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Introduction 

• The ballistics of artillery shells is, among other factors, dependent on 
the aerodynamic drag 

• Aerodynamic drag is again dependent on the shape of the projectile 
and the flight conditions, i.e. the two well-known aerodynamic 
parameters Mach number and Reynolds number 

• The shape of a modern projectile is a compromise between 
aerodynamics and structural concerns, especially during the initial 
blast 

• Usually the drag, CD0 of a blunt body is divided into forebody drag, 
CDpv and base drag, CDb0 

 
 

 
– Forebody drag – skin friction and pressure drag 
– Base drag – pressure in base area lower than ambient pressure 
– The base drag is approximately 50% of the total drag. 
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Base drag reduction 

• Base drag reduction achieved by 
– Afterbody boat tailing 
– Base bleed  
– Vortex supression devices 
– Combination of above devices 

• Active or passive flow control techniques basically manipulate or alter 
the near-wake flowfield for an increase in base pressure and 
consequently reduce base drag 
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Base Bleed 

• Base bleed is a gas generator producing hot gas in the aft end of the 
projectile 

• The aim of the base bleed is to fill up the wake zone behind the 
projectile and thus increase the base pressure. Increased base 
pressure reduces the base drag and gives increased shooting distance 
for the projectile 

• For projectiles in service, the shooting distance can be increased by 
20-30% due to reduced base drag 

• Flow out of base bleed unit is subsonic 
– Internal ballistics coupled to external base pressure 
– Base pressure controls base drag 
– Coupling between base drag and internal ballistics often given through 

empirical expressions due to a lack of understanding of viscous-inviscid 
flow interactions between a near-wake flow and a freestream 

Subsonic flow out 
of basebleed unit 
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Physical modeling 

• Established a physical model for the coupling between base drag and 
base bleed internal ballistics 

– CFD computations using various turbulence models in the wake zone have 
been performed 

• The first objective was to use computational fluid dynamics (CFD) to 
establish a numerical model capable of accurately predicting the drag 
in the supersonic range for the inert shell and yield a proper response 
to the increasing base bleed flow rates 

– For the verification of the CFD model, radar measurements were available 
for the 155 mm Heer Mk 2 artillery shell 

• The second objective was to investigate the combined effect of 
afterbody shape and gas vent design on the net drag 

– The nozzle area, the length and diameter of the projectile were kept 
constant 

– Shape and location of the gas vents were modified  

6 
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Heer Mk2 projectile 

7 

 



Nammo Raufoss Proprietary Information 

CFD modeling 

• The analyses were carried out with two CFD codes 
– Commercial available STAR-CCM+ 
– In-house developed code CFDnFlow for compressible flows on structured, 

multi-block, body-fitted grids 
– Both codes have the option of using the Reynolds Averaged Navier-Stokes 

(RANS) or the detached eddy formulation (DES) 

• Various turbulence models were applied to the base flow problem, 
from k-epsilon to Reynolds stress models based on the Reynolds-
Averaged Navier-Stokes (RANS) equations to the instantaneous 
Navier-Stokes equations with DES 
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Grid - model 

• To obtain grid- independent results, several grids of different size and 
resolution were used during the project 
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polyhedral volume grid 
from STAR-CCM+ 

CFDnFlow axisymmetric grid 
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CFD analysis of projectile without base bleed 
The aim of the base bleed 
is to fill up the wake zone 
behind the projectile and 
thus increase the base 
pressure 

Ma∞ = 1.5 

Ma∞ = 2.5 
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Results – inert base bleed 

• The initial axisymmetric computations served the purpose of 
evaluating turbulence models for the comparison of computed drag 
coefficient with those from radar-doppler measurements (black curve) 
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Results – inert base bleed – turbulent mixing 

• From experience we suspected that the turbulent mixing in the wake 
might be too high, so we decided to pursue the use of detached eddy 
simulations (DES) in the wake 

– High level of turbulent mixing for the k-ω-SST and for the k-ε model 
– Results produced by the DES version of the k-ω-SST model showed much 

less turbulent mixing and more detailed resolution of the flow structures in 
the wake 

– DES modelling was used in the base bleed studies 
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Computed turbulent viscosity ratio at Mach 2.5 with the k-ω-SST model (left), 
and the k-ω-SST-DES model (right), without mass injection 
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Effect of base bleed 

• The base bleed was simulated with mass injection of hot gas in the 
cavity at the base of the projectile 

– The mass flow injection is characterized through the injection parameter 
– The injection parameter I is defined as the ratio of the injected mass flow 

rate and the “free stream” mass flow passing through the base area of the 
projectile 

– Injection parameter I, range I = 0-0.01 

 
 

• Drag reduction factor, Cred 

– Subscript «b» denotes active base bleed 
– Subscript «b0» denotes inert base bleed 
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Drag reduction factor using DES turbulence 
modeling 
• Comparison of STAR CCM+ and the CFDnFlow results showed 

common trends but also some variation 
– The maximum drag reduction coefficient was found to be roughly 0.4-0.6 

for base bleed rates of I=0.006-0.008 
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Validation of results 

• The computed drag reduction factor, fdr versus injection parameter 
and flight Mach number were introduced into an in-house developed 
trajectory model where the effect of the base bleed was included 

– The model uses the inert aerodynamic properties (drag versus flight Mach 
number) of the projectile as input 

– Once the inert aerodynamic properties have been determined, the base-
bleed model which computes the gas generator influence on aerodynamics 
is invoked 

• This model computes the mass flow, base pressure and gas generator chamber 
pressure, using iteration, starting with an initial estimate of the base pressure 

• Results from trajectory analyses using drag reduction factors from 
CFD analyses are compared with firing results at 27° and 61° 
elevations  
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Comparison firing results and trajectory 
analyses 
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Optimization of base bleed 

• Due to the high local velocity in the vortex giving rise to suction in 
the base, it was decided to try slowing the vortex to recover some of 
the dynamic pressure and, hence, reduce the base drag 
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Effect of base cavity 

• Most efficient with Rc=60mm 
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Rb=72.3mm 
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Effect of gas vent layout 

• Most efficient with a hollow base having a thin rim protruding 
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Conclusions 

• Numerical tools was applied to the prediction of the 155mm Heer 
artillery shell performance, both in terms of projectile drag without 
base-bleed and the drag reduction with such a device 

– Two CFD codes for compressible flows were engaged, the in-house 
developed CFDnFlow code and the commercial available STAR-CCM+ 

– Comparison of drag with available firing data showed good agreement for 
all supersonic speed 

– DES modelling approach improved the predictions of the effectiveness of 
the base-bleed device on base drag reduction 

• By computing the drag reduction coefficient empirical expressions for 
base drag was derived enabling complete trajectory simulations 

– The computed trajectories for two elevations compared well with available 
firing data 

• Using the CFD tools, the shape of the base was modified to achieve 
better pressure recovery, thus reduced base drag 

– Among the analyzed configurations, the one with a hollow base having a 
thin rim protruding was most efficient 
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