
Software Engineering Strengths and
Weaknesses in Systems Engineers

Dr. Paul Shebalin, Director
The Wayne E. Meyer Institute, Naval Postgraduate School

pshebali@nps.edu, 831-656-1047

“Applied and Basic Research in Systems
Analysis, Modeling and Engineering

October 2010

October 2010 v4 2

Topics

• SE at the Naval Postgraduate School
• SE4003 Systems Software Engineering
• The Need for Systems Engineers to Serve as

Software Engineers
• Software Engineering Capability Evaluation
• Observations
• Recommendations

October 2010 v4 3

Mission of the Naval Postgraduate School

• NPS provides high-quality,
relevant and unique
advanced education and
research programs that
increase the combat
effectiveness of the Naval
Services, other Armed
Forces of the U.S. and our
partners, to enhance our
national security.

October 2010 v4 4

NPS Summary

• A Department of the Navy graduate school founded
in 1909 located in Monterey, California

• Four schools and 65 Curricula in engineering,
science, business, public policy, operations research,
information sciences, international studies, national
security studies and homeland security.

• Four research institutes and 20 centers
• Faculty: 248 Tenure-Track, 429 Non-TT
• Graduate Students: 1500 Resident, 750 Non-Resident

– 44% Navy, 12% USMC, 23% other US Services, 14%
International, 7% Civilian

October 2010 v4 55

NPS Systems Engineering Programs

SE Certificate
282
DL and resident

4 quarters

4 courses

Integrated Project
(in courses)

2 cohorts/year

30 per cohort

23 students

MSSE
311
DL

8 quarters

16 courses

Project

12 cohorts/year

~30 per cohort

314 students

MSSE
580
Resident

8 quarters
(with refresher)

36 courses

Thesis

1 cohort/year*

18 per cohort

43 onboard

MSSEM (PD21)
721
DL

8 quarters

16 courses

Thesis

1 cohort/year

20-25 per cohort

41 students

MSSEA
308
Resident

8 quarters
(with embedded
refresher)

32 courses

Project

1 cohorts/year

20 per cohort

34 students

AS of 9/9/10

October 2010 v4 66

MSSE Core Courses

Fundamentals of Systems Engineering

Systems Suitability

Systems Assessment

Fundamentals of Engineering Project
Management

Engineering Economics and Cost
Estimation

Capability Engineering

System Architecture and Design

Systems Software Engineering

Systems Integration and Development

• Resident and non-resident
programs share a common
nine course core curriculum

• Informed by INCOSE and
DOD reference curricula

• DAU Equivalencies
• Burnt orange courses

compose the certificate
• Degree requirements met by

core, 4 course track, and 3
course project

• P-codes can impose
additional requirements

October 2010 v4 7

SE4003 Systems Software Engineering

• Course objective: teach students the basic concepts of software
engineering and methods for requirements, definition, design
and testing of software.

• Course framework:
– 10-week quarter
– Prerequisite: Computer Programming Course
– Text by Pressman: Software Engineering: A Practitioner’s Approach

(7th Ed.) (Chapters 1-10, 17-19)
– Assigned readings and class presentations, exercises and discussions

complement hands-on project experience.
– Embedded System Software Project:

• Team of 3-5 members
• Software development for Lego NXT robot using NXC (Not eXactly C) or

Java
• Deliverable and non-deliverable software products

• Basis for identifying SWE strengths and weaknesses

October 2010 v4 8

ROCS System Hierarchy

Rapid Obstacle
Clearance System

(ROCS)

Personnel
Segment

Logisitic
Support
Segment

Robotic
Autonomous

Vehicle (RAV)
Segment

Obstacle
 Disposal
Segment

Maintenance
Segment

ROCS
Programming Unit

(RPU)
Segment

RAV Chassis and
Drive Train
Subsystem

RAV Computer
Controller

Subsystem

Embedded
Computer

Component

Sensor
Equipment
Component

Operating System
Software

Component

RAV Operational
Control Software

Component

RPU Computer
Subsystem

RPU Software
Subsystem

RPU Operating
System

Component

ROCS Software
Development
Environment
Component

A B C D

E F

October 2010 v4 9

Hands-On Project Hardware

LEGO NXT Ultrasonic
Sensor

LEGO NXT Light
Sensor

LEGO NXT Light
Sensor

LEGO NXT Brick

Two (2) LEGO NXT
Servo Motors

Robotic Autonomous Vehicle (RAV)
Prototype

October 2010 v4 10

Systems Engineers as Software Engineers?

• Why do systems engineers need software
engineering knowledge, skills, and abilities?
– To be better systems engineers?
– To be better software engineers?

• Many systems engineers will be called to serve
as software engineers on a software project –
development, maintenance, V&V, T&E, …

• How software-engineering-capable are the
systems engineers we’re graduating?

• How can we measure SWE capability?

October 2010 v4 11

Measuring SWE Capability

• Formal testing
• Peer evaluation
• Process quality
• Product quality
• Timeliness and appropriateness
• Repeatability and long-term performance
• Observation and evaluation

October 2010 v4 12

Observation and Evaluation Method

• Define evaluation criteria using
– “Knowledge, Skills, and Abilities” (KSAs)
– SWEBOK (IEEE) breakdown of SWE topics

• Consider the results of five offerings of
SE4003 with 82 students and 27 project teams

• Subjectively, evaluate the student performance
through the use of a Pugh Matrix
– -1, 0, 1 representing Worse, Same, Better of

average student performance compared with that
expected of a competent software engineer

October 2010 v4 13

KSA’s

• Knowledge
– Mental data representing

information, facts,
relationships, concepts,
logical implications, etc.

– E.g., object-oriented
software engineering
concepts

• Abilities
– The wherewithal to

perform specific tasks
– E.g., the ability to create

a suitable Software
Requirements Analysis
Document

• Skills
– Effectiveness in using

tools and technology
– E.g., effectiveness in

using a specific software
development
environment (SDE)

October 2010 v4 14

SWEBOK Topics Breakdown

Area Subareas Topics
A. SW Requirements 7 28
B. Software Design 6 25
C. Software Construction 3 13
D. Software Testing 5 16 Subtopics
E. Software Maintenance 4 15 13
F. SW Configuration Mgt 6 17 15
G. SW Engineering Mgt 6 24
H. SW Engineering Process 4 16 9
I. SWE Tools and Methods 2 14
J. Software Quality 3 11 14

October 2010 v4 15

A. Software Requirements
1. Software requirements fundamentals

a. Definition of software requirement
b. Product and process requirements
c. Functional and non-functional

requirements
d. Emergent properties
e. Quantifiable requirements
f. System requirements and software

requirements
2. Requirements process

a. Process models
b. Process actors
c. Process support and management
d. Process quality and improvement

3. Requirements elicitation
a. Requirements sources
b. Elicitation techniques

4. Requirements analysis
a. Requirements classification
b. Conceptual modeling
c. Architectural design and requirements

allocation
d. Requirements negotiation

5. Requirements specification
a. System definition document
b. System requirements specification
c. Software requirements specification

6. Requirements validation
a. Requirements reviews
b. Prototyping
c. Model validation
d. Acceptance tests

7. Practical considerations
a. Iterative nature of requirements

process
b. Change management
c. Requirements attributes
d. Requirements tracing
e. Measuring Requirements

October 2010 v4 16

B. Software Design

1. Software design fundamentals
a. General design concepts
b. Context of software design
c. Software design process
d. Enabling techniques

2. Key issues in software design
a. Concurrency
b. Control and handling of events
c. Distribution of components
d. Error and exception handling and fault

tolerance
e. Interaction and presentation
f. Data persistence

3. Software structure and architecture
a. Architectural structures and

viewpoints
b. Architectural styles

(macroarchitectural patterns)
c. Design patterns (microarchitectural

patterns)
d. Families of programs and frameworks

4. Software design quality analysis and
evaluation

a. Quality attributes
b. Quality analysis and evaluation

techniques
c. Measures

5. Software design notations
a. Structural descriptions (static)
b. Behavioral descriptions (dynamic)

6. Software design strategies and methods
a. General strategies
b. Function-oriented (structured) design
c. Object-oriented design
d. Data-structure centered design
e. Component-based design (CBD)
f. Other methods

October 2010 v4 17

C. Software Construction

1. Software construction fundamentals
a. Minimizing complexity
b. Anticipating change
c. Construction for verification
d. Standards in construction

2. Managing construction
a. Construction methods
b. Construction planning
c. Construction measurement

3. Practical considerations
a. Construction design
b. Construction languages
c. Coding
d. Construction testing
e. Construction quality
f. Integration

October 2010 v4 18

D. Software Testing
1. Software testing fundamentals

a. Testing-related terminology
b. Key issues
c. Relationships of testing to other activities

2. Test levels
a. The target of the tests
b. Objectives of testing

3. Test techniques
a. Based on tester’s intuition and experience
b. Specification-based
c. Code-based
d. Fault-based
e. Usage-based
f. Based on nature of application
g. Selecting and combining techniques

4. Test-related measures
a. Evaluation of the program under test
b. Evaluation of the tests performed

5. Test process
a. Management concerns
b. Test activities

October 2010 v4 19

Process Summary

Evaluation

SWEBOK Topics

KSA Framework

Observations

Software Engineering
Strengths and Weaknesses

When assigned a software engineering role:

What level of software engineering knowledge would the
systems engineer have with regard to a SWEBOK topic?

What level of software engineering ability would the systems
engineer have with regard to a SWEBOK topic?

October 2010 v4 20

A. Software Requirements: Knowledge

1. Software requirements fundamentals
a. Definition of software requirement
b. Product and process requirements
c. Functional and non-functional

requirements
d. Emergent properties
e. Quantifiable requirements
f. System requirements and software

requirements
2. Requirements process

a. Process models
b. Process actors
c. Process support and management
d. Process quality and improvement

3. Requirements elicitation
a. Requirements sources
b. Elicitation techniques

4. Requirements analysis
a. Requirements classification
b. Conceptual modeling
c. Architectural design and requirements

allocation
d. Requirements negotiation

5. Requirements specification
a. System definition document
b. System requirements specification
c. Software requirements specification

6. Requirements validation
a. Requirements reviews
b. Prototyping
c. Model validation
d. Acceptance tests

7. Practical considerations
a. Iterative nature of requirements

process
b. Change management
c. Requirements attributes
d. Requirements tracing
e. Measuring Requirements

Weakness
Strength

October 2010 v4 21

Weakness
Strength

A. Software Requirements: Ability
1. Software requirements fundamentals

a. Definition of software requirement
b. Product and process requirements
c. Functional and non-functional

requirements
d. Emergent properties
e. Quantifiable requirements
f. System requirements and software

requirements
2. Requirements process

a. Process models
b. Process actors
c. Process support and management
d. Process quality and improvement

3. Requirements elicitation
a. Requirements sources
b. Elicitation techniques

4. Requirements analysis
a. Requirements classification
b. Conceptual modeling
c. Architectural design and requirements

allocation
d. Requirements negotiation

5. Requirements specification
a. System definition document
b. System requirements specification
c. Software requirements specification

6. Requirements validation
a. Requirements reviews
b. Prototyping
c. Model validation
d. Acceptance tests

7. Practical considerations
a. Iterative nature of requirements

process
b. Change management
c. Requirements attributes
d. Requirements tracing
e. Measuring Requirements

October 2010 v4 22
Weakness
Strength

B. Software Design: Knowledge

1. Software design fundamentals
a. General design concepts
b. Context of software design
c. Software design process
d. Enabling techniques

2. Key issues in software design
a. Concurrency
b. Control and handling of events
c. Distribution of components
d. Error and exception handling and fault

tolerance
e. Interaction and presentation
f. Data persistence

3. Software structure and architecture
a. Architectural structures and

viewpoints
b. Architectural styles

(macroarchitectural patterns)
c. Design patterns (microarchitectural

patterns)
d. Families of programs and frameworks

4. Software design quality analysis and
evaluation

a. Quality attributes
b. Quality analysis and evaluation

techniques
c. Measures

5. Software design notations
a. Structural descriptions (static)
b. Behavioral descriptions (dynamic)

6. Software design strategies and methods
a. General strategies
b. Function-oriented (structured) design
c. Object-oriented design
d. Data-structure centered design
e. Component-based design (CBD)
f. Other methods

October 2010 v4 23
Weakness
Strength

B. Software Design: Ability

1. Software design fundamentals
a. General design concepts
b. Context of software design
c. Software design process
d. Enabling techniques

2. Key issues in software design
a. Concurrency
b. Control and handling of events
c. Distribution of components
d. Error and exception handling and fault

tolerance
e. Interaction and presentation
f. Data persistence

3. Software structure and architecture
a. Architectural structures and

viewpoints
b. Architectural styles

(macroarchitectural patterns)
c. Design patterns (microarchitectural

patterns)
d. Families of programs and frameworks

4. Software design quality analysis and
evaluation

a. Quality attributes
b. Quality analysis and evaluation

techniques
c. Measures

5. Software design notations
a. Structural descriptions (static)
b. Behavioral descriptions (dynamic)

6. Software design strategies and methods
a. General strategies
b. Function-oriented (structured) design
c. Object-oriented design
d. Data-structure centered design
e. Component-based design (CBD)
f. Other methods

October 2010 v4 24

C. Software Construction: Knowledge

1. Software construction fundamentals
a. Minimizing complexity
b. Anticipating change
c. Construction for verification
d. Standards in construction

2. Managing construction
a. Construction methods
b. Construction planning
c. Construction measurement

3. Practical considerations
a. Construction design
b. Construction languages
c. Coding
d. Construction testing
e. Construction quality
f. Integration

Weakness
Strength

October 2010 v4 25

C. Software Construction: Ability

1. Software construction fundamentals
a. Minimizing complexity
b. Anticipating change
c. Construction for verification
d. Standards in construction

2. Managing construction
a. Construction methods
b. Construction planning
c. Construction measurement

3. Practical considerations
a. Construction design
b. Construction languages
c. Coding
d. Construction testing
e. Construction quality
f. Integration

Weakness
Strength

October 2010 v4 26

D. Software Testing: Knowledge
1. Software testing fundamentals

a. Testing-related terminology
b. Key issues
c. Relationships of testing to other activities

2. Test levels
a. The target of the tests
b. Objectives of testing

3. Test techniques
a. Based on tester’s intuition and experience
b. Specification-based
c. Code-based
d. Fault-based
e. Usage-based
f. Based on nature of application
g. Selecting and combining techniques

4. Test-related measures
a. Evaluation of the program under test
b. Evaluation of the tests performed

5. Test process
a. Management concerns
b. Test activities

Weakness
Strength

October 2010 v4 27

D. Software Testing: Ability
1. Software testing fundamentals

a. Testing-related terminology
b. Key issues
c. Relationships of testing to other activities

2. Test levels
a. The target of the tests
b. Objectives of testing

3. Test techniques
a. Based on tester’s intuition and experience
b. Specification-based
c. Code-based
d. Fault-based
e. Usage-based
f. Based on nature of application
g. Selecting and combining techniques

4. Test-related measures
a. Evaluation of the program under test
b. Evaluation of the tests performed

5. Test process
a. Management concerns
b. Test activities

Weakness
Strength

October 2010 v4 28

Evaluation Summary

• Strengths in all four evaluated SWEBOK areas
• Weaknesses in first two SWEBOK areas

– A. Software Requirements
– B. Software Design

• Knowledge may be satisfactory, but Abililties
to perform are the real “proofs of the pudding”

• In general, the typical systems engineering
student did well as a “competent software
engineer”.

October 2010 v4 29

Classroom Observations (1 of 4)

1. Some discussion required to clarify the
differences between functional and non-
functional requirements (system and SW).

2. Initial definition of top-level use case
framework was weak, but then detailed use
case descriptions were well done.

3. Allocation of system requirements to
software requirements was not easily done.

4. Concept of a “CSCI” required discussion and
project experience to understand.

October 2010 v4 30

Classroom Observations (2 of 4)

5. Actually scripting a CSCI requirement was
surprisingly difficult.

6. Object-oriented class modeling was weak –
some students got it quickly, most did not.

7. Structured analysis (Data Flow Diagrams)
was not easy, but most students quickly
learned.

8. Constructing state transition diagrams
(STDs) was surprisingly difficult.

October 2010 v4 31

Classroom Observations (3 of 4)

9. Experience with Requirements Traceability
Matrices was mixed

• General understanding and use was strong, but
• “Atomically” capturing and listing software

(CSCI) requirements was weak.
10. Following architecture and design patterns

was strong, but creating new patterns was
weak.

11. Object-oriented design and construction was
bi-modal – some got it, some didn’t.

October 2010 v4 32

Classroom Observations (4 of 4)

12. Behavior modeling (UML) was mixed
• Strong: Activity and Swim Lane Diagrams
• Weak: Control Flow, Sequence, and State

Transition Diagrams.
13. Algorithm design (using PDL) was weak.
14. Construction – coding and debugging – was

strong in general.
15. System integration and testing was strong.
16. Project management and team work was

strong.

October 2010 v4 33

Conclusions and Recommendations

• NPS MSSE and SE4003 are, in general, good
preparation for students to act as software engineers,
but weaknesses may exist.

• Recommendations:
– Prioritize the observed weaknesses and do a causality

analysis.
– For the high-priority (critical) weaknesses, determine

which core courses (including SE4003) might need
changes.

– Evaluate impact of proposed changes and determine a
balanced curriculum update package.

– Brief to curriculum sponsor, as required, and implement
approved changes.

– Re-evaluate after several course offerings.

	Software Engineering Strengths and Weaknesses in Systems Engineers
	Topics
	Mission of the Naval Postgraduate School
	NPS Summary
	NPS Systems Engineering Programs
	MSSE Core Courses
	SE4003 Systems Software Engineering
	ROCS System Hierarchy
	Hands-On Project Hardware
	Systems Engineers as Software Engineers?
	Measuring SWE Capability
	Observation and Evaluation Method
	KSA’s
	SWEBOK Topics Breakdown
	A. Software Requirements
	B. Software Design
	C. Software Construction
	D. Software Testing
	Process Summary
	A. Software Requirements: Knowledge
	A. Software Requirements: Ability
	B. Software Design: Knowledge
	B. Software Design: Ability
	C. Software Construction: Knowledge
	C. Software Construction: Ability
	D. Software Testing: Knowledge
	D. Software Testing: Ability
	Evaluation Summary
	Classroom Observations (1 of 4)
	Classroom Observations (2 of 4)
	Classroom Observations (3 of 4)
	Classroom Observations (4 of 4)
	Conclusions and Recommendations

