
© 2011 Carnegie Mellon University

Architecture: Why Your CMMI V1.3
Implementation is Incomplete
Without It!

11th CMMI Technology Conference and
User’s Group

Denver, CO
November 14, 2011

Larry Jones
Mike Konrad

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-2612

2 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Introductions

Instructor Introduction

Participant Introductions
(mechanics depends on group size –

individual or show of hands)
• name (if our group is small enough)
• company/position - or type of company

(government, defense industry,
commercial industry, other)

• background – or job type (manager,
technical, process group, other)

• software architecture background /
systems architecture background

3 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Tutorial Learning Outcomes

After completing this half-day tutorial, attendees should
• know the importance of architecture to the achievement of

business, product, or mission goals
• know that quality attributes have a dominant influence on a

system’s architecture
• be familiar with essential architecture-centric engineering activities

and some example methods
• know how to specify quality attributes meaningfully through

scenarios
• be able to identify where architecture-centric activities and work

products are described in CMMI V1.3
• appreciate how to interpret the new architecture-centric material in

CMMI V1.3
• know where to find out more about architecture-centric

engineering practices

4 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

What Have We Learned Over the Past Year?
Something was Missing.

A lot of people overlooked the new architecture emphasis.
• Changes in the model that explicitly use the term

“architecture” are in the informative material and glossary.

• Those who understand CMMI may overlook the new
expectation that quality attributes are an equal partner to
functionality.
– Architecture practices thus need to be considered.

Hence we decided to be much less subtle about
architecture in the title and we have allowed more time
to discuss the “whereabouts” of architecture in the V1.3
model.

Good architecture practices are essential for success
with CMMI V1.3!

5 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Conventions & Caveats for the Tutorial

The coverage of architecture-centric practices in CMMI V1.3 is broad,
focused on “products” and “solutions” – not just on software.

• But much of the tutorial material came from SEI assets whose focus was
software-intensive systems. Please bear this in mind. We believe the
principles apply beyond simply software.

Our focus in the tutorial will be on CMMI for Development because that
is where the architecture-centric practices are most deeply covered
but similar changes were also made to the other two CMMI models.

CMMI uses the term “product” to refer to what is delivered to the
customer or end-user. In this tutorial, we will often use the term
“system” to refer to the product.

This tutorial cannot completely convey everything you might like to learn
about architecture-centric engineering.

• References are provided at the end for you to learn more.

6 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Expected Background of Participants

Participants must have an understanding of the basics of CMMI models.
• This tutorial is not an introduction to CMMI.
• It is not a substitute for V1.3 Upgrade Training.

Familiarity with product, system, or software design is useful, but not
required. (Such familiarity will be of benefit to you in the hands-on
exercises, which are intended to give you a grounding in some key
concepts.)

7 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

8 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

The Problem: CMMI V1.2 Did Not Adequately
Cover Modern Engineering Approaches
Much of the engineering content of CMMI-DEV V1.2 was ten years old.
As DEV was a starting point for the other two constellations, no V1.2

model adequately addressed modern engineering approaches such
as architecture-centric engineering.

For example, both RD SG 3 and RD SP 3.2 emphasized functionality
and not non-functional requirements.

Also, Engineering and other PAs rarely mention the following concepts:
• Quality attributes
• Allocation of product capabilities to release increments
• Product lines
• System of systems
• Technology maturation (and obsolescence)
• Agile methods

9 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

The Solution: Modernize the Engineering
Content in CMMI V1.3
The slides that follow portray where the development community should

be today relative to architecture-centric practices – as opposed to
how they were portrayed in CMMI V1.2.

Towards the end of today’s half-day tutorial, we will revisit how CMMI
Version 1.3 addresses these and other modern development
approaches.

10 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

What Is an Architecture?

Informally, an architecture is the blueprint describing the
structure of a system.

11 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Architecture is Important

The quality and longevity of a software-reliant system is largely
determined by its architecture.

In recent studies by OSD, the National Research Council, NASA, and
the NDIA, architectural issues are identified as a systemic cause of
software problems in DoD systems.

12 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

The right architecture paves the way for system success.
The wrong architecture usually spells some form of disaster.

Why Is Architecture Important?

Represents earliest
design decisions

• hardest to change
• most critical to get right
• communication vehicle

among stakeholders

First design artifact
addressing

• performance
• modifiability
• reliability
• security

Key to systematic reuse • transferable,
reusable abstraction

Key to system evolution • manage future uncertainty
• assure cost-effective agility

13 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Architecture is About Structure and Decisions

Structures result from decisions
• Business / mission goals provide a

reasoned basis for decisions.
• Each decision is a tradeoff that

enables something and precludes
other things.

• Tradeoffs are driven by quality
attribute requirements.

This is true regardless of the domain
– commercial or defense.

14 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

“Every system has an architecture…

…encompassing the key abstractions and mechanisms that define that
system's structure and behavior… In every case - from idioms to
mechanisms to architectures - these patterns are either

intentional

or

accidental”

- Grady Booch in the Preface to Handbook of Software Architecture

15 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Architecture and Strategy

An Intentional Architecture is the
embodiment of your business strategy

• Intentional Architecture links technology
decisions to business goals

An Accidental Architecture
limits strategy options

• Accidental Architecture
becomes your de facto
strategy

16 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Class Exercise 1

17 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

18 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

A Warning (PERMISSION REQUESTED)

“Architecture” is a very overloaded word.
• All the good words are taken.
• We will explain some common uses of the term and how they differ.

19 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Formal Definition of Software Architecture

“The software architecture of a computing system is the
set of structures needed to reason about the system,
which comprise software components, relations among
them and properties of both.”

Clements et al, Documenting Software Architectures, Second Edition. Addison-Wesley, 2011

20 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Formal Definition of System Architecture

A system architecture describes the elements and interactions of a
complete system including its hardware elements and its software
elements.

System Architecture: “The fundamental and unifying system structure
defined in terms of system elements, interfaces, processes,
constraints, and behaviors.”1

Systems Engineering is a design and management discipline useful in
designing and building large, complex, and interdisciplinary systems.2

1 Rechtin, E. Systems Architecting: Creating and Building Complex Systems. Englewood Cliffs, NJ : Prentice-Hall,
1991.
2 International Council On Systems Engineering (INCOSE), Systems Architecture Working Group, 1996.

21 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Implications

Architecture is an abstraction of a system.

Architecture defines the properties of elements.

Systems can and do have many structures.

Every software-intensive system has an architecture.

Just having an architecture is different from having an architecture that
is known to everyone.

If you don’t develop an architecture, you will get one anyway –
and you might not like what you get!

22 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Structures and Views - 1

One house, many views

No single view accurately represents the house.

No single view can be used to build the house.

Although these views are pictured differently, and each has
different properties, all are related. Together, they describe the
architecture of the house.

Carpentry view
Plumbing view
Electrical view
Ductwork view

23 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

A human body
comprises multiple

structures.

a static view of
one human
structure

a dynamic view
of that structure

Structures and Views - 2

One body has many structures, and those structures have many
views. So it is with software and systems.

24 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

25 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

What is Architecture-Centric Engineering?
Architecture-Centric Engineering (ACE) is the
discipline of using architecture as the focal point for
performing ongoing analyses to gain increasing
levels of confidence that systems will support their
missions.

The SEI ACE Initiative
develops principles, methods,
foundations, techniques,
tools, and materials in
support of creating, fostering,
and stimulating widespread
transition of the ACE
discipline.

Architecture is of enduring importance because it is
the right abstraction for performing ongoing analyses
throughout a system’s lifetime.

26 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

System Development

Functional
Requirements

If function were all that
mattered, any monolithic
implementation would do,
..but other things
matter…

• Modifiability
• Interoperability
• Availability
• Security
• Predictability
• Portability

The important quality attributes and their characterizations are key.

has these qualities

analysis, design, development, evolution

Quality
Attribute Drivers

Software &
System

Architectures

Software &
System

The Non-functional
Requirements

27 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Specifying Quality Attributes

Quality attributes are rarely captured effectively in
requirements specifications; they are often vaguely
understood and weakly articulated.

Just citing the desired qualities is not enough; it is
meaningless to say that the system shall be “modifiable”
or “interoperable” or “secure” without details about the
context.

The practice of specifying quality attribute scenarios can
remove this imprecision and allows desired qualities to
be evaluated meaningfully.

A quality attribute scenario is a short description of an
interaction between a stakeholder and a system and the
response from the system.

28 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Parts of a Quality Attribute Scenario

Response

RESPONSE
MEASURE

ENVIRONMENT

Stimulus

SOURCE

Artifact:

Process, Storage,
Processor,

Communication

29 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Example Quality Attribute Scenario

Response

RESPONSE
MEASURE

under 5
seconds

ENVIRONMENT

Database under
peak load

Stimulus

SOURCE

Remote user

Artifact:

Process, Storage,
Processor,

Communication

A “performance” scenario: A remote user requests a data base
report under peak load and receives it in under 5 seconds.

30 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Additional Example Scenarios

Security: “A correctly identified individual modifies system data from an
external site incorrectly. The system maintains an audit trail and the
correct data is restored within one day.”

Modifiability: “A user requests a change to the user interface; The

modification is made by a developer with no side effects, in three
hours.”

Availability: “An unanticipated external message is received by a

process during normal operation. The process informs the operator of
the message’s receipt, and the system continues to operate with no
downtime.”

31 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Class Exercise 2

32 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Architecture-Centric Activities

Architecture-centric activities include the following:
• creating the business case for the system
• understanding the requirements
• creating and/or selecting the architecture
• documenting and communicating the architecture
• analyzing or evaluating the architecture
• implementing the system based on the architecture
• ensuring that the implementation conforms to the architecture
• evolving the architecture so that it continues to meet business and

mission goals

33 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Some SEI Techniques, Methods, and Tools
creating the business case for the system
understanding the requirements Quality Attribute Workshop (QAW) *

Mission Thread Workshop (MTW) *
creating and/or selecting the architecture Attribute-Driven Design (ADD)

and ArchE
documenting and
communicating the architecture

Views and Beyond Approach; AADL

analyzing or evaluating the architecture Architecture Tradeoff Analysis Method
(ATAM) *; SoS Arch Eval *; Cost Benefit
Analysis Method (CBAM); AADL

implementing the system based on the
architecture
ensuring that the implementation conforms to
the architecture

ARMIN

evolving the architecture so that it continues to
meet business and mission goals

Architecture Improvement Workshop
(AIW)* and ArchE

ensuring use of effective architecture
practices

Architecture Competence Assessment

* = indicates a software engineering method that has been extended to systems engineering

34 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Building the Business Case for the System

How to do this is beyond the scope of this tutorial.
Some common business / mission drivers for systems include

• Reduce total cost of ownership
• Improve capability/quality of system
• Improve market position
• Support improved business processes
• Improve confidence in and perception of system

Results gleaned from
• 25 architecture evaluations

– 18 government systems, 7 commercial systems
• 190 distinct business goals

 Kazman & Bass, Categorizing Business Goals for Software Architectures, CMU/SEI-2005-TR-021

http://www.sei.cmu.edu/reports/05tr021.pdf

35 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Understanding the Requirements –
The SEI’s Quality Attribute Workshop

QAW Steps
1. QAW Presentation and Introductions
2. Business/Programmatic Presentation
3. Architectural Plan Presentation
4. Identification of Architectural Drivers
5. Scenario Brainstorming
6. Scenario Consolidation
7. Scenario Prioritization
8. Scenario Refinement

The purpose of the SEI Quality Attribute Workshop (QAW) is to discover,
early in the life cycle, the driving quality attribute requirements of a
software-intensive system.

Barbacci, et al., Quality Attribute Workshops (3rd Ed.), CMU/SEI-2003-TR-016
http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm

36 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

An Approach to Architecture Creation

The Attribute-Driven Design (ADD) method is an approach to defining a
software architecture by basing the design process on the quality
attribute requirements of the system.

37 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Class Exercise 3

38 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Creating the Architecture

How to do this is beyond the scope of this tutorial.
Part of the ADD approach is to pick architectural patterns and tactics

that address particular quality attributes.
Patterns represent a packaging of a number of design decisions we
refer to as tactics.
Each tactic is a design option available to the architect.
A pattern typically employs several different tactics to promote various
quality attributes.
Example: Tactics to influence availability (keep faults from becoming
errors) include

– Fault Detection
– Fault Recovery
– Fault Prevention

39 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Summary of Availability Tactics

Availability

Fault
Detection

• Ping/Echo
• Heartbeat
• Exception

Fault
Recovery
Preparation
and Repair

• Voting
• Active

Redundancy
• Passive

Redundancy
• Spare

Fault Recovery
and
Reintroduction

Fault
Prevention

• Shadow Operation
• State
 Resynchronization
• Checkpoint/

Rollback

• Removal from
Service

• Transactions
• Process

Monitor

Fault

Fault
masked
or repair

made

40 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Other Tactics

There are tactics for
• modifiability
• performance
• security
• testability
• usability

See Software Architecture in Practice for a more complete treatment of
the subject.

41 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Analyzing the Architecture – SEI’s Architecture
Tradeoff Analysis Method® (ATAM®)
The ATAM is an architecture evaluation method that focuses on multiple
quality attributes.

Architectural
Decisions

Scenarios Quality
Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

impacts

distilled
into

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Analysis

Risk Themes

42 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

ATAM evaluations are conducted in four phases.

ATAM Phases

Phase 0:
Partnership

and
Preparation

Phase 1:
Initial

Evaluation

Phase 2:
Complete
Evaluation

Phase 3:
Follow-Up

Duration: varies
Meeting: primarily
phone, email

Duration: 1.5 - 2 days each for
Phase 1 and Phase 2
Meeting: typically conducted
at customer site

Duration: varies
Meeting: primarily
phone, email

43 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

ATAM Evaluative Phases (1 & 2)

Reporting

Testing

1. Present the ATAM

2. Present business drivers
3. Present architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

Presentation

Investigation
and Analysis

Phase 1

Phase 2 = Recap of Phase 1 plus

44 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Documenting the Architecture

Architecture documentation establishes the set of design decisions that
must be made along the way to establishing and maintaining the
architecture.
An architecture is a multidimensional construct, too involved to be seen
all at once.
Recall: systems are composed of many structures.
A view is a representation of a structure.
We use views to manage complexity by separating concerns.

45 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Three Types of Views

Different types of views show different types of information:
1. Module views show how the system is structured as a set of code units.
2. Component-and-connector views show how the system is structured as a

 set of elements with runtime behaviors and interactions.
3. Allocation views show how the system relates to non-software structures in

 its environment.
Every view contains information from at least one of these categories.
Some views contain information from more than one category, but these
are often difficult to understand.

46 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

View-Based Documentation

Views give us our basic principle of architecture documentation

The choice of views used depends on the nature of the system
and the stakeholder needs.

Architecture
for System

XYZ

View 1

View 2

View n

Documentation
beyond views =

…

+

Documenting an architecture is a matter of documenting the relevant views,
and then adding documentation that applies to more than one view.

47 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Software Architecture Documentation Needs

Runtime views to show how software will handle:
• hazards, faults, and errors
• fault tolerance/reconfigurations
• performance
• data (e.g., quality, timeliness, ownership, access privileges)
• interface boundaries

Non-runtime views of software (vital to project planning, allocating work
assignments, designing for modifiability, reusability, portability,
extensibility, etc., facilitating incremental development, and a host of
other critical purposes)

Architectural decisions and the rationale/implications/impact of those
decisions on key system qualities

48 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Implementing and checking conformance

Press on to implementing the system in accordance with the
architecture.

Have processes and supporting tools to check for conformance with the
architecture.

Unfortunately, a lot of this work today is often not automated.

49 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

So How Well Does This Work?
Study: Impact of Army Architecture Evaluations
Twelve Army programs that had conducted ATAM or QAW exercises in
a study to elicit the perceived impact the ATAM evaluations and QAWs
had on system quality and the practices of the acquisition organization.
Results showed

• 6/12: cost less than or equal to traditional techniques
• 10/12: quality of results greater than or equal to traditional

techniques
• 10/12: helped understand and control cost and schedule
• 12/12: increased understanding of system’s quality attribute

requirements, design decisions, and risks
• 12/12: good mechanism for communication among stakeholders
• 8/12: improved the architecture

The context of use had a significant impact on the results enjoyed.
Architecture-centric acquisition is key to reaping maximal benefit.

50 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Architecture Practices are Having an Impact 1 of 2

Results of 2008 survey of 12 Army projects that employed ATAM/QAW2

0

2

4

6

8

10

12

Minimal Moderate Significant Very Substantial

N
um

be
r o

f P
ro

gr
am

s

Artifact Improvement

Quality Attributes Architecture Risks

• Most reported significant
improvement in their
architecturally-significant
artifacts

• Architecture teams were
able to achieve
understanding of
stakeholder expectations
and the implications of
architectural decisions on
user needs

2 Source: Impact of Army Architecture Evaluations, CMU/SEI-2009-SR-007

51 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Architecture Practices are Having an Impact 2 of 2

Results of 2008 survey of 12 Army projects that employed ATAM/QAW

0 2 4 6 8 10 12

Minimal

Moderate

Significant

Very Substantial

Number of Programs

Communication Improvement

• Majority reported very
substantial or significant
improvement in stakeholder
communication

• Stakeholders, collectively,
are able to achieve a
common understanding of
the system under
development

– Increases likelihood that
product will address
expectations/user needs

– Improves chances for
program success

52 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

What About System of Systems (SoS)? - 1

The software-intensive systems in an SoS are likely to have been
developed independently of each other.

Severe integration and runtime problems thus arise due to

inconsistencies in how quality attributes are addressed.

Thus, architecture is even more important in an SoS context, not less.

53 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

What About System of Systems (SoS)? - 2

Therefore, in an SoS context:
• Each software-intensive system

in an SoS has its own
architecture that addresses both
system and software aspects.

• The SoS itself has an
architecture whose elements
are the architectures of the
individual software-intensive
systems.

A uniform approach for specifying
quality attribute requirements
and evaluating SoS and
software-intensive system
architectures against such
requirements is thus needed.

54 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

The Need for Augmented Mission Threads in
DoD SoS Architecture Definition
DoDAF is the SoS architecture framework for the DoD.

• It provides a good set of architectural views for an SoS
architecture.

• It inadequately addresses cross-cutting quality attribute
considerations.

System use cases focus on a functional slice of the system.
More than DoDAF and system use cases are needed to ensure that the
SoS architecture satisfies its end-to-end functional requirements and
quality attribute needs.
SoS end-to-end mission (operational or user) threads augmented with
quality attribute considerations are needed to help develop, and later
evaluate, the SoS architecture.

55 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

One Approach
SEI developed and applied a two-pronged approach to address the early
identification of quality attribute inconsistencies, ambiguities, and
omissions within system and SoS architectures (in Directed and
Acknowledged SoS contexts).

1. Perform a "first pass" identification of inconsistencies, ambiguities, and
omissions across the constituent systems, at the SoS level, using end-
to-end mission threads that are augmented with quality attribute
concerns from SoS stakeholders.

 The approach involves a series of workshop and evaluations.
– Mission Thread Workshop
– Architecture Challenge Workshop
– SoS Architecture Evaluation

2. Constituent systems that are “problematic” are further evaluated using
the system and software architecture evaluation method (based on the
ATAM), using the augmented mission threads from the Mission Thread
Workshops.
– System and Software ATAM

56 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

SoS and Quality Attribute Elicitation,
Specification, and Analysis

Mission Thread
Workshops

Systems
ATAMs

Vignettes
Mission Threads
Sos Architecture
Plans

SoS Mission/
Business Drivers

Quality Attribute Augmented
End-to-End Mission Threads
SoS Architecture
Challenges

SoS Architecture
System Architectures

SoS
Architecture
Risks

System and
Software
Architectures

System and Software
Architectures Risks

Architecture
Challenge
Workshops

SoS
Architecture
Evaluations

57 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Architectural Reuse

An architecture represents a significant investment.
Why use it for only one system?

Most organizations produce families of similar systems, differentiated by
features.

58 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Software Product Lines

A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.

59 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Successful Software Product Lines

Improvements in cost, time to market, and productivity that come with
successful product lines abound.

• Cummins reduced the time it takes to produce software for a diesel engine
from one year to one week.

• Motorola realized a 400% productivity improvement in a family of one-way
pagers.

• Hewlett-Packard reduced time to market by a factor of seven and increased
productivity by a factor of four in a family of printers.

• The NRO built a ground control system with 10% of the expected number of
developers and reduced defects by 90%.

• Nokia reports producing 25 to 30 different phone models per year by using a
product line approach.

60 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Building the Core Asset Base

Core assets include:

Requirements
and

requirements
analysis

Domain
model

Software
architecture

Performance
engineering

Documentation

Test plans,
test cases,
and data

People
knowledge
and skills

Processes,
methods, and

tools

Budgets,
schedules,
work plans

…and
software C

or
e

as
se

t b
as

e

…with attached processes

61 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Building a Product...

Production
Plan

Product

Requirements
and

requirements
analysis

Domain
model

Software
architecture

Performance
engineering

Documentation

Test plans,
test cases,
and data

People
knowledge
and skills

Processes,
methods,
and tools

Budgets,
schedules,
work plans

…and
software C

or
e

as
se

t b
as

e

inputs
= product-specific

element
= product-specific non-

software assets

62 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Building Subsequent Products...

Product #n

Product #n+1

Production
Plan

inputs
= product-specific

element
= product-specific non-

software assets

Requirements
and

requirements
analysis

Domain
model

Software
architecture

Performance
engineering

Documentation

Test plans,
test cases,
and data

People
knowledge
and skills

Processes,
methods,
and tools

Budgets,
schedules,
work plans

…and
software C

or
e

as
se

t b
as

e

63 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Feedback

Requirements
and

requirements
analysis

Domain
model

Software
architecture

Performance
engineering

Test plans,
test cases,
and data

People
knowledge
and skills

Processes,
methods,
and tools

Budgets,
schedules,
work plans

…and
software C

or
e

as
se

t b
as

e

Product #n

Product #n+1

Product #n+2

Documentation

64 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Widespread Application - 1

Feed control and farm
management software

Gas turbines, train control,
semantic graphics framework

Asea Brown Boveri

Computer printer servers,
storage servers, network camera

and scanner servers

Bold Stroke Avionics Customized solutions for
transportation industries

E-COM Technology Ltd.
Medical imaging workstations AXE family of

telecommunications switches
Software for engines,
transmissions and
controllers Firmware for computer

peripherals

Elevator control systems
RAID controller firmware
for disk storage units

Internet payment gateway
infrastructure products

5ESS telecommunications
switch Interferometer product line

Mobile phones, mobile browsers, telecom
products for public, private and cellular

networks

65 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Widespread Application - 2

High-end televisions,
PKI telecommunications switching system,

diagnostic imaging equipment

Office appliances Automotive gasoline systems

Commercial flight control system avionics,
Common Army Avionics System (CAAS),

U.S. Army helicopters

Revenue acquisition
management systems

Software for viewing and quantifying
radiological images

EPOC operating system

Industrial supervisory control
and business process
management systems

Climate and flue gas
measurement devices

Command and control
simulator for Army fire
support

Support software

Test range facilities Pagers product line

66 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

67 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Modern Engineering Approaches in CMMI - 1

For Version 1.3, CMMI provides better coverage of architecture-
centric practices (mostly by changes to informative material):

• creating the business case for the system (partially in RD and TS)
• understanding the requirements (RD)
• creating and/or selecting the architecture (TS)
• documenting and communicating the architecture (RD, TS)
• analyzing or evaluating the architecture (RD, TS, VAL, VER)
• implementing the system based on the architecture (TS; A/PL notes)
• ensuring that the implementation conforms to the architecture (VER)
• evolving the architecture so that it continues to meet business and

mission goals (implicit in the phrase “establish and maintain”)

RD = Requirements Development PA TS = Technical Solution PA

VER = Verification PA VAL = Validation Pa

A/PL = Agile and Product Lines notes (primarily in the Introductory Notes of a PA)

68 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Modern Engineering Approaches in CMMI - 2

CMMI V1.3 also provides an improved terminology to support
understanding and use of architecture-centric practices

• Updated the glossary to include new terms (and modified some old terms)

• Updated the informative material (especially ARD and ATM in ACQ; RD, TS,
and VER in DEV; and SSD in SVC) to:

– make use of the new terms

– bring more emphasis to quality attributes and thus strike a better balance
between functional and non-functional requirements

• Replaced selected uses of overloaded terms such as “performance” with an
appropriate qualifying phrase.

69 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Modern Engineering Approaches in CMMI - 3

Added and revised the informative material throughout the Engineering
PAs (in particular) to appropriately mention the following engineering
concepts:

• quality attributes (i.e., non-functional requirements or “ilities”)
• architecture-centric practices
• product lines, system of systems
• allocation of product capabilities to release increments
• technology maturation (and obsolescence)

These concepts are mentioned in example boxes, in examples provided
in the notes, and in discussions that mention various approaches that
can be used.

When functional requirements are discussed, mention of quality
attributes is added to balance the view of requirements.

70 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Requirements Development

SG 1: Develop Customer Requirements
 SP 1.1 Elicit Needs
SP 1.2 Transform Stakeholder Needs into

[Prioritized] Customer Requirements
SG 2: Develop Product Requirements

SP 2.1 Establish Product and Product Component
Requirements

SP 2.2 Allocate Product Component Requirements
SP 2.3 Identify Interface Requirements

SG 3: Analyze and Validate Requirements
SP 3.1 Establish Operational Concepts and

Scenarios
SP 3.2 Establish a Definition of Required

Functionality and Quality Attributes
SP 3.3 Analyze Requirements
SP 3.4 Analyze Requirements to Achieve Balance
SP 3.5 Validate Requirements

 In SP1.2, added that customer
requirements should be prioritized

based on their criticality to the
customer and other stakeholders

“representing all phases of the
product's lifecycle … including
business as well as technical

functions.”

 In SP 2.1, added a focus on
architectural requirements and quality

attribute measures.

In SP 2.2, added a subpractice
allocating requirements to delivery

increments.

 Addressed “Quality attributes” (QAs) as
well as functionality in SG3 and SP 3.2

statements.

 In SP 3.1, broadened emphasis to
“operational, sustainment, and

development” scenarios.

In SP 3.2, determined architecturally-
significant QAs from mission and

business drivers.

71 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Technical Solution

SG 1: Select Product Component Solutions
SP 1.1 Develop Alternative Solutions and

Selection Criteria
SP 1.2 Select Product Component Solutions

SG 2: Develop the Design
SP 2.1 Design the Product or Product

Component
SP 2.2 Establish a Technical Data Package
SP 2.3 Design Interfaces Using Criteria
SP 2.4 Perform Make, Buy, or Reuse Analyses

SG 3: Implement the Product Design
SP 3.1 Implement the Design
SP 3.2 Develop Product Support Documentation

 Intro Notes: “QA models,
simulations, prototypes or pilots
can be used to provide additional

information about the properties of the
potential design solutions to aid in the
selection of solutions. Simulations can

be particularly useful for projects
developing systems-of-systems.”

 In SP 1.1, Added an example
selection criterion, “Achievement of key

quality attribute requirements” and a
new subpractice: “Identify re-usable
solution components or applicable

architecture patterns.”.

 In SP 2.1, described architecture
definition tasks such as selecting

architectural patterns and formally
defining component behavior and
interactions using an architecture

description language.

 In SP 2.2, added subpractice to
determine views to document

structures and address stakeholder
concerns.

In SP 2.3, mentioned exception and
error handling,

72 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Product Integration

SG 1: Prepare for Product Integration
SP 1.1 Establish an Integration Strategy
SP 1.2 Establish the Product Integration Environment
SP 1.3 Establish Product Integration Procedures and

Criteria
SG 2: Ensure Interface Compatibility

SP 2.1 Review Interface Descriptions for
Completeness

SP 2.2 Manage Interfaces
SG 3: Assemble Product Components and Deliver the

Product
SP 3.1 Confirm Readiness of Product Components

for Integration
SP 3.2 Assemble Product Components
SP 3.3 Evaluate Assembled Product Components
SP 3.4 Package and Deliver the Product or Product

Component

 Revised the purpose to ensure
proper behavior instead of proper

function, thereby more implicitly
including quality attributes as well as

functionality.

 Changed emphasis from
integration sequence to an emphasis

on integration strategy, i.e., the
approach to receiving, assembling,

and evaluating product components.
The architecture will significantly

influence the selection of a product
integration strategy.

 In the PA notes, addressed:
interfaces to data sources and

middleware; APIs, automated builds,
continuous integration

73 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Validation

SG 1: Prepare for Validation
 SP 1.1 Select Products for Validation

SP 1.2 Establish the Validation Environment
SP 1.3 Establish Validation Procedures and

Criteria
SG 2: Validate Product or Product Components
SP 2.1 Perform Validation
SP 2.2 Analyze Validation Results

 Reinforced when validation occurs in
the product lifecycle: “validation is

performed early (concept/exploration
phases) and incrementally throughout

the product lifecycle (including
transition to operations and

sustainment).”

 In VAL SP 1.1, included access
protocols and data interchange

reporting formats as examples of what
to validate.

Also, included incremental delivery
of working and potentially

acceptable product as an example
validation method.

74 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Verification

SG 1: Prepare for Verification
 SP 1.1 Select Work Products for Verification

SP 1.2 Establish the Verification Environment
SP 1.3 Establish Verification Procedures and

Criteria
SG 2: Perform Peer Reviews
SP 2.1 Prepare for Peer Reviews
SP 2.2 Conduct Peer Reviews
SP 2.3 Analyze Peer Review Data

SG 3: Verify Selected Work Products
SP 3.1 Perform Verification
SP 3.2 Analyze Verification Results

In SP 1.1, added example verification
methods: software architecture
evaluation and implementation

conformance evaluation and
continuous integration.

In SP 1.3, added example sources
of verification criteria:

customers reviewing work products
collaboratively with developers.

In SP 2.1, added example type of peer
review: architecture implementation

conformance evaluation

In SP 2.3, added examples of peer
review data that can be analyzed:

user stories or case studies
associated with a defect and the

end-users and customers who are
associated with defects

75 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Addressing Agile - 1

Changes Supporting Use of Agile Methods
Because CMMI practices are written for use in a broad variety of

contexts, business situations, and application domains, it is not
possible (even if it were appropriate) to advocate any specific
implementation approach.

However, Agile methods and approaches are now in wider use, and so
for V1.3, it seemed appropriate to acknowledge this, identify how
Agile approaches can address CMMI practices and conversely,
identify the value that CMMI can bring to Agile implementations.

The next set of slides describe how CMMI V1.3 addresses Agile
methods.

76 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Addressing Agile - 2

The Problem
Developers that use Agile methods sometimes resist using CMMI

because they can’t see how CMMI practices can complement or
improve the effectiveness of Agile methods.

Overview of Solution
Added guidance to the appropriate PAs to do the following:

• Help users interpret the practices in a context where Agile methods
are used

• Reinforce the applicability of the practices in an Agile environment
• Send the message that CMMI is a robust best practice framework

meant to be used in Agile environments as well as other development
environments

77 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Addressing Agile - 3

Solution
Added a new section to DEV Chapter 5 entitled “Interpreting CMMI

When Using Agile Approaches”
• This section describes how CMMI practices can apply in a variety of

development environments. It also describes the interpretive
guidance that has been added to selected PAs for use in Agile
environments.

Added interpretive guidance to the following PAs:
• In DEV: CM, REQM, PP, RD, TS, PI, VER, PPQA, and RSKM
• In ACQ: AM, ATM, PMC, and PP
• In SVC: SSD

Added in DEV and SVC (SSD only) Agile-related examples as bullets in
example boxes (informative material).

78 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Addressing Agile - 4

A note added in the RD Intro Notes:
In Agile environments, requirements are communicated and tracked through
mechanisms such as product backlogs, story cards, and screen mock-ups.
[snip] Traceability and consistency across requirements and work products is
addressed through the mechanisms already mentioned as well as during
start-of-iteration or end-of-iteration activities such as “retrospectives” and
“demo days.” [Emphasis added]

A note added in the TS Intro Notes:
 In Agile environments, the focus is on early solution exploration. By making

the selection and tradeoff decisions more explicit, the Technical Solution
process area helps improve the quality of those decisions, both individually
and over time. [snip] When someone other than the team will be working on
the product in the future, release information, maintenance logs, and other
data are typically included with the installed product. To support future
product updates, rationale (for trade-offs, interfaces, and purchased parts) is
captured so that why the product exists can be better understood. [snip]
[Emphasis added]

79 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Addressing Product Lines - 1

Likewise, notes have been added to the Intro Notes of selected PAs
to explain how the PA can be effectively applied in a product line
environment.

80 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Addressing Product Lines - 2

An example of a note added in the RD Intro Notes:
For product lines, engineering processes (including requirements
development) may be applied to at least two levels in the organization. At an
organizational or product line level, a “commonality and variation analysis” is
performed to help elicit, analyze, and establish core assets for use by projects
within the product line. At the project level, these core assets are then used
as per the product line production plan as part of the project’s engineering
activities. [Emphasis added]

An example of a note added in the TS Intro Notes:
For product lines, these practices apply to both core asset development (i.e.,
building for reuse) and product development (i.e., building with reuse). Core
asset development additionally requires product line variation management
(the selection and implementation of product line variation mechanisms) and
product line production planning (the development of processes and other
work products that define how products will be built to make best use of these
core assets). [Emphasis added]

81 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 1

Allocated requirement
DEFINITION
 Requirement that leviesresults from levying all or part of the performance and

functionality of a higher level requirement on a lower level architectural
element or design component.

 More generally, requirements can be allocated to other logical or physical
components including people, consumables, delivery increments, or the
architecture as a whole, depending on what best enables the product or
service to achieve the requirements.

The improvements to the above definition make the substance of the solution
space and the allocation of requirements to it more explicit, enabling insightful
analyses (including verification) of requirements, architectures, and
implementations.

82 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 2

Architecture
DEFINITION
 The set of structures needed to reason about a product. These structures are

comprised of elements, relations among them, and properties of both.
 In a service context, the architecture is often applied to the service system.
 Note that functionality is only one aspect of the product. Quality attributes,

such as responsiveness, reliability, and security, are also important to reason
about. Structures provide the means for highlighting different portions of the
architecture. (See also “functional architecture.”)

This term and its use throughout the rest of the model is intended to encourage
use of proven, architecture-centric practices and the recognition of “architecture”
as a principal engineering artifact.

83 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 3

Definition of required functionality and quality attributes
DEFINITION
 A characterization of required functionality and quality attributes obtained through

“chunking,” organizing, annotating, structuring, or formalizing the requirements
(functional and non-functional) to facilitate further refinement and reasoning about the
requirements as well as (possibly, initial) solution exploration, definition, and evaluation.

 As technical solution processes progress, this characterization can be further evolved
into a description of the architecture versus simply helping scope and guide its
development, depending on the engineering processes used; requirements
specification and architectural languages used; and the tools and the environment used
[snip].

The term “definition of required functionality” that appeared in V1.2 has been
removed from CMMI because of the implicit suggestion that functionality be
addressed first or has higher priority. The term has been replaced with the one
above, which is intended to help ensure a sufficiently balanced and concurrent
focus (functional and non-functional) in requirements analysis.

84 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 4

“Functional analysis” and “functional architecture”
These terms, which appeared in earlier versions of CMMI, are now “cul

de sacs” in the model.
The only places these terms now appear in CMMI-DEV V1.3 outside of

the Glossary are in the first note of RD SP 3.2 and as an example
work product.

The note in RD SP 3.2 contrasts the approaches implied by these terms
with “modern engineering approaches” that encourage a more
balanced and concurrent treatment of requirements, functional and
non-functional.

85 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 5

Product line
DEFINITION
 A group of products sharing a common, managed set of features that

satisfy specific needs of a selected market or mission. and that are
developed from a common set of core assets in a prescribed way.

 The development or acquisition of products for the product line is based on
exploiting commonality and bounding variation (i.e., restricting unnecessary
product variation) across the group of products. The managed set of core assets
(e.g., requirements, architectures, components, tools, testing artifacts, operating
procedures, software) includes prescriptive guidance for their use in product
development. Product line operations involve interlocking execution of the broad
activities of core asset development, product development, and management.

 Many people use “product line” just to mean the set of products produced by a
particular business unit, whether they are built with shared assets or not. We call
that collection a "portfolio," and reserve "product line" to have the technical
meaning given here.

86 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 6

Quality attribute
DEFINITION
 A property of a product or service by which its quality will be judged by

relevant stakeholders. Quality attributes are characterizable by some
appropriate measure.

 Quality attributes are non-functional, such as timeliness, throughput,
responsiveness, security, modifiability, reliability, and usability. They have a
significant influence on the architecture.

This term is now included in the Glossary for the first time. This term is intended
to supplant others – especially those focusing on only a few dimensions (e.g.,
“performance”) – to encourage a broader view of non-functional requirements.
The term was refined through much effort, as neither ISO 25030 (SQuaRE) nor
the original SEI definitions were quite satisfactory.

87 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Changes in CMMI Terminology - 7

“Performance” used by itself can be ambiguous
A “quality attribute” for CMMI is clarity . One term that has repeatedly
caused problems in translations was “performance.” For V1.3, each use
of the term was examined to ensure it was unambiguous, correctly used,
and where appropriate the term was qualified:
 - supplier performance

- project performance
- product performance
- technical performance
- organization’s performance
- cost, schedule, performance
- performed process (CL1)
- process performance
- period of performance
- service delivery performance
- project progress and performance
- fit, form, function, performance

88 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Establish and maintain
DEFINITION
 Create, document, use, and revise . . . as necessary to ensure it remains they

remain useful.
 The phrase “establish and maintain” means more than a combination of its component

terms; . . . plays a special role in communicating a deeper principle in CMMI: work
products that have a central or key role in work group, project, and organizational
performance should be given attention to ensure they are used and useful in that role.

 This phrase has particular significance in CMMI because it often appears in goal and
practice statements . . . and should be taken as shorthand for applying the principle to
whatever work product is the object of the phrase.

The above term appears in many CMMI practices. This term was changed in V1.3 to
emphasize that artifacts that have a long-term role need to evolve to remain useful.
Example from RD SP 2.1 note: “The modification of requirements due to approved
requirement changes is covered by the “maintain” aspect of this specific practice…” The
issue of how much to document is also addressed, e.g., TS SP 2.2.

Changes in CMMI Terminology - 8

89 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Presentation Outline

CMMI V1.3 – Context for modern engineering practices changes

Introduction to Architecture

Essential Architecture Practices

Where Are the Architecture-Centric Practices in CMMI V1.3?

Summary

Questions and Answers

90 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

The quality and longevity of a software-intensive
system is largely determined by its architecture.

Early identification of architectural risks saves
money and time.

There are proven practices to help ensure that
suppliers and acquirers can develop and acquire
systems that have appropriate architectures.

CMMI V1.3 has a new emphasis on architecture.

The efficacy of the architecture has a direct
impact on program or mission success, and
customer satisfaction.

Summary & Conclusions

91 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

References - 1

Software Architecture in Practice, Second Edition
Bass, L.; Clements, P.; & Kazman, R. Reading, MA:
Addison-Wesley, 2003.
Evaluating Software Architectures: Methods and Case
Studies
Clements, P.; Kazman, R.; & Klein, M. Reading, MA:
Addison- Wesley, 2002.
Documenting Software Architectures: Views and Beyond,
Second Ed.
Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.;
Little, R.; Nord, R.; & Stafford, J. Reading, MA:
Addison-Wesley, 2010.
Software Product Lines: Practices and Patterns
Clements, P.; Northrop, L. Reading, MA: Addison-Wesley,
2001.

92 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

References - 2

You can find a moderated list of references on the “Software
Architecture Essential Bookshelf”

http://www.sei.cmu.edu/architecture/start/publications/bookshelf.cfm

Grady Booch: Handbook of Software Architecture (currently

only an on-line reference):
 http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main

CMMI for Development, Version 1.3
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm
 (also available as a book from the SEI Series on Software

Engineering)
Chrissis, Mary Beth; Konrad, Mike; & Shrum, Sandy. CMMI:

Guidelines for Process Integration and Product Improvement,
3rd Edition. Boston: Addison-Wesley, 2011.

http://www.sei.cmu.edu/architecture/start/publications/bookshelf.cfm�
http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Main�
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm�

93 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Six Courses

Software Architecture
Principles and Practices*

Documenting
Software Architectures

Software Architecture
Design and Analysis

Software Product Lines

ATAM Evaluator Training

ATAM Leader Training

ATAM Observation

Software
Architecture
Professional

ATAM
Evaluator

ATAM

Leader

Three Certificate Programs

The SEI Software Architecture Curriculum

: required to
receive certificate

*: available through

e-learning

94 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Contact Information

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/productlines
SEI Fax: 412-268-5758

Mike Konrad
SEPM/CMMI
Telephone: 412-268-5813
Email: mdk@sei.cmu.edu

Larry Jones
Research, Technology, and Systems

Solutions Program
Telephone: 719-481-8672
Email: lgj@sei.cmu.edu

http://www.sei.cmu.edu/productlines�

95 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

Questions

96 Architecture and CMMI V1.3
© 2011 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu�

	Architecture: Why Your CMMI V1.3 Implementation is Incomplete Without It!
	Introductions
	Tutorial Learning Outcomes
	What Have We Learned Over the Past Year? Something was Missing.
	Conventions & Caveats for the Tutorial
	Expected Background of Participants
	Presentation Outline
	The Problem: CMMI V1.2 Did Not Adequately Cover Modern Engineering Approaches
	The Solution: Modernize the Engineering Content in CMMI V1.3
	What Is an Architecture?
	Architecture is Important
	Why Is Architecture Important?
	Architecture is About Structure and Decisions
	“Every system has an architecture…
	Architecture and Strategy
	Class Exercise 1
	Presentation Outline
	A Warning (PERMISSION REQUESTED)
	Formal Definition of Software Architecture
	Formal Definition of System Architecture
	Implications
	Structures and Views - 1
	Structures and Views - 2
	Presentation Outline
	What is Architecture-Centric Engineering?
	System Development
	Specifying Quality Attributes
	Parts of a Quality Attribute Scenario
	Example Quality Attribute Scenario
	Additional Example Scenarios
	Class Exercise 2
	Architecture-Centric Activities
	Some SEI Techniques, Methods, and Tools
	Building the Business Case for the System
	Understanding the Requirements – �The SEI’s Quality Attribute Workshop
	An Approach to Architecture Creation
	Class Exercise 3
	Creating the Architecture
	Summary of Availability Tactics
	Other Tactics
	Analyzing the Architecture – SEI’s Architecture Tradeoff Analysis Method® (ATAM®)
	ATAM Phases
	ATAM Evaluative Phases (1 & 2)
	Documenting the Architecture
	Three Types of Views
	View-Based Documentation
	Software Architecture Documentation Needs
	Implementing and checking conformance
	So How Well Does This Work? �Study: Impact of Army Architecture Evaluations
	Architecture Practices are Having an Impact 1 of 2
	Architecture Practices are Having an Impact 2 of 2
	What About System of Systems (SoS)? - 1
	What About System of Systems (SoS)? - 2
	The Need for Augmented Mission Threads in DoD SoS Architecture Definition
	One Approach
	SoS and Quality Attribute Elicitation, Specification, and Analysis
	Architectural Reuse
	Software Product Lines
	Successful Software Product Lines
	Building the Core Asset Base
	Building a Product...
	Building Subsequent Products...
	Feedback
	Widespread Application - 1
	Widespread Application - 2
	Presentation Outline
	Modern Engineering Approaches in CMMI - 1
	Modern Engineering Approaches in CMMI - 2
	Modern Engineering Approaches in CMMI - 3
	Requirements Development
	Technical Solution
	Product Integration
	Validation
	Verification
	Addressing Agile - 1
	Addressing Agile - 2
	Addressing Agile - 3
	Addressing Agile - 4
	Addressing Product Lines - 1
	Addressing Product Lines - 2
	Changes in CMMI Terminology - 1
	Changes in CMMI Terminology - 2
	Changes in CMMI Terminology - 3
	Changes in CMMI Terminology - 4
	Changes in CMMI Terminology - 5
	Changes in CMMI Terminology - 6
	Changes in CMMI Terminology - 7
	Slide Number 88
	Presentation Outline
	Slide Number 90
	References - 1
	References - 2
	The SEI Software Architecture Curriculum
	Contact Information
	Questions
	Slide Number 96

