenarios 
Use cases 
Threads 

Functional 
attributes 



79 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Need – why is the system needed? What role will the system 

play?  

 Operational environment – what is the environment in which 

the system will operate? 

 Strategy for satisfying need – given the environment, how is 

it expected that the system will support the needs? 

 System capabilities to implement strategy – what does the 

system need to do to satisfy need? 

 Usage profile – how will the system be used? 

 Technical requirements – what specific behaviors will the 

system provide to deliver desired capabilities? 

 

Key information needed for 
requirements 



80 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Key factors in defining requirements 

Need 

Operational 

environment 

Strategy 

Capabilities 

Usage/ 

scenarios 

Technical 

requirements 

External

Systems
External

Systems
External

Systems
External

Systems



81 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Understand user needs via active requirements elicitation 

 Characterize the operational environment 

 Define a strategy for fulfilling user needs 

 If strategy involves building a system: 

 Derive necessary system capabilities based on needs and strategy 
o Involve users, develop scenarios that cover needs 

 Define scenarios depicting how users will employ the system to 
fulfill needs 
o Include low likelihood as well as common situations 

 Use scenarios to derive specific required attributes 
o Incl behavioral, implementation, programmatic, and 

manageability 
 Apply same techniques throughout system design 
 Continue to revisit required attributes as understanding matures 
 Document attributes throughout, until completed 

Crucial steps 

Need

Operational

environment

Strategy

Capabilities

Usage/

scenarios

Technical

requirements

External

Systems
External

Systems
External

Systems
External

Systems

Scenarios

Use cases

Threads

Scenarios

Use cases

Threads

Scenarios

Use cases

Threads

Scenarios

Use cases

Threads

Scenarios

Use cases

Threads
Functional

attributes



82 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Important to understand how we get to the requirements 

Requirements “life cycle” 

Major

Component

Requirements

Major

Component

Requirements

Major

Component

Requirements

Major

Component

Requirements

Major

Component

Requirements

Mission

needs

Overall system

concept

Operational

Requirements

System

Requirements

System

Design

Why system is needed, what the overall problem is

Role of the system(s) in solving the problem

Capabilities system needs to solve the problem

Functions necessary to achieve capabilities

Overall design of system, 

including CIs that are used 

to build system

a n a l y
s
i
s

a n a l y
s
i
s

a n a l y
s
i
s

a n a l y
s
i
s

a n a l y
s
i
s

System

definition

System design

Software

development



83 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Each step involves deciding between alternative approaches 

 Continual refinement of system behavior 

 Decisions based on many constraints 

 Schedule/budget, staffing, risk, operator preferences, alignment to 
mission, reused components, ... 

Decision points for requirements 
definition 

Requirements selected represent one 
possible approach to delivering 
capabilities – not unique 



84 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 As the requirements mature through their life cycle, they 

cross the spectrum from 

 Mission and operational context  
 To 
 Specific, detailed behaviors 

 

 

Requirements spectrum 

Requirements spectrum 

Capabilities 
The kinds of 
things that the 
system needs to 
do in order to 
support the 
mission 

General 
Requirements 
The behaviors that the 
system needs to 
implement in order to 
deliver the capabilities 

Detailed 
Requirements 
Very specific 
definition of 
input/output 
behaviors 
 

Mission 
And Roles 



85 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 “The system shall have the capability of reading the room 

temperature sensor and adjusting the heat in the room to 

correspond to the desired setting” 

  Just because it has the capability does not mean that it has 

to 

 Most people have the capability of adjusting the thermostat if the 
room is too cold.  They may just decide not to do so. 

 The system meets the requirement if: 

 It adjusts the heat 2 days later 
 It adjusts the heat to within ±10º  
 It reads your mind and guesses what the desired setting is 

 Defining capabilities useful in early stages 

 On way to defining more specific required attributes  
 Need to mature these to be more specific as development 

proceeds 
 

“Capability” 



86 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Motivation 

 Terminology 

 IEEE view 

 Requirements and architecture/design 

 Types of requirements 

 Qualities of requirements 

 Creating requirements 

 Verifying requirements 

 Challenges / pitfalls 

Agenda 



87 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Systems are verified to determine overall acceptability 

 Is the system suitable for operation? 
o Despite any identified shortcomings 

 While building a system, continual tradeoffs need to be 

performed to reconcile actual attributes to desired attributes 

 Systems rarely implement every requirement 

 Trades to be based on acceptability framework 

 All requirements to be evaluated against 

 How realized in developed product (complete, partial) 
 Priority (importance) of each requirement 
 Overall fitness for use 

 Best practice is to create a requirements verification matrix 

(RVM) 

 Where each requirement is mapped to a verification approach 

Verification / validation 



88 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Acceptability framework 

F
it

n
es

s 
fo

r 
p

u
rp

o
se

 

Reliability 

Safety 

Availability 

Integrity of operation 

Protection of  

     information Behavioral 

Programmatic 

Ease of learning 

Efficient to use 

Easy to remember 

Forgiving 

…… 

Delivery Schedule 

Cost 

…. 

Functional 

Supportability 

Implementation 

Interface 

Temporal 

Capacity 

Resource 

     utilization 

Trustworthiness 

Usability 

Maintainability 

Portability 

Extensibility 

Reusability 

Integrity of construction 

System 

Attributes 

Performance 



89 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Requirements and verification 

 Each and every requirement needs to be verified  

 That is, need to be able to construct a valid argument that the 
requirement has been satisfied by the as-built system 

 Argument needs to be supported with sufficient objective 
evidence 

 A requirement is verifiable if such an argument can be 

constructed 

 There are multiple techniques to construct these 

arguments 

 Each type of requirement may require the application of 

multiple techniques to provide a full, sufficient argument 

 When defined, each requirement must be correlated to the 

approach(s) to be used to verify that requirement 

 Note that ALL requirements need to be verified 

 Even if not behavioral 



90 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Verification techniques 

 We define five types of verification techniques (note that this 

list is not necessarily the same as used elsewhere) 

 Test 
 Product analysis 
 Inspection  
 Demonstration 
 Process analysis 

Verification techniques 

Test Product 

Analysis 

Inspection Demonstration Process 

Analysis 

Definitive Analytic 



91 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Verifying requirements – test 

 With test, we execute the product, challenge with stimuli, 

and observe behavior (responses) 

 Collect the responses 
 Compare responses to desired responses (oracle) to determine 

degree of adherence 
 Desired responses specified by the requirement statement 

 Execution environment may include actual operational 

environment of product  

 May also include simulations of other systems in the environment 



92 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Two types of test based on the ability to determine 

conformance to requirements: 

 Definitive 
o Results are quantitative 
o Can be compared directly to the requirements 
o Results can be stated as pass/fail 

 Analytic  
o For requirements that cannot be definitively verified 

− Mathematical and other forms of analysis must be used to make 
an argument for compliance.  

o Test results from one or more tests may support an argument 
for either pass or fail, but do not provide an absolute 
determination of conformance.  

o Such arguments serve to establish the levels of trust that can 
be placed on the system’s performance 

Categories of test 



93 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Product is not executed (not tested) 

 System attributes evaluated analytically, often supported 

mathematically 

 e.g., RMA (Rate Monotonic Analysis) 
 e.g., architecture analysis 

 Results used to create arguments of compliance for those 

requirements that are inherently non-deterministic 

 dependability  
 to establish levels of trust 

 

Verifying requirements – product 
analysis 



94 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Product is manipulated to demonstrate that it satisfies a 

quality of construction requirement 

 Such requirements express certain attributes of the product 

but not how these attributes are achieved 

 e.g., portability 

 A portability requirement states a desire to be able to rehost a 
product to a different computational environment with minimal 
effort and cost 

 Usually achieved by imposing certain design constraints (modular 
architecture, low coupling, high cohesion)   
o Perhaps separately stated as a design constraint 

 To verify that the product is portable, a demonstration of rehosting 
the product from one computer to another may be performed. 

Verifying requirements – 
demonstration  



95 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Visual examination of product, its documentation, and other 

associated artifacts to verify conformance to requirements 

 Often used in conjunction with other techniques to complete 

argument 

 Particularly useful for verifying adherence to 

design/implementation constraint requirements  

 e.g., a software component may be inspected to verify that makes 
no operating calls other than to a POSIX-standard interface 

 

Verifying requirements – inspection 



96 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Analysis of the techniques and processes used by developers 

to determine if they are adhering to any required project 

standards and plans 

 Particularly those that correlate to stakeholder requirements for 
specific processes 

 May involve examination of the various intermediate and final 
products as well as programmatic artifacts and records 

 E.g., adherence to safety standards  (DO 178B/C, 882C) 

 

Verifying requirements – process 
analysis 



97 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Verification approaches 
Type of Requirement Verification Approach 

Definitive 
Testing 

Analytic 
Testing 

Analysis Demon-
stration 

Inspection Process 
Analysis 

Behavioral 

Functional     

Interface   

Temporal     

Capacity     

Resource utilization     

Trustworthiness     

Usability   
Supportability    
Implementation 
Constraints 

Product constraint  

Process constraint   



98 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Vague requirements cannot be effectively verified 

 Because valid responses not clearly defined 

 Good, complete, and unambiguous requirements inherently 

contain the information necessary for verification 

 Explicit, concrete, and detailed requirements generally can 

be directly verified 

 All input and output details fully defined 

 A requirement could be very explicit and concrete yet not be 

directly verifiable 

 The system shall be available for 0.9999999 over a one year 
operating duration 

Limitations to verification  



99 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Motivation 

 Terminology 

 IEEE view 

 Requirements and architecture/design 

 Types of requirements 

 Qualities of requirements 

 Creating requirements 

 Verifying requirements 

 Challenges / pitfalls 

Agenda 



100 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Fear of detail 

 Human Interfaces (HMIs) 

 Failure to manage volatile and late-defined requirements  

 Failure to recognize unknown “physics” 

 Overspecified / over-constrained / unbounded 

Some typical challenges and pitfalls 



101 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 When developing a system, requirements typically start at 

general level 

 List of capabilities – what users want to be able to do 
o “The product shall allow users to perform word processing” 

 Sometimes, detailed behaviors known up-front 
o e.g., preexisting external interfaces 
o e.g., required screen formats and display icons 

 As development proceeds, general requirements are refined 

(should  be) to become specific behaviors 

 More detail added as more is understood 
 E.g., “Pressing Ctrl and I at the same time results in the selected 

text being converted to an italics font within 0.5 sec” 
 

Levels of detail for requirements (1 of 3) 



102 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Regardless of level and amount of detail, as long as 

descriptions address external behavior, they are 

“requirements” and not design 

 Including GUI screens and formats, interface formats, and 
protocols 
o (Note that “interface design” is actually part of requirements 

definition) 
 Remember, practice tends to use the word “requirement” to refer 

to externally-visible behavior 
o Where design is internal to the item 

 Why is this important? 

 Externally-visible behaviors  tend to create dependencies on 
external entities (systems, people) 

 Design features tend to be created based on design tradeoffs 
made by the developers  without dependencies on external 
systems 

 All externally-visible behaviors must be carefully managed to 

Levels of detail for requirements (2 of 3) 



103 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 When product complete, all system attributes implemented 

and should be known in full detail, to support 

 Training and operator manuals 
 Maintenance manuals 
 Reuse of system and its components 

 Failing to recognize this results in 

 Immature requirements being built into software 
 Disconnects with external systems with dependencies 

 

Levels of detail for requirements (3 of 3) 

Don’t fear detail - no matter how much detail is provided, “requirements”  

are never design (for a specific component) 



104 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Human Machine Interface (HCI, MMI, HIS, …) 

 Refers to interface between the system and humans 
 How information is conveyed between humans and the system 
 How control is achieved by operators over system 

 HMIs are externally visible – hence are part of 

system/software requirements 

 Failure to treat as requirements can lead to problems 

 If HMI is awkward and ineffective, system will be a failure 

 If system cannot be effectively and efficiently used, its role will be 
diminished 

 Operators will ignore it 
 

Human Machine Interfaces (1 of 2) 



105 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Recommendations: 

 Where applicable, human performance must be a part of system 
performance 
o Define performance reqs which include human-in-the-loop 

 Involve users early with design of user interfaces 
o Exploit dynamic prototypes, avoid prolonged use of static 

displays 
 Perform usability analysis to determine how well users can learn 

and interact with system 
o Measure overall performance 

 Obtain formal agreement on HMI once defined as part of 
requirements 
o Avoids second-guessing during system acceptance 

 Defer some HMI features as run-time configuration option 
o If appropriate, to avoid code rework 

 Rely on standards and standard tools to help create common view 

Human Machine Interfaces (2 of 2) 



106 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Requirements always change 

 Some don’t change, but are defined late 

 Not necessarily bad but careful  

management necessary to avoid 

 Expensive rework (and cost and schedule  
impact)  

 Compromises to functionality 

 Crucial to associate levels of risk to levels of change 

 Some changes are low-risk 
 Other may be high risk 
 Related to amount of rework require 

 Developers better able to design defensively if they know 

 Which requirements are likely to change 
 Degree of change that could be expected 

Volatile and late-defined requirements 
(1 of 4) 

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

Requirements

Analysis

Top Level

Design

Detailed

Design

Implementation

Time

N
um

 o
f R

eq
ui

re
m

en
ts



107 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Depends on attributes of the requirement and its linkage to 

design 

 Some can be defined early or late 
 Some must be defined early 
 Some should be defined later 

 Important attributes (i.e., how to decide…) 

 If level of understanding of desired behavior is low (exact 
behaviors not well understood or unknown)  – delay in definition 
may reduce risk 
o If defined and frozen early, later changes may impact design 

and cause rework 
 If high likelihood that requirement will change – delay in definition 

may reduce risk 
o Avoids rework due to late changes 

 

Volatile and late-defined requirements 
(2 of 4) 



108 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Important attributes (cont’d) 

 If a requirement has high or complex external component 
dependencies –  early resolution may reduce risk 
o Late changes likely to affect external systems/components 

 If a requirement has strong internal design dependencies  –  early 
resolution may reduce risk 
o Late changes may force extensive rework due to design 

dependencies 

Volatile and late-defined requirements 
(3 of 4) 

Level of understanding of desired behavior 

Likelihood that requirement will change 

External component dependencies 

Internal design dependencies 

Early definition 

low high 

high low 

complex simple 

weak strong 

Late definition 



109 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Recommendations to address requirements volatility:  

 Define requirements with priorities and likelihood to change 
o Allows designers to insulate themselves from unexpected 

change 
 Ensure design accommodates expected changes 
 Where possible, allow run-time reconfiguration to allow changing 

behavior without changing requirements 
o e.g., screen color options 

 Assess dependencies between requirements and design 
o Some requirements deeply affect design globally 
o Others have limited design impact (GUI formats) 

 Ensure inter-requirements dependencies are well understood 
 Define and monitor requirements stability with metrics 

o Track immature requirements, undefined requirements, and 
changing requirements 

 Different types of changes have different impacts 

Volatile and late-defined requirements 
(4 of 4) 



110 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 9 types of changes 

 Addition – new requirement statement added to existing set, 
increasing functionality 
o Potentially increases work scope, can cause rework 

 Extension – existing requirement statement is changed to extend 
functionality 
o Potentially increases work scope, can cause rework, not as 

risky as addition 
 Correction - changes existing requirement statement to correct a 

defect in its description (thereby modifying the functionality 
described). 
o Beneficial but may contribute to a change in scope  

 Deletion – remove an existing requirement statement with 
corresponding removal of functionality 
o Might not require extensive changes, depending on work 

already performed 
 Deferred – defer an existing requirement from requirements 

baseline, with the intention of reinserting it at a future time 

Types of requirements changes 



111 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 9 types of changes (cont’d) 

 Clarification – change an existing requirement statement to clarify 
functionality 
o Common, should be expected and encouraged  
o Includes expansion of description, refinement of detail, and 

removal of ambiguity 
 Split – an existing requirement statement is split into multiple 

statements 
o No change in behavior, little risk 

 Merge – two or more requirement statements are merged into a 
single statement, without changing intended functionality 
o No change in behavior, little risk 

 Editorial - an existing requirement statement is modified by 
correcting defects in language or notation, but with no change to 
functionality 
o No change in behavior, little risk 
o Common, should be expected and encouraged  

Types of requirements changes 



112 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

Typical pattern of changes 
 

-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

-5 -7 -7 -7 -9 -9 -11 -11 -11 -11 -11 -11

25
19

9 7 6 6 6 6 6 6 6 6

20

12

16

12
8 8 7 7 7 7 7 7

14

24
31

36

38 38 37 37 37 37 37 37

5
8

10 11

10 10
10 10 10 10 10 10

5 5
5 5

7 7
7 7 7 7 7 7

5 9

11
14

14 14
14 14 14 14 14 14

74
77

82
85

83 83
81 81 81 81 81 81

-20

-10

0

10

20

30

40

50

60

70

80

90

100

Feb-10 Mar-10 Apr-10 May-10 Jun-10 Jul-10 Aug-10 Sep-10 Oct-10 Nov-10 Dec-10 Jan-11

R
e

q
u

ir
e

m
e

n
ts

 C
h

a
n

g
e

 H
is

to
ry

Date

Added

Extended

Corrected

Clarified

Editorial

Unchanged

Deferred

Deleted

Total



113 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Sometimes we don’t know what the behavior of the software 

should be 

 Due to lack of detailed/accurate knowledge of real world (typical 
for embedded systems) 

 Results in changing or late-defined requirements 

 Need to use software product to explore physics and mature 

product based on discoveries (like a prototype) 

 Frequently, discoveries are at fine grain level (adjustments to 

constants, changes to algorithms) 

 Requirements statements must explicitly recognize need for 

experimentation 

 Design (and process) must allow for experimentation / exploration 
 Need to incorporate provisions for data extraction and collection 

Unknown “physics”  (1 of 2) 



114 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Mitigation strategies include: 

 Iterative development of system, and use of iterations to probe and 
explore the environment 

 Use of executable models and prototypes 
 Use of simulations to depict external environment 
 Use of data logging functions to collect relevant data 

 

Unknown “physics”  (2 of 2) 



115 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Sometimes requirements are too ambitious, too restrictive, 

or too general 

 Too ambitious – results in gold-plating 
o Unneeded capabilities created, unattainable functions defined 

 Too restrictive – results in narrow, point solutions 
o System rapidly becomes outdated when mission changes 
o Sometimes you just don’t know up front the exact details (“is 5 

sec OK or do I need 2 sec response time?” 
 Too general – results in inefficient system that does everything but 

not well 

 Result is wasted resources 

Over-specified/over-constrained 
/unbounded    



116 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 General but important 

 Be clear about what you know and what you don’t 
know 
o Don’t feel you have to define everything up front 

 Be willing to start general and incrementally refine  
 Focus on prioritization of requirements 

o Some are always more important than others 
 Ensure what is needed is emphasized 

o Avoid “gold plating” – advice often provided and 
often ignored 

o Do you really need a 0.1 sec response time? 
 Build system in a series of increments 

o Incrementally commit to requirements and apply 
early lessons-learned 

 

Recommendations 



117 21 Oct 2012 

Tell me what you want, what you really really want – A Guide to Effective Requirements Engineering. W. Bail.  

NDIA System Engineering Conference 2012 

 

 Any questions?.... 

End 


