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Motivation / Problem Description

d Computational analysis and design has a
fundamental role in research, development, and
manufacturing.

d Discrete model accuracy heavily influences
simulation accuracy.

dMaking accurate discrete models takes a
significant amount of time.

dThe aim of this work it to reduce the time
required to prepare a model for volume grid
generation.
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Mesh Generation Hierarchy

d Each of these processes is highly automated
given a definition from below in the hierarchy.

At the bottom of the hierarchy is edge-grid point
spacing distribution.
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Arc-Length Deficit—Definition

 Consider the two discretizations of the
curve: the upper one is “better” than
the lower one because the length of
the combined segments more closely
approximates the length of the curve.

O Traditional grid generators create high-
guality elements.

O Quality can always be improved, but,
first, the geometry must be
represented accurately.

O Arc-Length Deficit: difference between
length of segments in edge-grid and
arc-length of curve.
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Arc-Length Deficit—Alternate Methods

d Feature based grid generation, most often called
*adaptive mesh refinement”, presupposes that
the implemented scheme will accurately
represent the geometry once the desired feature

IS captured.

d Curvature
most popu
enough to

pased grid refinement is one of the
ar choices—nbut is not general

ne useful for most applications.
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Arc-Length Deficit—Issues with Feature Based Grid
Refinement

 Feature based methods are geometry-
representation specific.

dUsually require derivative information that might
not be available everywhere—or is
difficult/expensive to evaluate.
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‘Arc-Length Deficit—Discretization by Global
Optimization
[ Given a curve in R3, C with a normalized
parameterization variable, 0<u<7, C(u): each u will
correspond to a point in R3,

d A number of interior points is chosen, n,. Such that
there are (n+2)=N total points (including the end
points), (Ug,U;,U,,...Uy)-

1 The topology of the grid is fixed in the form of
constraints: such that for each point on the grid, (u_
1<u;) and (ui<u,,).

 Optional: Minimum (€) and maximum (J) edge
length for the discretization could be enforced
through more constraints: € < (C(u._,)-C(u)) and

(C(ui)-C(u)) < .
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‘Arc-Length Deficit—Discretization by Global
Optimization (continued)
dThe optimization function is then the sum of the
length of the all of the segments:

dFor j=0...(N-1), the segment S; is defined by the
edge between C(u;),C(u;,,). Therefore the
optimization function is defined as:

N-1
O(uy, Uy, Uy Uy ) = —Z length(S )

J=0
dThe optimal discretization for n; interior points
can then be found be finding (u,,uU,,Us,...Uy.1)
such that the optimization function in minimized.
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‘Arc-Length Deficit—Discretization by Global
Optimization (continued)

Example parameterized curve:
n=6 N=8 S,={C(Ug),C(uy)}

cw . S,={C(uy).C(u,)}
. . S,={C(uy),C(us)}

3 . S3={C(u3),C(uy)}

o . ’ S,={C(u,),C(us)}

e i Ss={C(us),C(u)}

Se={C(Us),C(u7)}
With a length function, L(S), that
calculates the length of a segment the
optimization function is:

O(ul,u2,u3, u4,u5,u6) =—|L(Sy)+ L(S;)+ L(S,)+L(S;)+L(S,)+ L(Ss)+ L(S{)]

Subject to the constraints for topology and (optionally) minimum and
maximum edge lengths.
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‘ Arc-Length Deficit—Problems with Global

Optimization

 Global optimization can be computationally
expensive for large grids.

dHow to pick the number of interior points?

A (computationally) cheaper option is needed
because the purpose Is to accelerate the
process of geometry preparation—not relocate
the bottleneck to the bottom of the grid
hierarchy.
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‘Arc-Length Deficit—Discretization by Local
Optimization
Instead, use local optimization to calculate an
optimal solution.

This takes advantage of the optimal substructure
of this problem.

By obtaining an optimal solution with n=1 for
each edge, every edge will be optimally
represented.

1 The combination of the locally optimal edges
represents an optimal solution for the entire
curve.
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Optimal Grid Generation—Locally Justified, Optimal

Edge-Grid

dBelow is a locally justified, optimal edge grid
generation process
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Optimal Edge Grid Generation Algorithm

O For each curve:

» Define edge-grid as a queue of line segments (edges), initially
only containing the line segment connecting the two end
points of the curve.

» Define optimal-criteria: percent change in arc length,
minimum and maximum edge length.

» Breadth-first, simulated recursion is used to insert optimal
points into edge-grid.
» While queue is not empty:

v Pop edge from queue

= Calculate point on interior of edge on curve that minimized the local arc
length deficit.

= Determine if point should be placed based on optimal-criteria
= If yes:

» Push the two new edges into queue
= |f no:

* Do nothing
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‘ Algorithm for Implementing Optimal Edge Grid into

Existing Grid Generator
JdFor each edge-grid:

» Use end-point point-spacing values from optimal
edge-grid to generate initial edge-grid

» Define evolving edge-grid as initial edge-grid
» Set user-defined Deviation Factor

» Loop over intervals in evolving edge-grid

v Find interval with largest Deviation Factor

= Compare Local Deviation Factor to user-defined Deviation
Factor

* Insert point-spacing source on the interior of the curve
that matches point-spacing value for the optimal edge-
grid for that interval

* Regenerate edge-grid with included point-spacing
source

v Repeat if any point-spacing sources have been added
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Implementation in Real-World Grid Generator

dSolidMesh Edge-Grid Generation

Final Edge Grid

Optimal Edge Grid

Initial Edge Grid
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Results

dMale Head, from CAD model with uniform point
distribution

CAD Edge Grid Surface Grid
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Results

dMale Head, from CAD model with optimally-
generated point distribution (compare to

Edge Grid Surface Grid from Uniform Surface Grid
Optimal Edge Grid
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Questions?
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