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ABSTRACT 

The authors present a prognostic cost model that is shown to provide significantly more accu-
rate estimates of life cycle costs for DoD programs. Unlike current cost estimation approaches, 
this model does not rely on the assumption of a fixed program baseline. Instead, the model 
presented here adopts a stochastic approach to program uncertainty, seeking to identify and 
incorporate top-level (i.e., “macro”) drivers of estimating error to produce a cost estimate that is 
likely to be more accurate in the real world of shifting program baselines. The predicted im-
provement in estimating accuracy provided by this macro-stochastic cost model translates to 
hundreds of billions of dollars across the DoD portfolio. Furthermore, improved cost estimate 
accuracy could reduce life cycle costs and/or allow defense acquisition officials the ability to 
make better decisions on the basis of more accurate assessments of value and affordability.  
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INTRODUCTION AND MOTIVATION 

Many senior defense acquisition officials routinely make key decisions involving weapon 
systems that are projected to cost billions of—or perhaps even a trillion (Hebert 2011)—dollars 
over their life cycle. These high-dollar decisions may involve how many units to procure, how to 
phase program funding, or even whether to fund a program at all. Typically, the decision will not 
only have major implications on the life of a given program, but it can also impact the Penta-
gon’s overall budget and strategic direction. In light of the looming, significant reductions to the 
defense budget (GPO 2011), these program decisions are bound to become both more difficult 
and more important, as questions of value and affordability increasingly take center stage. 

For the senior decision-maker, a principal tool for assessing the value and/or affordability of 
a given defense program is via long-term program cost estimates such as Life Cycle Cost (LCC) 
and per unit Operating and Support (O&S) cost. It is therefore essential that these estimates be 
reliable and accurate. But what if they are not? What if the forecasted ownership costs of a given 
program are far different from the actual costs? If there is a significant disconnect between 
estimated and actual costs, the concern naturally arises as to the utility of the estimates, and how 
sound are any decisions based upon them. These are not just hypothetical questions. The authors 
recently completed a study that shows DoD estimates of long-term program cost are often highly 
inaccurate and—perhaps more surprisingly—improve very little, if at all, as programs mature 
(Ryan et al. 2012). 

This finding logically leads one to consider a more formidable challenge: How can the accu-
racy of DoD life cycle cost estimates be improved? In this paper, the authors tackle the problem 
through a fundamentally different approach to cost estimating. We propose a technique that, in 
essence, models the error in the program estimate as a random variable whose value is deter-
mined by a salient group of top-level program summary indicators. This prediction of the esti-
mate error is then used to adjust the official program estimate to a value that is, on average, 
significantly closer to the eventual, actual cost of the program. We refer to this technique as 
macro-stochastic cost estimation. The authors have borrowed the term “macro-stochastic” from 
the physical sciences where it is used to describe large-scale phenomenon that can only be 
analyzed effectively in a statistical manner, such as dynamic structural loads or earthquakes 
(Wijker 2009). 

This paper is structured as follows. After providing some background on the nature of con-
temporary DoD cost estimating, we review the key elements of the characterization study that 
informed the creation of the two separate macro-stochastic cost models presented in this paper. 
Next, we detail the mixed model methodology used to build each model as well as the list of 
independent variables to be evaluated for significance. In the Results section, we begin by 
showing a theoretical macro-stochastic cost model to illustrate the potential power of this 
technique. We then describe how we transform the theoretical model into a prognostic model 
and how its performance was validated. We conclude with a discussion of key findings, known 
model issues, and ideas for future improvements. 

The authors found that the adjustments the macro-stochastic model makes to the program 
cost estimates achieve levels of accuracy significantly better than the original estimates. With 
these improved estimates of actual program cost, we contend that senior DoD decision-makers 
can expect to have far better insight into actual program value and affordability, and come closer 
to achieving an optimal allocation of increasingly scarce DoD resources. 
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BACKGROUND 

Cost Estimating 
Over the past couple of decades, DoD cost estimating has become increasingly sophisticated. 

This comes as a result of improved computing capabilities, revised policies (DoD 1992; OSD 
CAIG 2007) and the canonization of best practices. Standard, contemporary cost estimation 
techniques include product-oriented WBS development, point estimating with associated confi-
dence intervals, integration of probability distributions, stochastic parameterization through 
cumulative distribution functions (i.e., s-curves), Monte Carlo simulations, and uncertain-
ty/sensitivity analyses (GAO 2009; DAU 2012). The resulting bottoms-up cost estimates are 
remarkably credible; highly detailed, fully traceable, and mathematically rigorous. But they are 
also resource intensive, and—as documented in the characterization study—often highly inaccu-
rate (Ryan et al. 2012).  

It is important to note that an inaccurate estimate is not necessarily the same thing as a poor 
estimate. It may be that the cost estimator’s greatest ambition of a perfectly accurate cost esti-
mate is simply unattainable in the highly uncertain realm of defense acquisition. As recently (and 
rather facetiously) articulated by the NASA advisory council in the context of space systems— 

 
“[Cost estimating] involves using incomplete, inaccurate, and changing data for an out-
moded & ineffective space system to derive the precise cost of purchasing an unknown 
quantity of an undefined new space system to satisfy an overly exaggerated & unvalidat-
ed requirement at some time in the future, under uncertain conditions, with a minimum of 
funds. (NASA 2008)” 

 
Although cost estimators attempt to take into account many sources of uncertainty (e.g., in-

flation and discount rates, technical risks, commodity pricing, etc.), they are ultimately con-
strained in a fundamental and critical way: They must assume a program baseline. The DoD 
Acquisition Program Baseline (APB) reflects the key cost, schedule, and performance attributes 
of a program, and is the necessary anchor from which all statistical cost excursions are based. In 
fact, changes to the APB are one of the most frequent reasons for creating a new program cost 
estimate.  

And while using the program baseline as a cost estimating baseline is a perfectly logical ap-
proach, it means that current cost estimating techniques are not only unable to account for 
unforeseen sources of uncertainty (i.e., the infamous “unknown-unknowns”), but they also 
preclude the possibility of capturing cost impacts that result from APB changes. If the aim is to 
construct a cost estimate that will be as accurate as possible in the long run, this link to the 
baseline represents a fundamental flaw in the estimate process because APB deviations are 
virtually inevitable (at least for major defense programs (Drezner and Krop 1997)). A delay in 
the planned initial operating capability of the system; a reduction in the procurement quantity; an 
additional performance requirement: These are all common causes of an APB deviation, and 
each is likely to adversely affect the accuracy of the original estimate (no matter how good it 
may have been). Given the magnitude and frequency of baseline changes in major Pentagon 
programs, it really shouldn’t be surprising that the original LCC and O&S estimates are so often 
inaccurate. The greater wonder, in fact, is that these estimates are ever relatively close. 

The motivating principle of this paper is that in order for a cost estimate to have a reasonable 
chance of being accurate in the real world of changing baselines, one must employ an estimating 
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technique that does not assume the program baseline is fixed. This goal is at the core of the 
macro-stochastic cost estimating approach. Any change to the APB—or any other cost-impacting 
change, for that matter—is assumed to be part of a larger random process. In this way, we regard 
the top-level cost estimate as a stochastic value (vice the constituent cost elements, as is typically 
done in the traditional stochastic cost estimating approach). The premise of the macro-stochastic 
cost-estimating model, then, is that each official program estimate has some random error (vis-à-
vis actual costs) that is related to a probability distribution. We further hypothesize that the 
nature of this distribution is unique to each program, and can be sufficiently characterized by a 
relatively small number of top-level program indicators easily gleaned from readily available 
program records.  

 
Cost Measures 

There are two distinct measures of cost that we assessed in the associated characterization 
study: The Life Cycle Cost (LCC) and the Annual Unitized O&S Cost (AUC1). Importantly, each 
measure serves as the basis of a separate macro-stochastic cost model presented in this paper. 
The LCC measure is arguably the most comprehensive and intuitive cost indicator for system 
value assessments, and the first version of the model attempts to predict the error in the pro-
gram’s official LCC estimate. The AUC metric is also useful, however. The AUC data tends to 
be more broadly available (both in terms of estimates and actuals), thereby enabling analysis of a 
greater number of programs over a longer span of time. Moreover, unitized O&S costs are a 
commonly employed metric for assessing sustainment costs, and can often provide a more valid 
comparative measure across similar contemporary or antecedent systems (DAU 2012). The AUC 
constitutes the foundation of our second version of the model, which predicts the error in the 
program’s official AUC estimate.  

In the case of both dependent variables, values are reported as percentages, with negative 
values indicating that the estimate was lower than the actual cost, and positive values indicating 
the estimate was too high. Thus a perfectly accurate estimate will have an error of zero percent. 

 
Data Structure 

Only Major Defense Acquisition Programs (MDAPs) were evaluated in the previously com-
pleted characterization study. This is because only MDAPs provide the necessary level of cost 
insight for readily assessing the accuracy of the LCC and AUC estimates. By law, MDAPs are 
required to provide an annual report, known as the Selected Acquisition Report (SAR), that 
includes a full life cycle cost analysis. The SARs were the primary source used in the characteri-
zation study for official program cost estimates. They are nominally first provided upon program 
initiation (typically Milestone B), and continue every year until the program has been 90 percent 
acquired (DAU 2012).  

Each program SAR represents one observation in the MDAP data set. Further, each SAR for 
which a valid LCC estimate and valid LCC actuals are available also becomes an observation 
used in the development of the macro-stochastic LCC model. Similarly, each SAR for which a 
valid AUC estimate and valid AUC actuals can be obtained becomes an observation used to 
build the macro-stochastic AUC model. The specific count of LCC and AUC SARs by program 

                                                 
 

1  “AUC” is not a standard DoD acronym; the authors have coined it for convenience in the context of this applica-
tion. Further, AUC should not be confused with the APUC (Average Procurement Unit Cost). 
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is provided in Table 1. The LCC model is based on observations from 317 SARs across 31 
MDAPs, and the AUC model is based on observations from 392 SARs spanning 35 MDAPs.  

The data used to construct and validate the model was obtained from all Air Force and Navy 
aviation, maritime, and munitions MDAPs. Therefore, the model is deemed to be valid for use 
only against these services and types of programs. Additional data would be required in order to 
assess model utility against space and information MDAPs. More details on data set sources and 
compilation (as well as why Army programs could not be evaluated) is available in the character-
ization paper. 

 
METHODOLOGY 

Mixed Models 
The preceding characterization study, as well as the resulting model presented in this paper, 

are based on longitudinal data (Ryan et al. 2012), which is to say that the source data consists of 
repeated measurements on different subjects over time. Importantly, the nature of longitudinal 
data precludes the possibility of assuming an identical and independent distribution (i.i.d.) of the 
random variables. Because the data is clustered into programs, with repeated measurements of 
each program over time, there necessarily exists a correlation between the repeated measure-
ments for a given program—and therefore the statistical errors of the observations—that must be 
accounted for in the statistical analysis. Further, one expects these correlations to be greater for 
data points close in time, such as for successive SARs from the same program. This means that 
the statistical errors will be correlated as well. 

Importantly, the fact that we expect correlated errors for the programs in this study invali-
dates the underlying assumptions of simple analysis of variance and regression models, namely 
i.i.d. observations. To compensate for this, we instead employ mixed model techniques for the 
data in this study. Mixed models use both fixed (i.e., entire population) effects and random (i.e., 
subject-specific) effects within the same analysis. The key distinction between mixed models and 
simple regression models is that the former can produce valid models even if the subject obser-
vations are not independent. In essence, mixed models allow the data to exhibit inherent correla-
tions and non-constant variability that arise from the program-specific effects. This allows one to 
effectively model not only the measures of central tendency for the data, but also the covariance 
structure attributable to the repeated measurements (Diggle, Liang, and Zeger 1994; Verbeke and 
Molenberghs 2000). 

Relative to the standard General Linear Model, the use of a mixed model for this analysis 
provides several advantages, primarily relating to flexibility. A mixed model allows the use of 
input variables even if data is missing for one or more of the subjects (i.e., programs). Mixed 
models can also automatically accommodate for unequal spacing of the repeated measurements 
(i.e., ensure minimum variance), which is a characteristic of this data set. In addition, the mixed 
model allows more efficient and direct modeling of the within-subject covariance structure for 
the entire dataset, as opposed to unique covariances for every data pair. Finally, the results from 
the mixed model can be readily extended to outcomes that do not conform to a normal distribu-
tion. In this study, we have assumed the cost estimate errors are normally distributed (i.e., the 
solution to the mixed model equations is a maximum likelihood estimate where the distribution 
of the errors is normal), but the mixed model can accommodate nonlinear approaches, should 
they be considered more appropriate (Patetta 2002). 
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Table 1. MDAP Data Used for Model Development 

# Program Name SubProgram Name Lead 
Component 

System 
Type 

SAR 
Years 

# of 
SARs 

LCC 
SARs 

AUC 
SARs 

1 AIM-9X AIM-9X (Navy) Navy Munition 1996-2001 6 6 6 
2 AMRAAM (AF) AMRAAM (AF) Air Force Munition 1988-1992 5 3 3 
3 AMRAAM (Joint) AMRAAM (Joint) Air Force Munition 1992-2010 18 18 18 
4 AOE 6 AOE 6 Navy Maritime 1988-1997 11 7 7 
5 AV-8B AV-8B REMAN. Navy Aviation 1994-2002 10 NA 10 
6 C-130J C-130J Air Force Aviation 1996-2010 13 12 12 

7A C-17A C-17A (BY1981) Air Force Aviation 1987-1994 10 8 8 
7B C-17A C-17A (BY1996) Air Force Aviation 1995-2010 14 14 14 

8 C/MH-53E C/MH-53E Navy Aviation 1987-1994 9 1 5 
9 CVN 68 (74/75) CVN 68 (74/75) Navy Maritime 1987-1998 13 2 2 

10 CVN 68 (76) CVN 68 (76) Navy Maritime 1994-2002 9 4 4 
11 DDG 51 DDG 51 Navy Maritime 1987-2010 25 20 20 
12 E-2C E-2C Navy Aviation 1994-2006 14 4 4 
13 F-14D F-14D Navy Aviation 1987-1993 9 5 9 
14 F-16C/D F-16C/D Air Force Aviation 1987-1994 8 4 4 

15A F-22 F-22 (BY1990) Air Force Aviation 1991-2004 16 4 16 
15B F-22 F-22 (BY2005) Air Force Aviation 2005-2010 6 6 6 

16 F/A-18C F/A-18C Navy Aviation 1987-1994 10 NA 7 
17A F/A-18E/F F/A-18E/F (BY1990) Navy Aviation 1992-1999 9 9 9 
17B F/A-18E/F F/A-18E/F (BY2000) Navy Aviation 2000-2010 10 10 10 

18 GLOBAL HAWK GLOBAL HAWK Air Force Aviation 2001-2010 11 NA 11 
19 JASSM JASSM Air Force Munition 1999-2009 12 11 12 

20A JPATS JPATS (BY1995) Air Force Aviation 1995-1999 5 NA 5 
20B JPATS JPATS (BY2002) Air Force Aviation 2001-2010 9 8 9 

21 JSOW JSOW Navy Munition 1997-2010 14 14 14 
22A JSTARS JSTARS (BY1983) Air Force Aviation 1989-1996 10 8 10 
22B JSTARS JSTARS (BY1998) Air Force Aviation 1997-2003 6 3 6 

23 KC-135R KC-135R Air Force Aviation 1987-1994 8 NA 5 
24 LHD 1 LHD 1 Navy Maritime 1987-2005 18 15 15 
25 LPD 17 LPD 17 Navy Maritime 1996-2010 16 16 16 

26A MH-60R MH-60R (BY1993) Navy Aviation 1994-2005 14 12 12 
26B MH-60R MH-60R (BY2006) Navy Aviation 2006-2010 5 2 2 

27 MH-60S MH-60S Navy Aviation 1998-2010 17 17 17 
28 MHC 51 MHC 51 Navy Maritime 1991-1998 8 8 8 
29 PREDATOR PREDATOR Air Force Aviation 2009-2010 2 2 NA 
30 SSGN SSGN Navy Maritime 2002-2007 6 6 6 
31 SSN 21 SSN 21 Navy Maritime 1987-1999 15 11 11 
32 SSN 774 SSN 774 Navy Maritime 1995-2010 16 16 16 
33 STRAT. SEALIFT STRAT. SEALIFT Navy Maritime 1993-2001 11 NA 11 

34A T-45TS T-45TS (BY1984) Navy Aviation 1987-1993 10 5 5 
34B T-45TS T-45TS (BY1995) Navy Aviation 1994-2007 14 12 13 

35 T-AKE T-AKE Navy Maritime 2001-2010 10 10 10 
36 T-AO 187 T-AO 187 Navy Maritime 1987-1994 8 4 4 

Total 470 317 392 
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To put this in mathematical terms, the GLM in matrix form is given as— 

𝑦 = 𝑋𝛽 + 𝜀 (1) 

where 

𝑦 = 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎 𝑣𝑒𝑐𝑡𝑜𝑟,𝑤ℎ𝑒𝑟𝑒 𝐸(𝑦) = 𝑋𝛽 𝑎𝑛𝑑 𝑣𝑎𝑟 (𝑦) = 𝜎2𝐼  
𝑋 = 𝑡ℎ𝑒 𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡 𝑑𝑒𝑠𝑖𝑔𝑛 (𝑖. 𝑒. ,𝑚𝑜𝑑𝑒𝑙) 𝑚𝑎𝑡𝑟𝑖𝑥 
𝛽 = 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 (𝑠𝑎𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠) 
𝜀 = 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠,𝑤ℎ𝑒𝑟𝑒 𝐸(𝜀) = 0 𝑎𝑛𝑑 𝑣𝑎𝑟 (𝜀) = 𝜎2𝐼 
 

For the mixed model version, a random-effects term is added— 

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜀 (2) 
 
where 

𝑍 = 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑓𝑓𝑒𝑐𝑡 𝑑𝑒𝑠𝑖𝑔𝑛 (𝑖. 𝑒. ,𝑚𝑜𝑑𝑒𝑙) 𝑚𝑎𝑡𝑟𝑖𝑥 
𝛾 = 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑓𝑓𝑒𝑐𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 (𝑣𝑎𝑟𝑖𝑒𝑠 𝑏𝑦 𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

In addition, 
 

𝐸 �𝛾𝜀� = 0 and 𝑣𝑎𝑟 �𝛾𝜀� = �𝐺 0
0 𝑅� ⇒ 𝑣𝑎𝑟(𝑦) = 𝑍𝐺𝑍′ + 𝑅 

 

(3) 

where 

 𝑮 = 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 
 𝑹 = 𝑡ℎ𝑒 𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 
 
One of the key inputs for a mixed model analysis is what structure should be used for the 

random covariance matrix, G. For this data set, since we tend to observe high correlations in the 
response variables reported in successive SARs, but increasingly less correlation as the time 
between SARs grows larger, a covariance structure that captures diminishing levels of correla-
tion is desired. Therefore, a sensible choice for model development is the autoregressive (AR) 
structure, which has homogeneous variances and correlations that will decline exponentially with 
temporal distance (Wolfinger 1993). Multiple other covariance matrix structures were also 
examined, but overall model performance was best using first-order autoregressive, i.e., AR(1). 

To obtain the estimates of G and R, we solve for the values that optimize an objective func-
tion, in this case the Restricted Maximum Likelihood (REML) criterion. The method for compu-
ting the denominator degrees of freedom for the tests of fixed effects was Kenward-Roger. 
Thousands of model iterations were executed to find the best set of variables from Table 1 to use 
in each model: The Bayesian Information Criterion (BIC) was used as the primary method of 
discrimination between potential models. All model analysis was accomplished using SAS 
version 9.3 (http://www.sas.com/software/sas9/). 
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Independent Variables and the Unit of Analysis 
As noted earlier, a central assumption of the macro-stochastic cost estimating approach is 

that there exists a relatively small set of high-level program parameters that, in aggregate, 
significantly relate to the LCC and AUC estimate errors observed for a given program. Table 2 
lists and defines all of the independent variables we evaluated as potential fixed or random effect 
parameters for both the LCC and AUC cost models. All variables in this table are based on 
information available in the program SARs. Some of the variables are taken directly from the 
SAR, some are calculated based on information available in different sections of a single SAR, 
and some are calculated from information available across successive SARs. All cost figures are 
in native (i.e., SAR-specific) base year (BY) dollars, with the exception of variable #14. Alt-
hough there are only 50 variables listed in Table 2, the inclusion of  “trending versions” of 
several variables (see footnote #2) brings the total count to 252. 

 
Table 2. Listing of Independent Variables Evaluated in Error-Correction Models 

# Variable Name Msmnt. 
Level Description (Values) 

1 Program Year Interval Number of years since Milestone B (II) or program initiation 
2 DoD Component Nominal Lead acquisition service component (“AF” or “Navy”) 
3 Joint Nominal Are units being procured for more than one service? (“Yes” or “No”) 
4 System Type Nominal Type of system (“Aviation,” “Maritime” or “Munition”) 
5 Acq Phase Nominal Acquisition phase (“Development” or “Production”) 
6 Acq Type Nominal Type of acquisition (“New,” “Modification,” or “Variant”) 
7 Maturity Ordinal Program maturity level; categories based on Expended (#18). 
8 Total Dev APBs Interval Cumulative number of development APBs to date 
9 Avg Dev APBs Interval Average number of development APBs per year 
10 Total Prod APBs Interval Cumulative number of production APBs to date 
11 Avg Prod APBs Interval Average number of production APBs per year 

12 Prime Contractor Nominal Contractor for 3 largest active contracts (“Boeing,” “GD,” “Lockheed-
Martin,” “Northrup-Grumman,” “Raytheon,” “Other,” or “Multiple”) 

13 Acq Cost Est Interval Current estimate of total acquisition cost 
14 Acq Cost Est, BY102,3 Interval Current estimate of total acq cost standardized to BY10 dollars 

15 AUC Est2,3 Interval Current estimate of annual unit O&S cost 

16 O&S Cost Est2,3 Interval Current estimate of total O&S cost 
17 LCC Est2,3 Interval Current estimate of total LCC cost 
18 Expended Interval Percentage of Acq Cost Est (#13) expended to date 
19 Funding Years Interval Current total planned funding years of program 

20 PAUC Change, Dev Interval Percentage change in Program Acquisition Unit Cost (PAUC) from 
Development baseline 

21 PAUC Change, Prod Interval Percentage change in Program Acquisition Unit Cost (PAUC) from 
Production baseline 

                                                 
 

2  Includes trend versions of variable to date, i.e., minimum, maximum, range, mean, weighted mean (by Program 
Year), standard deviation, and the slope of the regression line. 

3  One or more transformations applied (i.e., unitary normalization, scalar reduction, square root, and natural log) to 
better achieve model stability, interpretability, and/or to capture nonlinear relationships. 
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22 APUC Change, Dev Interval Percentage change in Average Procurement Unit Cost (APUC) from 
Development baseline 

23 APUC Change, Prod Interval Percentage change in Average Procurement Unit Cost (PAUC) from 
Production baseline 

24 CV, Engr2 Interval Total cost variance (CV) to date in engineering category as % of Acq Cost 
Est (#13) 

25 CV, Est2 Interval Total CV to date in estimating category as % of Acq Cost Est (#13) 
26 CV, Quan2 Interval Total CV to date in quantity category as % of Acq Cost Est (#13) 
27 CV, Total2 Interval Total CV to date in all CV categories as % of Acq Cost Est (#13) 

28 CV, Total-QuanError! 

Bookmark not defined. Interval Total CV to date in all CV categories (except Quantity) as % of Acq Cost 
Est (#13) 

29 Breaches, Sched Interval Cumulative number of schedule breaches to date 
30 Breaches, Perf Interval Cumulative number of performance breaches to date 
31 Breaches, Cost Interval Cumulative number of cost breaches to date 
32 Breaches, UC Interval Cumulative number of unit cost breaches to date 
33 Breaches, Total Interval Cumulative total of all breaches to date 
34 Breach, N-M Nominal Has program incurred a Nunn-McCurdy breach? (“Yes” or “No”) 
35 CDR-MSII Interval Time between Critical Design Review (CDR) and Milestone II 
36 CDR-PDR Interval Time between CDR and Preliminary Design Review (PDR) 
37 LRIP-MSII Interval Time between Low Rate Initial Production (LRIP) and Milestone II 
38 MSIII-MSII Interval Time between Milestone III and Milestone II 
39 IOC-MSIII Interval Time between Initial Operating Capability (IOC) and Milestone III 
40 IOC-MSII Interval Time between Initial Operating Capability (IOC) and Milestone II 
41 Reqmnts, New Interval Cumulative # of new requirements added to performance baseline 
42 Reqmnts, Deleted Interval Cumulative # of existing requirements removed from performance baseline 
43 Reqmnts, Total Interval Total number of requirements in current performance baseline 

44 Reqmnts, Obj Interval Percentage of total requirements to date in which objective value was made 
more stringent 

45 Reqmnts, Thresh Interval Percentage of total requirements to date in which threshold value was made 
more stringent 

46 Reqmnts, Change Interval Percentage of total requirements to date in which threshold or objective 
value was modified 

47 Procure, Plan2,3 Interval Current total planned procurement quantity 
48 Procure, Change2,3 Interval Percentage change in Procure, Plan (#47) relative to baseline 
49 Procured Interval Percentage of Procure, Plan (#47) currently procured 
50 Unit Acq Ratio Interval Ratio of AUC Est (#15) to Acq Cost Est (#13) 

 
Table 2 is also interesting for what is not included. Defense acquisition professionals and 

cost estimators alike are keenly interested in the cost impacts of a number of strategic policies 
related to procurement. Three of the most intriguing—and controversial—relate to acquisition 
strategy (e.g., traditional vs. evolutionary), contracting strategy (fixed-price vs. cost-
reimbursement), and sustainment strategies (organic vs. contractor). Although each of these 
policy topics could potentially serve as an excellent macro-level predictor of cost estimating 
accuracy, we were unable to incorporate variables related to any of these topics.  

The fundamental obstacle in all three cases was being able to effectively quantify these vari-
ables in the context of fluctuating and disparate acquisition efforts. Consider, for instance, an 
evolutionary acquisition strategy, which may not be implemented until late in the program when 
technical maturity is sufficient or may only be applied to a particular element of the system in 
development. It may also be that an evolutionary strategy is abandoned midway through devel-
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opment or blended with more traditional practices into a hybrid approach. This is just one 
example, but these types of subtleties tend to dominate these three important procurement policy 
topics, thus regrettably precluding definitive categorization. 

The last item involving methodology that the reader should be aware of pertains to the unit of 
analysis, which is equivalent to the model subject. This is a subtle, but critical, analytical element 
that changes throughout model development, characterization, and validation. We begin with the 
SubProgram as the unit of analysis, but then switch to a broader subject defined as the Program 
Category. This transformation is crucial to infusing predictive capability into the macro-
stochastic cost model. During validation, however, the unit of analysis reverts to the full Pro-
gram in order to present model performance in a context most likely to resonate with target 
users. This nonstandard progression regarding the unit of analysis (i.e., model subject) is ex-
plained in greater detail at each step of model characterization. 

 
RESULTS 

A Theoretical Macro-Stochastic Model 
The first task is to assess the theoretical premise of a macro-stochastic cost model. A reason-

able suspicion would be that the nature of cost estimating errors for defense programs—along 
with the underlying uncertainty which drives them—is inherently chaotic, such that attempting to 
characterize these errors via a stochastic process is misguided at best. Thus, the fundamental 
question that must be answered at the outset is whether there is any meaningful correlation 
between the variables in Table 2 and the level of accuracy in a given SAR’s cost estimate. We 
believe that the data shown in Figures 1 through 4 offers a compelling response to this question. 

Figure 1 is a plot of the percentage error in the empirical LCC estimates for all of the 
MDAPs listed in Table 1. Overall, the data exhibits a high level of dispersion. Although the 
mean error across all programs is only −4.7 percent, the mean magnitude of the errors (i.e., the 
mean absolute value of the errors) is over 22 percent. The magnitude error does appear to reduce 
slightly as time increases, suggesting that the accuracy of LCC estimates may be improving 
slightly as program acquisition matures. However, as noted in the characterization paper, this is 
likely an artifact of the acquisition cost component of the LCC converging to a known value by 
the end of the acquisition phase (Ryan et al. 2012). When examining total O&S cost, per se, 
there is no significant improvement in LCC estimating accuracy as time goes on. 

Figure 2 plots the results from a macro-stochastic mixed model that attempts to predict the 
error in each SAR and then compensate for it. The subject of this model is the SubProgram (for 
reasons explained in the characterization paper, the SubProgram—vice the Program—is the more 
appropriate unit of analysis). Designating the SubProgram (or the Program, for that matter) as the 
model subject is a logical choice, but it has important implications to model utility to be dis-
cussed shortly.  

This so-called “theoretical macro-stochastic cost model” depicted in Figure 2 consists of just 
three variables: Procure, Change (#48 in Table 2), the standard deviation of the natural loga-
rithm of Acq Cost Est, BY10 (#14), and the natural logarithm of LCC Est (#17). All three varia-
bles are modeled as fixed effects, while the first two—along with an intercept term—are also 
modeled as random effects. The way to interpret this result is that the broad pattern (i.e., the 
fixed effects) of life cycle cost estimating errors in all Navy and Air Force MDAPs can be 
captured by examining the extent of procurement quantity changes to date, the variability of the 
acquisition cost estimates to date, and the current LCC estimate. Further, each program has its 
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own pattern of errors (i.e., the random effects) driven by the procurement quantity changes and 
the variability of the acquisition cost estimate to date, as well as a unique starting point as 
defined by the intercept term. 

 
 

  

Figure 1. Error in LCC Estimate as a 
Function of Time (Empirical Data) 

 

 
Figure 2. Error in LCC Estimate as a Function 
of Time (Theoretical Macro-Stochastic Model) 

 

This so-called “theoretical macro-stochastic cost model” depicted in Figure 2 consists of just 
three variables: Procure, Change (#48 in Table 2), the standard deviation of the natural loga-
rithm of Acq Cost Est, BY10 (#14), and the natural logarithm of LCC Est (#17). All three varia-
bles are modeled as fixed effects, while the first two—along with an intercept term—are also 
modeled as random effects. The way to interpret this result is that the broad pattern (i.e., the 
fixed effects) of life cycle cost estimating errors in all Navy and Air Force MDAPs can be 
captured by examining the extent of procurement quantity changes to date, the variability of the 
acquisition cost estimates to date, and the current LCC estimate. Further, each program has its 
own pattern of errors (i.e., the random effects) driven by the procurement quantity changes and 
the variability of the acquisition cost estimate to date, as well as a unique starting point as 
defined by the intercept term. 

Figure 3 and Figure 4 are the AUC versions of Figure 1 and Figure 2. Figure 3 shows that 
empirical AUC estimating accuracy for MDAPs is considerably worse than LCC estimating 
accuracy, with the magnitude of the errors and accompanying standard deviation almost twice as 
high. Figure 4 depicts the same data using a macro-stochastic model, and again, only three 
variables are used. This time the variables are the Unit Acq Ratio (#50), the standard deviation of 
the natural logarithm of Acq Cost Est, BY10 (#14), and the natural logarithm of AUC Est (#15). 
As before, the first two variables are modeled as both fixed and random effects, and the model 
includes a random intercept term. The model subject remains the SubProgram. 

 
 

Mean (µ) Error = -4.7% 
Mean Abs. Error = 22.4% 

Std. Dev. (σ) = 28.5% 
 

Mean (µ) Error = 0.0% 
Mean Abs. Error = 1.2% 

Std. Dev. (σ) = 2.1% 
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Figure 3. Error in AUC Estimate as a 

Function of Time (Empirical Data) 

 
Figure 4. Error in AUC Estimate as a Function 
of Time (Theoretical Macro-Stochastic Model) 

  

In both cases, the theoretical macro-stochastic model performs impressively, driving down 
the magnitude of the mean error in the original prediction to a little over one percent in the case 
of LCC estimates, and just over two percent in the case of AUC estimates. Since the result is 
represented in percentage terms, it is easy to lose context of the amount of money involved. But 
these potential improvements in estimating accuracy typically represent billions of dollars. Since 
the mean magnitude error in the original LCC estimate is over 20 percent, a program estimated 
to cost $30.0 billion over its life cycle could be expected to actually cost somewhere in the range 
of $24.0 to $36 billion, a $12 billion range. On the other hand, the macro-stochastic model might 
predict a life cycle cost of $34.0 billion, but its equivalent expected error range would only be 
$800 million. Clearly, such a massive reduction in cost uncertainty would be of tremendous 
benefit to defense acquisition officials. 

In one respect, this significant estimating improvement is an extremely important result. Fig-
ure 2 and Figure 4 are remarkable because they show the tremendous potential utility of the 
macro-stochastic cost modeling approach. With a highly parsimonious model, the model is able 
to predict the actual LCC and AUC estimating errors for all of the programs in this study with 
exceptional accuracy. Moreover, the random (subject-specific) effects are very powerful, strong-
ly suggesting there is a unique pattern for each unit of analysis. This result is especially impres-
sive given that there are over 35 SubPrograms in both models, over half of which consist of at 
least 10 data points (i.e., SARs) that must be “fitted.” 

However, in another—arguably more relevant—respect, this finding is of little utility. The 
problem with the preceding approach is that it is inherently a post-hoc analysis. This is why we 
refer to this model as “theoretical.” One cannot expect that the exact cost estimating error 
patterns of these programs will occur again. So although using the SubProgram as the model 
subject may reveal powerfully descriptive random effects, the theoretical macro-stochastic model 
has no meaningful predictive capability. 

Mean (µ) Error = 0.0% 
Mean Abs. Error = 2.1% 

Std. Dev. (σ) = 3.8% 
 

Mean (µ) Error = 5.6% 
Mean Abs. Error = 41.2% 

Std. Dev. (σ) = 51.1% 
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The fact remains, however, that we now have some measure of confidence in the principle of 
macro-stochastic cost estimating of DoD programs. The challenge becomes how to translate this 
technique into a useful prognostic model. 

 
Program Categories 

In order to construct a predictive macro-stochastic model, the authors have devised a tem-
plate-based solution involving the creation of Program Categories. This approach aims to 
achieve a better balance between model accuracy and utility by structuring the data into broader 
categories comprising multiple programs and using criteria that apply to both current and fore-
seeable programs. In this way, the Program Category supplants the SubProgram as the model 
subject and the unit of analysis.  

To use a stock market analogy, the Program Category notion is the equivalent of forecasting 
an individual company’s performance based on the business sector to which it is assigned. In the 
absence of company-specific performance indicators (which would be preferred, but may not be 
available until too late), we assume that the company’s future performance will roughly conform 
to the average pattern of all the other companies in the same sector. A key to making this ap-
proach work, of course, is ensuring that companies (i.e., programs) are assigned to representative 
sectors (i.e., categories).  

Indeed, establishing the exact Program Categories and ontological criteria was one of the 
most challenging aspects of model development. Our first goal was to be able to employ the 
model as early as possible, so the criteria used to assign a program to a particular Program 
Category had to be clearly discernible at the outset of a program. Second, we wanted the Pro-
gram Category criteria to be simple and logical, easily derived from the list of independent 
variables in Table 2. Third, we sought to have each category consist of programs similar enough 
to one another that the new model subject (i.e. the Program Category) would continue to exhibit 
statistically significant subject-specific patterns that could be captured by the random design 
matrix of the mixed model. (Given the complex interactions between various fixed and random 
effect model terms and the constituent covariance matrices, identifying meaningfully similar 
programs is often far from clear).  

In addition, the total number of program categories needed to be carefully considered as it 
represented another source of tension between accuracy and utility. If we create too few catego-
ries (i.e., many programs in a single category), the power of the mixed model is bound to be 
diminished as there will likely be little in the way of subject-specific effects to model. If we 
create too many categories, then we run the risk of building a model that is still too program-
specific. In other words, if we have a large number of categories with a few number of programs 
in each, then we cannot—without additional data—have confidence that we have identified a 
valid Program Category that will effectively subsume a future program of interest. 

We evaluated many different categorization structures defined via various variables and at-
tribute thresholds, as well as varying numbers of categories. In the end, we empirically deter-
mined that the best balance of performance and utility was achieved through seven Program 
Categories defined by the following three variables: DoD Component (#2), System Type (#4), 
and Program Size based on Acq Cost Est, BY10 (#14). Although the Program Category criteria 
were the same for both the AUC and LCC model, the specific programs and SAR counts are 
slightly different due to differences in data availability (see Table 1). Table 3 and Table 4 show 
the Program Category structure and program assignments for each model. 
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Table 3. Summary of LCC Macro-Stochastic Cost Model Program Categories (PCats) 

PCat DoD 
Comp 

System 
Type 

Size (Mean Acq 
Cost Est, BY10) SARs # of 

Programs Assigned Programs 

1 AF Aviation Small (≤ $18.0B) 33 4 C-130J, JPATS, JSTARS, PREDATOR 

2 Navy Aviation Small (≤ $18.0B) 53 5 C/MH-53E, E-2C, MH-60R, MH-60S, T-45TS 

3 Both Aviation Large (> $18.0B) 60 5 C-17A, F-16C/D, F-22, F-14D, F/A-18E/F 

4 Navy Maritime Small (≤ $8.5B) 41 7 AOE 6, CVN68 (74/75), CVN68 (76),  
MHC 51, SSGN, T-AKE, T-AO 187 

5 Navy Maritime Medium       
($8.5B − $30.0B) 42 3 LHD 1, LPD 17, SSN 21 

6 Navy Maritime Large (> $30.0B) 36 2 DDG 51, SSN 774 

7 Both Munition All 52 5 AIM-9X, AMRAAM-AF, AMRAAM-JT, 
JASSM, JSOW 

   TOTALS 317 31  

 

Table 4. Summary of AUC Macro-Stochastic Cost Model Program Categories (PCats) 

PCat DoD 
Comp 

System 
Type 

Size (Mean Acq 
Cost Est, BY10) SARs # of 

Programs Assigned Programs 

1 AF Aviation Small (≤ $18.0B) 58 5 C-130J, GLOBAL HAWK, KC-135A, JPATS, 
JSTARS 

2 Navy Aviation Small (≤ $18.0B) 68 6 AV-8B, C/MH-53E, E-2C, MH-60R, MH-60S, 
T-45TS 

3 Both Aviation Large (> $18.0B) 83 6 C-17A, F-16C/D, F-22, F-14D, F/A-18C,  
F/A-18E/F 

4 Navy Maritime Small (≤ $8.5B) 52 8 AOE 6, CVN68 (74/75), CVN68 (76), MHC 51, 
SSGN, STRAT. SEALIFT, T-AKE, T-AO 187 

5 Navy Maritime Medium        
($8.5B − $30.0B) 42 3 LHD 1, LPD 17, SSN 21 

6 Navy Maritime Large (> $30.0B) 36 2 DDG 51, SSN 774 

7 Both Munition All 53 5 AIM-9X, AMRAAM-AF, AMRAAM-JT, 
JASSM, JSOW 

   TOTALS 392 35  

 

Note that while the acquiring service component and the system type would not be expected 
to change during a program’s life, the size of the program does change as acquisition cost 
estimates vary—sometimes significantly—over time. The dependence of the Program Category 
assignment on acquisition cost estimates introduces the possibility that a program’s category 
assignment might change at some point in development. For the programs in our data set, this did 
not happen, but it could for some future program. If this were to occur, it’s not clear whether that 
means the differently-sized program is in fact behaving more like the programs in its newly 
assigned category, or whether the size thresholds we have established here would need to be 
modified. 
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In addition, the fact that a surface maritime system (i.e., DDG 51) and a submarine system 
(i.e., SSN 774) are grouped together into a single category is likely to aggrieve the traditional 
cost estimator (as presumably would the grouping of fixed and rotary-wing aviation systems). 
Although both the surface vessel and the submarine are maritime systems, the Navy cost estima-
tor knows that there are key cost-impacting differences between how each type of program is 
acquired and operated. With respect to the modeling approach pursued here, the point to keep in 
mind is that the pattern of program costs for similar systems is a fundamentally different phe-
nomenon than the pattern of program cost errors. It is the latter that is relevant to our approach, 
and using this metric, the groupings in Table 3 and 4 proved to be the most effective. 

 
A Prognostic Macro-Stochastic Model 

By restructuring the data from individual programs into Program Categories, we can now use 
the model to make predictions. Given the assumption that future programs are essentially like the 
programs in this data set, then as long as a future program can be assigned to one of the existing 
categories, the macro-stochastic model can be reasonably applied at any time after program 
initiation to predict the expected error in the program’s cost estimate and, by extension, predict 
the actual LCC or AUC.  

This improved utility has come at a cost, however. The powerful program-specific trends de-
picted in Figure 2 and Figure 4, which consisted of only three independent variables, are diluted 
by the amalgamation with other—albeit similarly behaving—programs. In essence, the new 
model subject of Program Category requires that the random effects design matrix (Z) compro-
mise between multiple, different program trends, resulting in reduced model performance. Or, to 
continue the market analogy, a particular company’s performance is not likely to exactly follow 
the average of its assigned sector: There will be important company-specific deviations. Fortu-
nately, we can restore a large degree of expected model performance though the inclusion of 
additional variables. 

The final LCC macro-stochastic model incorporated 12 variables (to include five random 
variables) from Table 2 and the final AUC macro-stochastic model incorporated 14 (to include 
six random variables). The selected fixed and random variables, along with their estimated 
parameter values, are listed in Tables 5 through 8. Since the random variables vary by Program 
Category, they are specified in their own tables. The reader should be cautious in making infer-
ences based on relative parameter estimate values as not all variables are normalized, and the 
relationship between parameters is complicated by the inclusion of both fixed and random 
effects. 

Note that over half of the final variables from both models are capturing, in some manner, 
program trends to date regarding the estimated cost and/or production quantity. These variables 
may capture trends either directly by what is being measured (e.g., Nunn McCurdy Breach, Cost 
Variance, etc.) or indirectly via changes in a given variable to date (e.g., standard deviation, 
mean, etc.). Regardless, a consequence of this predominance of trending variables is that a 
program should have at least one previous SAR on which to construct a trend value: Without a 
previous SAR, we find that model performance diminishes considerably. In practice, this results 
in a small impact on the utility of the model in that it is not suitable for use until the second SAR, 
which is nominally one year after program initiation. 
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Table 5. LCC Macro-Stochastic Model Variables and Fixed Effects Parameter Estimates 

# LCC Model Variable Random 
Effect? 

Fixed Effect 
Estimate 

1a DoD Component (#2) – Navy No 0.4157 

1b DoD Component (#2) – Air Force No 0.0000 
2a Acq Type (#6) – New No 0.2132 
2b Acq Type (#6) – Modification No 0.2183 
2c Acq Type (#6) – Variant No 0.0000 
3 Weighted Mean of Normalized Acq Cost Est, BY10 (#14) Yes 3.2555 
4 Std. Dev. of Natural Log of Acq Cost Est, BY10 (#14) No 9.3392 
5 Natural Log of LCC Est (#17) No 7.1928 
6 Mean of Natural Log of LCC Est (#17) No -4.8595 
7 Maximum CV, Est (#25) Yes -0.7387 

8 Slope of Regression Line of CV, Quan (#26) Yes 0.2188 
9 Standard Deviation of CV, Total (#27) No -1.6512 
10 Range of CV, Total-Quan (#28) Yes 0.7593 
11a Breach, N-M (#34) – No Yes -3.1063 
11b Breach, N-M (#34) – Yes Yes -3.1440 
12 Std. Dev. of Square Root of Procure, Change (#48) No -0.3264 

 

Table 6. LCC Macro-Stochastic Model Random Effects Parameter Estimates 
by Program Category (PCat) 

  
# LCC Model Variable 

Random Effect Estimate 
PCat1 PCat2 PCat3 PCat4 PCat5 PCat6 PCat7 

1 Wtd. Mean of Normalized Acq Cost Est, BY10 -3.5641 4.4451 -2.0476 -3.4837 3.2109 -3.4782 4.9177 
2 Maximum CV, Est 0.2384 -2.0194 -1.1120 0.5359 1.0697 0.7222 0.5652 
3 Slope of Regression Line of CV, Quan 0.3989 0.1223 -1.1514 -0.4866 2.3672 -0.6491 -0.6013 
4 Range of CV, Total-Quan -0.1111 1.0039 0.3164 1.8285 -2.2551 -0.2410 -0.5417 
5a Breach, N-M – No  0.4924 -0.0670 -0.4322 0.2778 -0.5395 -0.0921 0.3606 
5b Breach, N-M – Yes  0.5163 -0.0541 -0.4083 0.5018 0.0801 0.0442 -0.7883 
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Table 7. AUC Macro-Stochastic Model Variables and Fixed Effects Parameter 
Estimates 

# AUC Model Variable Random 
Effect? 

Fixed Effect 
Estimate 

1a DoD Component (#2) – Navy No 0.4687 

1b DoD Component (#2) – Air Force No 0.0000 
2a Acq Phase (#5) – Development Yes 1.6995 
2b Acq Phase (#5) – Production Yes 1.6816 
3a Acq Type (#6) – New No 0.3993 
3b Acq Type (#6) – Modification No -0.1132 
3c Acq Type (#6) – Variant No 0.0000 
4 Mean of Scaled Acq Cost Est, BY10 (#14) Yes 0.4536 
5 Natural Log of AUC Est (#15) No 0.6391 
6 Mean of Natural Log of AUC Est (#15) No -0.5730 
7 Maximum CV, Engr (#24) Yes 1.4515 
8 Weighted Mean of CV, Est (#25) No 1.5208 

9 CV, Quan (#26) No 0.8438 
10 Mean CV, Total (#27) No -1.2817 
11 Wtd. Mean of Natural Log of Procure, Plan (#47) Yes 0.1570 
12 Mean of Square Root of Procure, Plan (#47) No 0.2402 
13 Wtd. Mean of Square Root of Procure, Change (#48) Yes -0.1111 
14 Unit Acq Ratio (#50) Yes 5.8501 

 
 

Table 8. AUC Macro-Stochastic Model Random Effects Parameter 
Estimates by Program Category (PCat) 

  
# AUC Model Variable 

Random Effect Estimate 

PCat1 PCat2 PCat3 PCat4 PCat5 PCat6 PCat7 
1a Acq Phase (Development) -1.2914 0.4545 0.3163 0.0417 -0.2775 -0.0037 0.7601 
1b Acq Phase (Production) -1.2125 0.5695 0.2867 -0.4582 -0.2023 -0.0122 1.0289 
2 Mean of Scaled Acq Cost Est, BY10 -0.1246 0.3191 -0.4065 -0.6093 0.4997 -0.2703 0.5919 
3 Maximum CV, Engr -1.2665 -0.5047 1.8679 -0.0688 -0.2330 0.2027 0.0024 
4 Wtd. Mean of Natural Log of Procure, Plan 0.0549 -0.0547 0.2851 0.2652 -0.2904 0.4902 -0.7503 
5 Wtd. Mean of Square Root of Procure, Change 0.4584 0.1701 0.3614 0.0257 -0.6929 -0.4415 0.1188 
6 Unit Acq Ratio -2.0932 -0.2902 1.0105 -0.0981 -0.4456 1.4998 0.4168 

 
 
Figure 5 and Figure 6 show, respectively, the performance of the LCC and AUC prognostic 

macro-stochastic models where the subject equals the Program Category. Each model is capable 
of predicting the accuracy of a current LCC or AUC point estimate at any point in a program’s 
life where at least two SARs are available, and then compensating for that error to provide a 
statistically more accurate estimate. Although model performance is not as impressive as it was 
for the theoretical model (where the model subject was SubProgram), it is still far better than 
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current estimate performance. The mean magnitude error in the prognostic LCC macro-
stochastic model is more than a fourfold improvement of the empirical estimate; for the AUC 
model, the improvement is over fivefold.  

 
 

 
Figure 5. Error in LCC Estimate as a 
Function of Time (Prognostic Macro-

Stochastic Model)

 
Figure 6. Error in AUC Estimate as a 
Function of Time (Prognostic Macro-

Stochastic Model) 
 

 
A Prognostic (and Validated!) Macro-Stochastic Model 

The performance shown in Figure 5 and Figure 6 was achieved under conditions in which the 
training data set and the test (i.e., validation) data set were equivalent. Thus, it is reasonable to 
suspect that actual model performance against future programs will be reduced (Larson 1931; 
Hart and Wehrly 1986). In order to validate the model, we need to test its performance against 
data that is not available to the model. It is obviously not desirable to wait several years for new 
program data to become available, but the current size of the data set is an impediment to a 
standard data partitioning techniques (i.e., dedicated training and test data sets). With respect to 
validation, the most logical unit of analysis is the program, as that is the fundamental entity for 
cost estimation and cost accrual accounting in the DoD. For both the LCC and AUC model, 
however, we have fewer than three dozen programs available for analysis, hardly sufficient to 
execute a robust validation involving separate training and test data sets. 

This leads us to cross-validation. However, the specific method of cross-validation for the 
macro-stochastic model is more complicated than it might at first seem. The non-i.i.d. nature of 
the data also invalidates standard cross-validation techniques: omitting an observation (i.e., one 
SAR) does not remove the associated information due to correlations with other observations 
from that subject (Opsomer, Wang, and Yang 2001; Arlot 2010). Suggested techniques to work 
around this problem include modified cross-validation (Chu and Marron 1991), h-block cross-
validation (Burman 1994), and sequential validation (Bengio and Chapados 2003). 

Mean (µ) Error = -0.4% 
Mean Abs. Error = 4.7% 

Std. Dev. (σ) = 6.7% 
 

Mean (µ) Error = -2.2% 
Mean Abs. Error = 8.0% 

Std. Dev. (σ) = 13.0% 
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Unfortunately, none of these techniques are well suited for the structure of the MDAP data. 
Not only is the correlation distance (i.e., the strength of the correlation) highly dependent on the 
program, but several programs have an insufficient number of SARs to faithfully implement the 
given technique. For instance, in the case of h-block cross-validation, determining the theoreti-
cally appropriate size of h in our data set is not clear, but it must be relatively large, and any 
value of h greater than two could eliminate as many as six programs from the validation. 

As a result, we have implemented a tailored version of Leave One Out Cross Validation 
(LOOCV). Ordinarily, the “one” in LOOCV refers to a single observation, which is held out 
from the data set and used for validation after the model is trained on the remaining data. This 
process is then repeated for every data observation. Given the correlations within a program, we 
have redefined the “one” to denote an entire Program. This is an appealing strategy for two 
reasons. First, this is the level at which the correlations exist, so omitting an entire Program is the 
only assured method for fully eliminating the correlations. Second, despite restructuring the data 
into Program Categories, principal cost estimating interest remains with the Program, so that is 
the appropriate level for assessing model performance. Thus, for validation purposes, the entire 
Program (not just the SubProgram) becomes the unit of analysis and the observation left out.  

After removing a given Program from the data set, we train the model using the remaining 
data and use the omitted Program as the test set. Then we record how the model performed 
against that Program. We repeat this process for every Program in the data set. This results in 30 
(the C/MH-53E program cannot be validated because it only has one valid LCC SAR) separate 
validations for the LCC model and 35 for the AUC model, which are then amalgamated into a 
single summary of overall validated model performance. This is a particularly rigorous valida-
tion as no information regarding the program to be tested remains embedded in the model. Also 
note that the Program Category structure still applies. This means that when validating certain 
programs (particularly the large and medium maritime categories) very few programs remain in 
the category to form the basis of the Program Categorization parameters (refer to Table 3 and 
Table 4). Nevertheless, the validated version of each model performs well. 

Figure 7 shows the resultant validated performance of the macro-stochastic prognostic LCC 
model based on our tailored LOOCV technique. This performance reflects model-corrected LCC 
estimates for every program with at least two valid SAR-derived LCC estimates. The analogous 
results for the AUC version of the model can be seen in Figure 8. As one would expect, model 
performance has diminished relative to the non-validated version of the model, but it still re-
mains significantly better than empirical performance. The mean magnitude error in the validat-
ed LCC macro-stochastic model is 2.1 times better than the empirical estimate; for the AUC 
model, the model is 2.6 times better. 

Figure 9 compares the mean magnitude error per SAR in the empirical data to that of both 
the AUC and LCC validated models across all programs. For reference, performance of the non-
validated version of each model is also shown. To ensure a fair comparison, all SARs omitted 
from the macro-stochastic models (i.e., initial SARs) were also omitted from the empirical data, 
which is why the mean magnitude errors for the empirical data are slightly different from those 
shown in Figure 1 and Figure 3. 
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Figure 7. Error in LCC Estimate as a 

Function of Time (Validated Prognostic 
Macro-Stochastic Model) 

 
Figure 8. Error in AUC Estimate as a 
Function of Time (Validated Prognos-

tic Macro-Stochastic Model) 
 
 
Figure 10 shows another measure of model effectiveness, which is essentially “head-to-head” 

performance of each macro-stochastic model to the empirical estimates. This program-by-
program comparison shows that the validated LCC model performs better (i.e., has an overall 
lower error across all the SARs of a given program) in 23 of 30 cases. The validated AUC model 
performs better for 31 of the 35 programs. 

 
 

 
Figure 9. Model Performance as Measured 

by Mean Magnitude Error per SAR 

 
Figure 10. Model Performance as 

Measured by Number of Programs with 
Lower Overall Error 

Mean (µ) Error = 0.0% 
Mean Abs. Error = 10.9% 

Std. Dev. (σ) = 14.6% 
 

Mean (µ) Error = 1.6% 
Mean Abs. Error = 15.6% 

Std. Dev. (σ) = 21.5% 
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DISCUSSION 

Key Findings 
Although the validation results of the LCC and AUC macro-stochastic prognostic models 

yield sizeable errors, we find that overall accuracy for both models is significantly better than 
what was achieved in the original SAR estimates. The predicted LCC value from the validated 
macro-stochastic model had a mean absolute error of just under 11 percent compared to a 21 
percent error in the historical program estimates. Given that the total LCC across all of the 
programs we evaluated was approximately $800 billion, the model-predicted LCC estimates 
represent an improvement in estimating performance of about $80 billion, or an average of $2.6 
billion per program. For the AUC estimates, the improvement was even greater. The mean 
magnitude error of the historical cost estimates was over 40 percent, while the model estimates 
had a mean magnitude error of less than 16 percent. Again, this translates to cost fidelity im-
provements measured in billions of dollars. 

Improvements in the mean errors tell part of the story, but program-by-program performance 
is also important, and the macro-stochastic models performed well by this metric as well. If the 
macro-stochastic prognostic model presented here had been used to estimate LCC costs for every 
SAR of the programs in the LCC data set (aside from the first), the model-based estimate would 
have had a lower overall error than the original estimate for 23 of 30 programs (77 percent). In 
the case of the AUC estimates, the model would have performed better for 31 of 35 programs (89 
percent).  

Not only can the original program estimate be improved dramatically using a macro-
stochastic derived correction factor, but it can also be accomplished with minimal effort. The 
specific variables that feed each model are easily derived from data routinely available in the 
program’s SARs. Program values observed for these variables can be transcribed into the model 
formula at any point after the program’s second SAR, and a macro-stochastic estimate derived in 
just a few hours.  

The fact that trending variables were found to be statistically significant predictors of LCC 
and AUC estimate errors is an intriguing result, but difficult to fully explain. Recall that the 
original estimates developed by the program had access to all of the same information (and far 
more) available to us in the SAR. Thus, any cost-impacting changes to the program should have 
been incorporated into the latest SAR estimate. It may be that the full cost implications of certain 
types of baseline changes are not fully understood until later in the program. Or it may be that 
certain types of historical program instability are likely to persist and/or permeate other elements 
of the program in ways that distort expected costs. In any case, the prominence of the trending 
variables make it tempting to conclude that change and cost instability tends to beget further 
change and cost instability. But this interpretation is too simplistic, and frankly not warranted 
based on the data. Instead, our conclusion is more nuanced: Certain types and degrees of change 
in certain types of programs do tend to affect the accuracy of the current cost estimates in 
relatively predictable ways. 

Perhaps of equal interest to the parameters included in the model are those that were omitted, 
i.e., those that never significantly contributed to model performance. Notable non-contributors 
were Joint (#3), APB-related variables (#8-11), Prime Contractor (#12), PAUC/APUC-related 
variables (#20-23), Requirement Changes (#41-46), Program Year (#1), Maturity (#7), and 
Expended (#18). The last three are perhaps the most surprising, as one would expect that varia-
bles that capture program age would be a good indicator of cost estimate accuracy (with the 
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presumption that estimate accuracy improves as programs mature). Since they were not, this 
serves as additional evidence of the finding presented in the characterization paper, i.e., that LCC 
and O&S cost estimates for MDAPs are improving very little, if at all, over time (Ryan et al. 
2012).  

We believe that the LCC and AUC macro-stochastic cost models presented here are ready for 
trial use. However, it is important to understand a fundamental constraint on their intended 
implementation. Note that both the LCC and AUC models require as an input all of the subject 
program’s respective cost estimates to date (see Table 5 and Table 7). This means, for one, that 
the output of the macro-stochastic model would generally not be suitable for internal program 
use. Unless perhaps implemented as a final validation check, awareness of the macro-stochastic 
output could influence the official SAR cost estimates, which in turn, would likely bias the 
output of the macro-stochastic model. This is because the macro-stochastic model implicitly 
relies on the continuation of current cost estimating practices; any deviation from these practices, 
to include modifying the estimate based on the results of the macro-stochastic model, could 
fundamentally change the stochastic nature of this key input variable.  

The dependence of the macro-stochastic cost model on the program’s cost estimate also 
means that it is not meant to be used in lieu of existing program estimates. The traditional cost 
estimate may be perfectly accurate given the current baseline, which is an important input, per 
se, for senior decision-makers. The macro-stochastic model, on the other hand, is intended to be 
a complementary data point—it provides leadership the equivalent of a stochastic cost vector, 
i.e., a probabilistic indication of where program costs are likely to end up. 

As a consequence of these implementation constraints, the authors envision that these models 
could be most effectively employed by cost validation entities outside the acquisition chain of 
command. An independent cost estimate is required for all MDAPs, which is provided by either 
the service cost agency or the Office of the Secretary of Defense, Cost Assessment and Program 
Evaluation (OSD/CAPE). Either of these entities may find the output of the macro-stochastic 
model highly useful when conducting their independent analyses. The Defense Acquisition 
Executive (DAE) and/or the Defense Acquisition Board (DAB) are also potential consumers, as 
they each require independent cost estimates as part of their review process, and the macro-
stochastic model estimate could serve as an alternate source of realistic cost validation (GAO 
2009; DAU 2012). 

Another potential user of this type of model would be the service component acquisition 
portfolio manager, who is often required to manage the execution of several similar defense 
systems. The macro-stochastic model may be especially suitable in this case, as the portfolio 
manager is likely to be responsible for multiple systems from the same Program Category, and 
more accurate insights into overall portfolio cost commitments could be invaluable. Moreover, 
using the model for several contemporaneous programs would reduce the susceptibility of the 
predicted values being skewed by statistical outliers. Although the macro-stochastic model may 
certainly be applied to—and has been validated against—individual programs, one would expect 
it to perform more consistently when multiple programs are being simultaneously evaluated. 
This suspicion can be partially confirmed by examining aggregated program performance at the 
Program Category level. Although the results are not presented here due to space considerations, 
we did find that both models provided significantly improved estimates across every Program 
Category. 
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Issues and Concerns 
Not surprisingly, the macro-stochastic model will sometimes predict an error estimate that 

overcorrects the program estimate, such that an underestimate becomes an overestimate, and vice 
versa. This is a natural consequence of that fact that the model is attempting to minimize vari-
ance around a “perfect” estimate (i.e., zero error), which means that it implicitly regards an 
overestimate as equally undesirable as an underestimate. This can (and does) create the following 
type of situation: The original estimate is 20 percent too high (or too low), but the model-
corrected estimate is 10 percent too low (or too high). The question arises of whether we would 
be better off budgeting 20 percent too much or 10 percent too little. Although both underesti-
mates and overestimates are undesirable from a budget planning perspective, there are situations 
where one type of error may be preferred to the other. The macro-stochastic model could certain-
ly be tailored to reflect such preferences through a zero error offset. 

Somewhat related to the issue of overcorrections are the occasional instances where the mod-
el predicts an extremely large estimate error. While these predictions of massive errors—once 
applied to the original estimated cost—sometimes produce a more accurate estimate, they can 
also lead to unrealistic results, such as when the model predicts that the actual LCC or AUC has 
been underestimated by more than 100% (unless one wishes to advocate the possibility that 
Pentagon programs could turn a profit!). To avoid these types of nonsensical outcomes, we have 
embedded a threshold mechanism into the prognostic model such that the original estimates—
regardless of what error the model predicts—are not corrected by more than a factor of two. In 
other words, the prediction of actual cost after correction for the model-predicted error will never 
be more than double the empirical estimate, nor less than half. In principle, the threshold could 
be much higher, but this level seemed appropriate from a practical standpoint. Although the 
program LCC and AUC estimates are sometimes inaccurate by a factor greater than two, correc-
tions that require more than doubling or halving of the program estimate would—even if valid—
likely be regarded with justifiable skepticism. Note that while thresholding did provide an 
improvement to overall model performance, the effect was marginal, and it was not implemented 
often. The threshold constraint affected the output in 26 of 709 cases (3.7 percent), and nearly 
half of these instances occurred on a single program (C-130J). 

Another potential concern is long-term model reliability. As discussed in the previous sec-
tion, the current iteration of both macro-stochastic models relies on official program estimates to 
produce its own estimate. This fact introduces an inherently recursive—and potentially unsta-
ble—element to longer-term model use. We know that senior defense leaders make key decisions 
based on the traditional program cost estimates, and that these estimates are often highly inaccu-
rate. The nature of those decisions—and thus the ultimate trajectory of certain types of pro-
grams—may be substantively different if the decision-maker has access to more accurate cost 
estimates. For instance, programs that would otherwise be cancelled might instead be funded, 
and vice versa. This in turn, could create a negative feedback loop where cost estimate trajecto-
ries of certain program categories no longer conform to the patterns that characterize the pro-
grams that we have seen to date, thereby reducing the predictive capacity of the macro-stochastic 
model. Though highly speculative, this argument points to the need for continued refinement of 
the model as more data becomes available. 

Perhaps the most significant barrier to macro-stochastic model implementation relates to the 
fact that it represents a fundamentally different approach to DoD cost estimating. In particular, it 
could be viewed in many respects as inherently non-transparent. In contrast to a traditional 
bottoms-up cost estimate, the specific drivers of the macro-stochastic cost estimate are not 
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traceable, nor fully explainable. Users could be inclined to view this type of model as a “black-
box,” where the output may in fact be probabilistically more accurate, but the internal workings 
are inscrutable. Nevertheless, the results presented here are compelling: Independent cross-
validation verifies the improvements in long-term DoD cost estimates that may be achieved by 
adjusting the cost estimates using the model-predicted error. 

In practice, the most important caveat to using this model pertains to the Program Category 
structure. This construct was a strategy employed to transform the theoretical macro-stochastic 
model into a useful prediction tool. However, it is only a valid construct to the extent that current 
programs are representative of future programs, and those future programs really do “fit” into 
one of these established categories. Expanding on this point, the number of programs in Program 
Categories five (medium maritime) and six (large maritime) are fewer than we would prefer. By 
only having two to three constituent programs, we run the risk identified early on, i.e., that the 
defined Program Category may not be sufficiently representative of the next program to be 
assigned. Therefore, users of the current iteration of the macro-stochastic model may wish to be 
more wary when employing the model against these two Program Categories. This concern can 
be significantly mitigated only with the passage of time and the inclusion of more data. 

Finally, a methodological note of caution. The specific model variables selected as well as 
the parameter estimates are based on the results of the previously completed characterization 
study (Ryan et al. 2012). Therefore, we recommend that potential users familiarize themselves 
with that study in order to understand the potential issues and biases documented there before 
employing the macro-stochastic model. If the specific findings of the characterization study are 
not valid, then the specific variables and parameter values of this model are not likely to be valid 
either. Note, however, that concerns about the methodology of the characterization study would 
not be expected to weaken the underlying premise of macro-stochastic cost estimation; it would 
only affect its specific formulation. 
 
Future Work 

There are a number of ways in which the reliability, accuracy, or utility of the macro-
stochastic model could be improved. One beneficial task would involve using more current data 
to reproduce the characterization study and rebuild the model. The current data set is based on 
information available as of mid-2011. By expanding the data set to incorporate more recent SAR 
data and cost actuals, one could conceivably expand the data set by approximately ten percent in 
terms of the SAR count, and five percent with respect to program count. This additional data 
could help identify flaws in the model or increase confidence in the current implementation, 
especially if conducted by an independent source. Alternatively, model reproduction on a larger 
data set could allow the model parameters and Program Categories to be further optimized. 

The utility of the macro-stochastic model might be significantly improved by extending its 
applicability to earlier MDAP cost estimates. The availability of a more accurate cost estimate 
prior to Milestone B could be especially valuable, as this milestone requires independent certifi-
cation of program cost reasonableness and affordability (DAU 2012). But, as previously noted, 
the model is currently constrained by the need for certain trending variables, which are ostensi-
bly not available until the second SAR. Ordinarily, SARs are not required until after Milestone 
B, but some MDAPs do submit what are known as RDT&E (Research, Development, Test, and 
Evaluation) SARs prior to Milestone B. These SARs nominally exclude certain key cost catego-
ries (e.g., O&S costs), but if enough of these types of SARs exist, and they are otherwise suffi-
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ciently extensive, they could be evaluated for model inclusion. Alternatively, it may be possible 
to obtain values for the model parameters from non-SAR sources. 

Lastly, a couple of specific model concerns articulated in the previous section relate to the 
fact that the model is dependent on the program’s cost estimate. Therefore, a key improvement 
would be to build the model without using any of the program’s estimates as independent 
variables. This approach might reduce model performance, but it would also improve long-term 
model reliability and ensure the output is truly a functionally independent cost estimate. This 
modification could also be instrumental in beginning to characterize the cost-effectiveness of the 
aforementioned procurement strategy polices related to acquisition, contracting, and sustainment. 
Although we previously commented on the difficulty of quantifying these elements via the 
SARs, some degree of quantification could be very beneficial, and alternate data sources (besides 
the SAR) could be considered. 

 
CONCLUSION 

Despite the fact that DoD cost estimating practices have become increasingly sophisticated, 
the actual program cost estimates that are produced remain poor, at least when compared to the 
final, actual costs of the program. Our hypothesis is that this deficiency is largely due to the fact 
that current cost estimating techniques must assume a fixed program baseline. As a way around 
this unrealistic assumption, we have proposed a fundamentally different approach to cost esti-
mating that attempts to capture this uncertainty by modeling the error in the program estimate as 
a random variable. We found that the value of this variable is largely unique to a given pro-
gram—and even a group of programs, to some extent—and could be predicted reasonably well 
through a relatively small number of top-level program summary indicators gleaned from the 
annual SARs. 

The macro-stochastic model represents an intriguing option for vetting program estimates of 
Life Cycle Cost and Annual Unit O&S Cost. It not only appears to provide cost estimates that are 
significantly more accurate than those reported in the original SAR estimates, but the amount of 
effort needed to construct the estimates is minimal. Although the current version of the macro-
stochastic model is not suited for replacing existing program cost estimates, the authors believe it 
could be extremely useful to independent costing entities outside the acquisition chain of com-
mand who are seeking a more realistic assessment of system value or program affordability. 
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