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Why Impacted Yarns Break at Lower Speed 
Than Classical Theory Predicts 
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Genesis of the Talk 

• In September 2010 in Quebec City at 
PASS, Harm van der Werff of DSM 
pointed out to Sidney Chocron the 
fact in the title. 

• Sidney returned to Southwest 
Research Institute and confirmed 
with already existing SwRI data that 
it was indeed the case. 

• Sidney told James about it – James 
felt we had the analytic tools to 
understand the effect. 

• In particular, the authors had 
included the dynamic deformation of 
yarns in their Advanced Solid 
Mechanics course they were 
teaching at the University of Texas 
at San Antonio that semester. 
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Yarn 12 – Dyneema – 517m/s 
4 µs per frame 

No failure 
3 
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Yarn 11 – Dyneema – 583m/s 
4 µs per frame 

Immediate failure 

4 
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Fact Observed by Other Researchers  

1970: Wilde, Ricca, Cole and Rogers.  Dynamic response of a constrained fibrous 
system subjected to transverse impact Part 1 – Transient responses and breaking 
energies of nylon yarns.  Technical Report, Army Materials and Mechanics Research 
Center, Watertown, Massachusetts, 02172.  Report no. AMMRC TR 70-32. 

1982: Carr.  Failure mechanisms of yarns subjected to ballistic impact.  Journal of 
Material Science Letters, 18(7):585-588. 

1990: Field and Sun.  A high speed photographic study of impact on fibres and woven 
fabrics.  In SPIE Vol. 1358, 19th International Congress on High-Speed Photography 
and Photonics. 

1992: Wang, Field and Sun.  Dynamic behaviour of pre-stressed high strength 
polymeric yarns transversely impacted by a blade.  In Proceedings of the Int. Symp 
on Intense Dynamic Loading and Its Effects, pages 354-359.  Chinese Society of 
Theoretical and Applied Mechanics, Sichuan Univ. Press, Chengdu, China. 

2001: Bazhenov, Dukhovskii, Kovalev and Rozhkov.  The fracture of SVM aramide 
fibers upon a high-velocity transverse impact.  Polymer Science, Ser. A, 1:61-71. 
[Had an explanation, which did not seem to work.] 

2010: van der Werff and Heisserer.  Personal communication. 
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Classical Theory of Smith 

• The classical theory of yarn 
deformation developed by 
Smith and published in 1958 
dealt with a yarn that was 
deformed by a perpendicular 
motion at one end. 

• Two waves develop: 
– A tensile longitudinal wave 

in the yarn, and  
– A transverse wave in the 

yarn. 
• It is possible to explicitly solve 

for these waves.  
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New Approach to Classical Theory 

• A new approach to solving the equations for 
the deformation of the yarn is to do it in the 
original, undeformed frame of reference of 
the yarn. 
– Yields an exact solution, even for large 

strains. 
– Framework for solving the harder 

problem. 
• The stress when written in this reference 

frame is referred to as the Piola-Kirchhoff 
stress. 

• In particular, we use what is referred to as 
the first Piola-Kirchhoff stress tensor, which 
is not symmetric. 

• The stress is the force with respect to the 
undeformed area. 

• The wave motion can be solved by the 
Hugoniot jump conditions at the two wave 
fronts (the longitudinal and the transverse). 

)( 000

3

1
i

i
i

j

ji

j
v

tt
vb

x
S

ρρρ
∂
∂

=
∂
∂

=+
∂

∂
∑

=

][][ 0 iji vcS ρ=−

j

i
ij x

uFFS
∂
∂

+== − δσ
ρ
ρ where10



8 

The Yarn is Assumed Linear Elastic 

• The yarn deformation is assumed to be 
linear elastic, based on energy, with a 
constant modulus E and a strain to failure 
εf .  The conjugate variable to the first 
Piola-Kirchhoff stress is the transpose of 
the deformation gradient, FT. 
 
 
 
 
 
 
 
 

• In these expressions, the first Piola-
Kirchhoff stress has been written in terms 
of the deformation gradient F and the 
Lagrangian (Green) strain Eij. 
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The Exact Solution 

• Solving with the linear stress-strain relation, assuming a boundary condition of 
an applied tangential velocity at one end of the yarn, yields an exact solution 
(this applies even to large strain), most easily expressed in terms of strain in the 
deformed section of yarn E11: 
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For Small Strain, the Exact Solution Reduces to 
Smith’s Solution 

• The experimental transverse 
wave speed, which is a function 
of impact velocity and the 
longitudinal wave speed in the 
yarn, has been shown to agree 
with this result for various yarns. 

• The natural idea is to assume 
that during impact the projectile 
speed that will break a yarn is 
given by setting E11 = εf . 

• However, that doesn’t agree with 
experiment. 

.2)(,,,1 11
4/3

1111
1

1
11

21 EE
c
VE

c
v

E
c
c

c
c

E

xL

EE

−=−===

))1(2(/ εεεε −+=EcV



11 

Experimental Impact Speeds that Break Yarn do 
not Agree with Classical Theory 

• These are experiments performed at SwRI by Chocron, et al. (reported 
Tuesday in the first general session). 

• Clearly there is a large discrepancy. 

Yarn Longitudinal 
sound speed in the 
yarn 

Yarn breaking 
strain εf 

Breaking 
speed from 
experiment 
[Chocron, et 
al.] 

 Breaking 
speed from 
classical 
theory 

(km/s) (%) (m/s) (m/s) 

KM2 S5705 7.45 4.25 Between 621 
and 634 934 

Dyneema 
SK-65 9.89 3.60 Between 517 

and 583 1100 

PBO 10.7 3.25 Between 523 
and 610 1105 



12 

Why is there a Discrepancy? 

• If the classical theory agrees for transverse wave 
speed, why does it not agree for the impact speed 
that breaks the yarn? 

• The reason is that for a the boundary condition that 
occurs during impact of a flat-faced projectile is 
not the same as the applied boundary condition 
from the classical (Smith) theory. 

• However, for a small projectile and when the yarn 
does not break, a few microseconds after impact 
the boundary condition approaches the Smith 
boundary condition. 
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The Initial Boundary Condition is Not the Same  
(impact speed 555 m/s) 
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For A Higher Impact Speed, 
the Yarn Breaks ALMOST Immediately 
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Flat-face Projectile Impact on Yarn 

• The flat projectile face strikes the 
yarn. 

• The yarn bounces off the surface 
in the direction of impact, at 
twice the impact speed for an 
elastic impact. 

• From both sides where the yarn 
touches the projectile, 
longitudinal and transverse waves 
emanate along the yarn in both 
directions. 

• Two longitudinal waves meet 
above the center of the projectile, 
doubling the stress and strain. 

• If the stress and strain are high 
enough, the yarn breaks. 



16 

Solving for the More Complicated Condition 

• We focus on just one side 
of the projectile. 

• Four waves emanate along 
the yarn from that point, 
two longitudinal waves 
and two transverse waves. 

• The particle velocity and 
wave speed of these fronts 
can be explicitly 
determined by solving the 
Hugoniot jump condition 
at each wave front. 
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The Assumptions 

• We include the fact that the yarn “bounces” off the face of the 
projectile in varying amounts, from no bounce (stays on surface) to 
elastic bounce (twice the impact speed).  Yarn bounce plays a 
significant role in the yarn breaking speed. 

• We assume that the strain in the yarn does not change where it 
touches the edges of the projectile, thus yielding the result that 
strain is uniform in the deformed region of yarn. 

• The previous assumption allows us to use a geometric 
approximation to determine the strain in the yarn. 

• The strain in the yarn due to the initial impact doubles when the 
waves in the yarn meet from the opposite edges of the projectile. 
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The Solution 

• This equation relates the yarn bounce, the 
impact speed, and the strain in the yarn. 

• If we set E11 = εf  in this equation, then 
the resulting V = Vbr is the impact speed 
that breaks the yarn. 
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The Solution 

• This plot shows that the 
decrease in velocity for no 
bounce is 11% - thus, this 
is the largest possible 
breaking speed due to 
impact with a flat-faced 
projectile. 

• If the bounce is at twice the 
impact velocity (an elastic 
bounce) then the decrease 
in impact speed that breaks 
the yarn is 40%. _
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Comparison with Data 

• Thus, we are have reasonable agreement for an elastic bounce. 
• As an aside, computations with LS-DYNA give the yarn breaking speeds as 557±3 

m/s, 672±3 m/s, and 692±3 m/s, showing that the analytical model and DYNA agree. 

Yarn  Breaking speed 
from 
experiment 
[Chocron, et al.] 

Breaking 
speed from 
classical 
theory 

Breaking 
speed with no 
bounce 

Breaking 
speed with 
elastic bounce 

(m/s) (m/s) (m/s) (m/s) 

KM2 S5705 Between 621 
and 634 934 829 565 

Dyneema SK-65 Between 517 
and 583 1100 972 664 

PBO Between 523 
and 610 1105 973 666 
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Conclusions 

• The boundary condition when 
a flat-faced projectile strikes 
a yarn is not the same as 
applying a velocity to the end 
of the yarn. 

• Working through the details 
yields a reduction in yarn 
breaking impact speed of 
11% to 40%. 

• These new predicted yarn 
breaking speeds values have 
reasonable agreement with 
experiment. _
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Yarn 03 – Dyneema – 477m/s 
5 us per frame 

No failure 

24 
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Yarn 06 – Dyneema – 474m/s 
4 us per frame 

No failure 
25 
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Yarn 09 – Dyneema – 672m/s 
4 us per frame 

Immediate failure 

26 
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Yarn 13 – PBO – 523m/s 
4 us per frame 

No failure 
27 
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Yarn 18 – PBO – 610m/s 
4 us per frame 

Immediate failure 

28 
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