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@ﬁﬁl—t@ Mission Background —‘

« Army Research Laboratory’s Survivability/Lethality
Analysis Directorate (ARL/SLAD) performs survivability/
vulnerability analyses on Army vehicles, including
rotorcraft

« An important factor in rotorcraft vulnerability analyses is
the outcome of a ballistic event that leads to reduced or
zero levels of available power

 Modeling of the post-event transition to one-engine-
Inoperative (OEl) flight or an autorotative impact is used to
guantify the rotorcraft outcome
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Y RDEC D Outcome Definition -‘

* The outcome of a power-loss ballistic event is binned into
one of three “kill categories”:

— Mission Abort (MA)

» The rotorcraft is able to transition to steady, level flight from its flight conditions
at the time of the event

|t can return to base for repair

— Forced Landing (FL)

« The rotorcraft is forced to perform an immediate, but controlled, landing

» This is the equivalent of a successful autorotation; repairs may be performed
on the ground as necessary

— Attrition (Att)

» The rotorcraft’s impact velocity exceeds the designated critical velocity for
avoiding extensive structural damage

* Repairs are not feasible, and the vehicle is removed from inventory
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N ﬁ'ﬁl—t@

Outcomes are modeled in two
distinct regions of the
rotorcraft’s flight envelope

— High/Fast (H/F):
Above 80 kts initial ground speed
Between 100-600 ft above ground level

— Low/Slow (L/S):

Below 40 kts initial ground speed
Below 100 ft above ground level

A power-loss event will be
modeled at many height/
velocity points throughout each
region, and a kill category
assigned at each point
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@ﬁﬁfc@ Compiling Results -‘

« The percentage of the area of a
given region occupied by points
binned into each kill category is
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@ﬁﬁl—t@ Using the Results —‘

* In this example, the DESCENT model predicts that for
total power loss anywhere in the Low/Slow flight region,
there is a 72% probability of Attrition and a 28%
probability of Forced Landing

* This probabilistic approach allows us to compute P, inputs
before vehicle-level vulnerability modeling occurs and
speeds up the processing of the survivability/vulnerability
analysis
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@ﬁﬁl—t@ Model Development —‘

« DESCENT is a rotorcratft flight optimization script
developed by ARL/SLAD and ARL’s Vehicle Technology
Directorate (ARL/VTD)

« The optimization engine is SNOPT, a sparse-matrix non-
linear optimization algorithm written at Stanford University

« DESCENT'’s aerodynamic model is a 2-D actuator disk
that allows two degrees of control freedom: lift coefficient,
which roughly corresponds to collective pitch, and disk tip-
path-plane pitch, which corresponds to longitudinal cyclic
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YADECOM))  Flight Path Optimization -

DESCENT begins by assuming the controls are set in the trimmed
condition for steady, level flight

SNOPT, running internally, iteratively improves upon that assumption
by perturbing the pilot controls (collective and longitudinal cyclic pitch)
and “grading” the resulting flight path against an objective function
and a set of inviolable constraints

— Constraints enforce both physical restrictions, such as the rate at which drag slows
rotor speed, and characteristics specific to the rotorcraft being modeled

— The objective function quantifies whether the flight path is an improvement (i.e.,
exhibits a lower impact velocity) than the previous iteration

DESCENT finishes when it is established that either 1) a transition to
partial-power flight is possible, 2) autorotation to impact at less than a
critical velocity is possible, or 3) the flight path is fully optimized
without success (Att)
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@ﬁﬁfc@ Height-Velocity Diagram -‘

« Comparing DESCENT modeling
predictions of rotorcraft autorotation
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Y RDEC @ V&V Work (Case Studies)
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« DESCENT verification and validation work shows good
correlation to flight test data state variables in most cases

« A comparison to modified OH-58 autorotation test is

shown
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Y RDEC D Case Studies cont.
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« However, other cases demonstrate
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Y ﬁﬁl—'ﬂ@ Conclusions —‘

« DESCENT shows good correlation to manufacturer-
provided “no fly” curves in identifying Attrition regions
— Flexibility to assess effect of design changes on vulnerability

« While there is often no single “right” autorotation path,
using DESCENT as a predictive tool for flight path details
In each particular case is still subject to empirical results

— Semi-empirical application is possible given enough data to inform
constraints and objective function

— Flight path data often shows considerable variability

 ldentifying commonalities between autorotation paths will
help transition from aggregate analyses to particular cases
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