
1

Writing Requirements
Properly

 2011 NDIA CMMI Conference

Denver, Colorado

 Presented by
Al Florence

The MITRE Corporation

The authors’ affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to
convey or imply MITRE's concurrence with, or support for, the positions, opinions or view points expressed by this presenter.

2

Class Participation
 Determine the problems with these 2 requirements:

• All computer-resident information that is sensitive shall have system

access controls. Access controls shall be consistent with the
information being protected and the computer system hosting the
data.

The interval for propagating changes to suppliers shall be configurable.

3

Introduction 1 OF 3

• A Government agency, while re-developing legacy systems,
reversed engineered the existing requirements.

• The examples represent several legacy systems that are in the
process of redevelopment in a modernization effort.

• The examples depict only the requirements effort – they do not
reflect any other lifecycle activities: design, implementation, test or
operation.

4

Introduction 2 of 3

• It needs to be noted that requirements do not “live alone”
– They depend on other requirements and/or
– on clarifying comments
 to present a complete view of the functionality associated with a

related set of requirements.

• A related set of functional requirements may be introduced with a
preamble describing the capability of the functional set.

– The preamble does not itself establish requirements; this is done
later in the requirements’ specifications.

• Some requirements may be amplified with clarifying comments which
are, again, not part of the requirements, but add understandability.

5

• Some requirements are documented sequentially with the
requirements stated first setting the “stage” for the following
requirements which add more and more capability.
– The later stated requirements depend on the earlier

requirements to complete their functionally.
– An example may be the use of the word “processing”. If the

processing of a functional set of related requirements has
been described in earlier requirements the later requirements
may amplify and/or reference the processing without having to
restate the processing.

Introduction 3 OF 3

6

Critical Attributes 1 OF 3

The following are some critical attributes that requirements
must adhere to:
 Completeness: Requirements should be as complete as possible.

Traceability: Each requirement must be traceable to some
underlying source, such as a system-level requirement.

Testability: All requirements must be testable in order to
 demonstrate that the software end product satisfies its

requirements.

 (They should reflect system objectives and specify the relationship between the
software and the rest of the subsystems.)

 (Each requirement should have a unique identifier so that the software design,
code, and test plans can be precisely traced back to the requirement.)

 (In order for requirements to be testable they must be specific, unambiguous,
and quantitative whenever possible. Avoid vague, general statements.)

7

Critical Attributes 2 OF 3

Consistency: Requirements must be consistent with each other; no
requirement should conflict with any other requirement.

Feasibility: Each requirement must represent a feasible representation.

Unique identification: Uniquely identifying each requirement is
essential if requirements are to be traceable and testable.

 (Requirements should be checked by examining all requirements in relation to each
other for consistency and compatibility.)

 (Requirements that have questionable feasibility should be analyzed during
requirements analysis to prove their feasibility.)

 (Uniqueness also helps in stating requirements in a clear and consistent fashion.)

8

Critical Attributes 3 OF 3

Design Free: Software requirements should be specified at a
requirements level not at a design level.

Use of “shall” and related words: In specifications, the use of the
word "shall" indicates a binding provision.

 (The approach should be to describe the software requirement functionally from a
system point of view, not from a software design point-of-view, i.e. describe the
system functions that the software must satisfy. A requirement reflects “what” the
software shall accomplish while the design reflects “how” the requirement is
implemented.)

 (Binding provisions must be implemented by users of specifications. To state non-
binding provisions, use "should" or "may". Use "will" to express a declaration of
purpose (e.g., "The Government will furnish..."), or to express future tense.2)

• Requirements must be written in a clear, concise and unambiguous
fashion

• Words and phrases that may have confusing and multiple
interpretations must be avoided

9

– Adequate
– Ad hoc
– All
– Always
– Appropriate
– Clearly
– Easy
– Existing
– Fast
– Flexible
– Future
– If required
– Immediately
– Large
– Light

– Limited
– Near real time
– Periodic
– Portable
– Rapid
– Several
– Slow
– Small
– Sometimes
– State of the art
– Sufficient
– Usable
– User-friendly
– Weight
– When required

Ambiguity

Also:
http://www.ppi-int.com/newsletter/SyEN-017.php#article

10

Examples

• With domain knowledge of the system, several teams reverse-

engineered and defined requirements.
 • They represented:

– the users

– the contractors

– the acquisition organization

• This author was assigned as a consultant to guide the teams in the
proper specification of requirements.

• The following examples show some of the requirements:
– as initially specified by the teams

– followed by this author’s critique (against the critical attributes)

– and as re-specified based on the critique

11

Example 1
Initial specification:
Software will not be loaded from unknown sources onto the system without
first having the software tested and approved.

Critique:

Re-specification:
3.2.5.2 Software shall be loaded onto the operational system only after it has
 been tested and approved.

• If it’s tested and approved, can it be loaded from unknown sources?

• If the source is known, can it be loaded without being tested and approved?

• Requirement is ambiguous and stated as a negative requirement, which
makes it difficult to implement and test.

•
•

• A unique identifier is not provided, which makes it difficult to trace.
•

• The word “shall” is missing.

12

Example 2
Initial specification:
3.4.6.3 The system shall prevent processing of duplicate electronic files by
 checking a new SDATE record. An e-mail message shall be sent.
Critique: .

Re-specification:
3.4.6.3 The system shall:

 a. prevent processing of duplicate electronic files by checking the
 date and time of the submission, and

 b. send the following e-mail message:
 1. request updated submission date and time, if necessary, and
 2. the processing was successful, when successful.

• Two “shalls” under one requirement number.
 • Vague requirement: need to define the e-mail message.

• The requirement has design implications, SDATE record.

• A requirement should specify what the data in the record are and not
the name of the record as it exists in the design and implementation..

• As specified it cannot be implemented or tested.

13

Example 3 1 OF 2

Initial specification:
3.2.5.7 The system shall process two new fields (provides production count
 balancing info to states) at the end-of-state record.

Critique:
• This requirement cannot be implemented or tested.

Re-specification:
3.2.5.7 The system shall provide the following data items (provides production
 count balancing information to states) at the end-of-state record:
 a. SDATE, and
 b. YR-TO-DATE-COUNT

• “Info” should be spelled out.

• It is incomplete. What are the two new fields?

14

Example 3 2 OF 2

Re-Critique:
• This rewrite has design implications SDATE record and YR-TO-DATE-

COUNT.

Re-Re-Specification:
3.2.5.7 The system shall provide the following data items (provides production
 count balancing information to states) at the end-of-state record:
 a. submission date and time, and
 b. year-to-date totals.

• From a requirements viewpoint it should specify what the data in the
records are, not the name of the record as it exists in the design and
implementation.

15

Example 4
Initial specification:
3.2.5.9 All computer-resident information that is sensitive shall have system
 access controls. Access controls shall be consistent with the information
 being protected and the computer system hosting the data.

Re-specification:
3.2.5.9 All sensitive computer-resident information shall have system access
 controls, consistent with the level of protection. (Reference Sensitive
 Information, Table 5.4.1 and Level of Protection for Sensitive Information,
 Table 5.4.2)

Critique:
• Two “shalls” under one identifier.

• The requirement is vague and incomplete. Need to identify the sensitive
information.

• What does “consistent” mean?

• As specified it cannot be implemented or tested.

16

Example 5
Initial specification:
3.3.2.1 The system shall have no single point failures.

Critique:

Re-specification:
3.3.2.1 The following system components shall have no single point failures:
 a. host servers,
 b. networks,
 c. network routers,
 d. access servers,
 e. hubs,
 f. switches,
 g. firewalls, and
 h. storage devices.

• As specified it cannot be implemented or tested.

• This is an ambiguous requirement. Needs identification of what
 components and/or functions the “no single point failures” applies to.

17

Example 6
Initial specification:
3.2.7.1 The system shall purge state control records and files that are older than
 the operator or technical user-specified retention period.

Critique:

Re-specification:
3.2.7.1 The system shall purge state control records and files that are older than
 the retention period input into the system by either the:
 a. operator, or
 b. technical user.

• Requirement cannot be implemented or tested as stated.

• Requirement is incomplete and vague without specifying the retention
 period or providing a reference as to where the information can be obtained.

18

Example 7 1 OF 2

Initial specification:
3.2.6.3 The system shall receive and process state return data from the State
 Processing Subsystem. The system shall provide maintenance of the
 state data files and generate various reports.

Critique:
• Two “shalls” under one requirement number and multiple requirements in

the specification.
• The word “process” in the first shall is vague. Need to define the

processing required.

• The second “shall” does not provide for valid requirements; they cannot be
implemented or tested as stated.

– Needs identification of type/amount of maintenance required.
– “various reports” is ambiguous.

19

Example 7 2 OF 2

Re-specification:

3.2.6.3 The system shall receive:
 a. production data that contains data from multiple states, and
 b. state total amount for one or more states,

 extracted by the Returns Processing Subsystem.

3.2.6.4 The system shall parse multi-state data to respective state files.

3.2.6.5 The system shall display a summary screen reporting the results of
 processing for each state containing:
 a. state totals,
 b. state generic totals, and

 c. state unformatted totals.

20

Example 8
Initial specification:
3.2.7.1 The system shall not prevent the individuals from entering the year for
 which they intend the payment, but shall provide a check-point for them
 to ensure that they are not making a mistake in entering the correct
 year.

Critique:
• This is a negative requirement, negative requirements should not be

specified. They cannot be implemented.

Re-specification:
3.2.7.1 The system shall:

 a. allow individuals to enter the payment year, and
 b. provide a check-point to ensure that individuals enter the correct

 payment year.

• A requirement should have all conditions that are required. If conditions are
not required they will not be implemented.

• Two “shalls” under one requirement number.

• Suggest that this requirement be structured in a positive fashion.

21

Initial specification:
After the system receives the Validation file, the system shall:

• notify the individual about acceptance or rejection.
• the acceptance file must contain the name and ZIP code of the

individual.
• rejected validation request must include the Reason Code.

Example 9 1 OF 2

Critique:
• The second and third bullets don’t make sense, try to read them as

such:

• This requirement is ambiguous and cannot be implemented or tested.

– the system shall the acceptance file must...
 – the system shall rejected Validation…

• Use of both “shall” and “must”.

• No unique identifier, use of bullets. Bullets cannot be traced.

22

Re-specification:
3.2.7.3 When the system receives a validation file, the system shall:
 a. reject the file if it does not contain the individuals:
 1. name, or
 2. ZIP code, and
 b. notify the individual about acceptance or rejection with a
 reason code. (Reference Reason Code, Table 5.4.8)

Example 9 2 OF 2

23

Initial specification:
3.2.8.2 The enrollment process shall take from one to ten calendar days to
 complete for all payment types.

3.2.8.3 The enrollment process shall take no more than three days to
 complete for:
 a. credit payment, and/or
 b. note payment.

Example 10

Critique:
These requirements are inconsistent and in conflict with each other.

Re-specification:
3.2.8.2 The enrollment process shall take:

 a. one to three calendar days to complete for:
 1. credit payment, and
 2. note payment, and

 b. one to ten calendar days to complete for all other payment
 types.

24

Initial specification:
3.2.9.1 When doing calculations the software shall produce correct results.

Example 11

Re-specification:
 Requirement deleted.

Critique:
• Really? This is not a requirement.
• This type of requirements should not be specified!

• It should be deleted.

25

Summary

– completeness
– traceability
– testability
– consistency

– feasibility
– unique

identification
– design free
– use of shalls

• The teams identified over 1000 requirements.
• The issues with their initial specification represented the entire

spectrum of the following critical attributes:

• The teams were receptive to the critique, resolved issues and
implemented the recommendations willingly.

• The requirements resulting from this effort were:
– reviewed with senior management
– accepted as specified
– baselined, and
– allocated to development teams for implementation.

26

Conclusion

• If sufficient time and proper effort is taken to validate requirements
against critical attributes during their definition and specification,
software projects will improve their probability of success considerably.

• If this is not done, projects pay the consequences during
implementation, integration and test – not to mention during operation.

But you knew that, didn’t you?
 (I hope!)

27

Contact Information

Al Florence
florence@mitre.org

703 395 8700 – Cell
303 955 2286 – Home

	Slide Number 1
	Class Participation
	Introduction 1 OF 3
	�Introduction 2 of 3
	Introduction 3 OF 3
	Critical Attributes 1 OF 3
	Critical Attributes 2 OF 3
	Critical Attributes 3 OF 3
	Ambiguity
	Examples
	Example 1
	Example 2
	Example 3 1 OF 2
	Example 3 2 OF 2
	Example 4
	Example 5
	Example 6
	Example 7 1 OF 2
	Example 7 2 OF 2
	Example 8
	Example 9 1 OF 2
	Example 9 2 OF 2
	Example 10
	Example 11
	Summary
	Conclusion
	Contact Information�

