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Overview of Agenda/Presentation

• Motivation and problem statement
• Recap from prior work

– Conceptual model based on OSD’s SoS SE Guide
– Computer simulation: Exploratory SoS Acquisition  Model

• Snapshots from illustrative problems
– Dynamic impacts of risk
– Implementation of system-specific risk
– Impact of system-specific risk and SoS network topology

• Summary
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Motivation 
Literature on recent history indicates a variety of challenges for SoS acquisition
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SoS Sources of Complexity

• Dynamic and Uncertain Connectivity
• between levels of abstraction
• across scope dimensions

• “Porous” boundary
• Changes in constitution of SoS 

• Heterogeneity & Multiplicity
• Multiplicity of perspectives: A root cause of interoperability issues
• Heterogeneity of participants (within and between Human & Technical); 
Socio-Technical Systems

Working Definition for
Complexity:

the amount of information 
necessary to describe the 

regularities in a system 
effectively

• multiple time scales
• emergence (unforeseen interdependencies)

• Evolving nature of an ‘open system’
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Root Causes of Failure 
(within acquisition processes)

• Misalignment of objectives among the systems 
• Limited span of control of the SoS engineer on the 

component systems of the SoS 
• Evolution of the SoS
• Inflexibility of the component system designs
• Emergent behavior revealing hidden dependencies 

within systems 
• Perceived complexity of systems 
• Challenges in system representation

Used categories from Rouse, W. (2007, June). Complex Engineered, Organizational and Natural Systems. Systems Engineering, 10, 3., pp. 260-271
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Recap: Research Goals
• Uncover underlying functions affected by complexities due to evolution 

in SoS acquisition and span-of-control

• Capture Dynamics: Exploratory SoS Acquisition Model
– Depicts the processes (SoS SE Guide) in a hierarchical setting 
– Show the flow of control between the processes throughout the acquisition 

life-cycle
– Interactive computational model: allow users to ‘explore’ complexities

• Experiment: Generate insights and approaches to improve the 
probability of program success

• Mapping of Operational Views (OV) to Systems Views (SV)
– System capabilities and their interconnections
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Recap: Development of a Dynamic, 
Exploratory Model for SoS Acquisition

1. Pre-Acquisition Model (not included here)
– Understand the influence of external stakeholders on the 

acquisition process

2. Acquisition Strategy Model
– Based on the 16 technical management and technical systems 

engineering processes outlined in the Defense Acquisition 
Guidebook (5000 series) applied to an SoS environment (SoS-
SE Guide)

– Conceptual model depicts the processes in a hierarchical setting 
to show the flow of control between the processes throughout 
the acquisition life-cycle 
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Recap: Acquisition / Development – The Paper Model
(based on SoS SE Guide)

System-level
• System dependency
• Initial completeness level
• Int/Imp time 
• Probability of disruption 
(comes from risk-profile)

Requirement-level
• Number of requirements
• Requirement dependency
• Probability of disruption

Project-level (SoS)
Risk profile: low, med, high
Span-of-control: low, high

Span-of-ControlEstimated TimeRisk Level

Output
Completion time
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Methodology Abstraction

Requirements / Activities
(OV-2, OV-5)

Systems / Programs
(SV-1, OV-2)

Operational (OV):  systems work 
together to provide a capability

System (SV): define nature of 
interaction between systems

Programmatic: relationship 
between systems during 
development

Operational capability (derived from SoS)

• Discrete-event simulation with probabilistic behavior of systems
• Levels have predetermined probability of disruption

• Requirement-level disruptions: affect design solutions (i.e. design solution  of system X 
cannot meet requirement)

• System-level disruptions: affects completeness level of system and completion time (i.e. set 
back in implementation phase of system X results in longer time)
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Illustrative Example
Requirement 1 Requirement 2Requirement 1 Requirement 2
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Effects of Disruptors
(system-level)

• Inevitable disruptions on both system-level and requirement levels will occur 
• Technology Assessment is able to immediately trace and resolve the problem

– This prevents the development from stalling or regressing over multiple time-steps

Negative disruptions correspond to 
system re-engineering and lower 
completeness level in Integration  
(and Implementation) phase

Each color represents an 
individual system (system ‘a’ 
is blue)
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Effect of Project Risk
(determines probability of disruption in Integration and Implementation phase)

• Some projects have a much higher risk factor
– They are more vulnerable to negative disruptions in their development 

• Higher risk of disruptions implies more time to complete stages
– In fact, completion may fail  return to Design Solution

• Not all systems in a SoS, however have the same risk-level
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Impact of System-Specific Risk
• Quantify the impact that system-specific risk has on the 

completion time of the SoS
– Measure risk in a SoS network
– Observe changes in completion time due to different risk-levels

• Example problem
– One requirement and three component 

systems
– Each system can have a distinct risk-level

– Risk-level indicates probability of 
disruption in implementation & integration 
phase

– Risk for the SoS varies as the level and 
combinations of system-specific risk change

– Wan to capture the effect of these changes 
and measure the risk for t he entire SoS

Requirement 

Systems
A B

C
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Network-Risk Metric
• Consider the following network-risk metric/index

14

∑∑
= =
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j
jij ArR

1 1
,

where rj is the risk of system j and it has values of 1, 2, or 3 (for low, mid, 
and high risk) and A is the adjacency matrix (system interdependencies)

• The network-risk metric is a dimensionless number and considers 
the system-risk and the system dependencies simultaneously 

• Current implementation does not yet consider the higher-order  
system interdependencies (cascading effects of risk)
• i.e. system A is impacted by system B, but system B is also 

impacted by system C; risk of system A should be more than 
just the sum of the risk of system-A and system-B

A B

C
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Exploratory Model Experiments
• Experiment set-up

– Each system can have a low, mid, or high risk-level
• A total of 27 combinations for the 3-system network

– Run Monte Carlo simulation of Exploratory Model (500 samples)
• Experiment results

– Capture impact of system-specific risk on SoS completion time
– Identify critical system and risk combination
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Impact of System-Risk and SoS Network Topology
• Previous experiment captured the impact of system risk for a fixed SoS 

network
• It is also possible to consider the impact of system-specific risk coupled with  

different network topologies
• Consider 30 randomly generated SoS configurations 

– Uniformly random selection of number of systems (up to10 systems)
– Random selection of links between systems with correlation of 0.25
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Exploratory Model Experiments
• Experiment set-up

– For each system in each SoS network randomly generate a risk-level
– Run Monte Carlo simulation of Exploratory Model (500 samples) for 

each SoS network
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• Experiment results
– Capture impact of system-specific risk  

AND network topology (i.e. 
interdependencies) on SoS completion 
time

• Observations
• SoS with higher risk metric/index 

have higher completion time
• Scatter potentially due to the higher-

order impact of risk (i.e. cascading 
effects)
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Observations
• Exploratory model is intended to enable acquisition 

professionals and program engineers to learn about 
complexities, dynamics, and disruptions, identifying markers of 
failure and success

– Evolution of interdependencies
– Network structure and span-of-control of SoS

• Current implementation if system-risk seems to capture the 
right things

• System-specific risk and SoS network topology experiments 
are a means to compare different SoS options that may satisfy 
the same requirement

• Shortcomings
– R does not capture the higher order impact of dependencies
– Current efforts focused on addressing this
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Thank You
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Effect of Span-of-Control

High Span-of-control Low Span-of-control
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• Span-of-control has large impact on project time
• High span-of-control  SoS level authority, can implement in parallel
• Low span-of-control  less coordination, implement in series, results in 

longer completion time
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