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Thermal Hazards – Why is 
it important?



 
Prolonged exposure of energetic materials to elevated 
temperature
 Produce some level of decomposition
 Decomposition generates heat
 Heat dissipates to surroundings



 
Self-heating
 Rate of heat generation exceeds losses to the environment
 Non-catastrophic 

 Simple non-violent decomposition
Reaction may be stopped if heat source removed
Over time may escalate into catastrophic reaction

 Catastrophic
 Thermal runaway or “point of no return”
May result in deflagration, explosion or detonation
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Critical Temperature


 

Critical temperature, Tc


 
Defined the lowest constant surface temperature at 
which a given material of a specific shape and size will 
catastrophically self-heat



 
Utilized to assess the hazards associated with 
processing and loading of melt cast explosives



 
Parameter scales with charge size 


 

Mass


 

Diameter


 
Other relationships for critical temperature
1. Decreases as size increases
2. Decreases as Surface/Volume decreases
3. Determined by most rapid heat-producing reaction
4. Can usually be predicted
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Potential Problem

Novel Explosive Formulations
Developed to meet Insensitive Munition (IM) requirements
Non-ideal explosives

Non-conventional ingredients (nitrate salts, NTO, DNAN)
Larger critical diameters

Responses to thermal stimuli
Often very mild
Vary from critical temperature models (Observed with PAX-21)

What is “catastrophic”
Catastrophe: 

an extremely large-scale disaster (wikipedia.com)
a sudden and widespread disaster (dictionary.com)
a sudden violent change (American Heritage dictionary) 

Can the mild “events” from some non-ideal explosives be described as 
“catastrophic?”
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Objective



 
Investigate the applicability of conventional thermal models 
and standard tests utilized for explosive qualification



 
Demonstration for non-ideal explosives 
 Evaluate Non-ideal Insensitive Explosive Formulation (NIE) 

Melting point of 94.5C 
 Likely be processed at 105 to 110C

 Critical temperature
 F-K and Semenov Models are often too conservative
Conventional scaling factor does not apply

 Processing of NIE formulation is 
 Safe to process and handle on large production scales
Despite the hazards incorrectly predicted using the traditional 

conservative models
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Technical Approach



 
Conduct experiments at multiple scales
 Obtain required parameters and variables
 Conventional prediciton models
Milligram-scale (Henkin)
 Gram-scale (thermal screening unit and small-scale cookoffs)
 Kilogram-scale (1-L Cookoff)
Multikilogram-scale (12-Liter Cookoff)



 
Combine and compare results



 
Make assessment
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Predictive Models
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R is the gas constant
Q is the heat of decomposition 
  is the density 
E is the activation energy
Z is the frequency factor
 

 

is the thermal conductivity
A is the radius of the sphere, 
cylinder, or slab 
  is the shape factor

0.88 for an infinite slab, 
2.00 for a squat cylinder 
3.32 for a sphere

V is volume of the charge
S is the surface area of the charge
  is the heat flow coefficient at the 
boundary

Glass: 0.0105-0.0135 cal/(cm2-s-C)
Aluminum: 0.0085 cal/(cm2-s-C)
Steel: 0.0022 cal/(cm2-s-C)

Frank-Kamenetsky (F-K) Model
Assumes conductive heat transfer 
Worst-case predictive model under the 
limitations of pure conduction
Heat flow from reacting mass to establish 
temperature gradient
In essence, this scenario is the result of a 
viscous melt with failed stirring
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Semenov Model
Assumes perfect stirring 
Convective heat flow
Uniform temperature in the reacting explosive
Heat lost to surroundings by Newtonian 
cooling with thermal gradient at vessel boundary
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1-L Slow Cookoff Test

Dual Purpose
Validate accuracy of self-heating predictions 
for larger geometries
Provides measure of reaction severity

Preparation
1-L Pyrex round-bottom flask containing 
sample and thermocouple bundle 
Disposable plywood oven

Resistive heater and circulating fan
Tempered oven glass window for video 
observation

Test
Sample preconditioned at ~10°C > melt point
Heat oven at 3.3°C/hr 
Thermocouple data recorded
Procedure continues until decomposition, 
explosion, or cracking of the flask
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Predictions for 1-L Cookoff 
Scenario

Henkin time-to-explosion
Sealed, confined sample
Tc of 220°C

F-K 
For 1-L (r=6.1cm), predicts 108°C
Extrapolates to Tc below melt point   
of formulation at large diameters

Semenov 
For 1-L, predicts 166°C
Extrapolates to tc of 134 at large 
diameters

Large scale production meets 30°C 
safety margin if NIE follows Semenov 
closely

F-K predicts Tc well below melt point!
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Video Stills from 1-L Cookoff

1. Melt and settling at 120°C 2. Yellow exudate at 142-145°C

3. Dark exudate at 145-147°C 4. Fuming at 147-149°C
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Post-test Analysis for 1-L Cookoff



 

Exudate on top of oven around flask opening


 

Oven intact


 

Flask discolored, but undamaged


 

Fine yellow coating on all horizontal surfaces 


 

DNAN


 

Confirmed by DSC
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Concerns over Predictive 
Models
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Processing at 100-105°C

If a curve is drawn based 
upon deviation from F-K 
and Semenov

Yellow circle
Tc between 95 and 115°C

Preferred margin 
Blue Circle 
Tc in range of 130-150°C

Further Testing Required
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Thermal Screening Unit



 

Computer controlled temperature 
ramp (3.3C/hr)



 

Records several parameters 
(temperature pressure, time) during 
experiment



 

Uses Hastelloy Bombs (ARC type) 
with Type K thermocouples, pressure 
transducer

Pressure spike and 
small exotherm at 150C 
Inflection point at 150C
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Reduced Scale Cookoff 
Experiments



 

Test Setup


 

Silicone oil bath (Recirculation)


 

Three Neck Jacketed Round Bottom Flask


 

Thermocouple Data Recorder (K Type) 


 

2 Thermocouples per sample (Center,Side)


 

2 Samples run simultaneously per experiment


 

Test Method


 

Limitation: Non programmable bath 


 

Heated at 120C and held for 2 hours


 

Ramped in increments of 10C and held for 1 hr


 

Cool down was not initialized until sample 
returned to bath temperature

BAE used 3 varied mass/volume ratios: 15g/50ml, 30g/100ml, 30g/50ml 
ARDEC conducted similar test using 20g in 25ml flask, but at ramp of 3C/hr
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Reduced Scale Cookoff 
Test Data



 

BAE Small Scale Cook Off Tests


 

Thermal event observed between 150 and 160C (at all 3 scales)


 

Very mild exotherm “event”; gentle rising and cooling back into 
thermal equilibrium with the bath temperature



 

ARDEC tests observed discoloration at 140C and self-heating at 145C 
using a 3C /hr ramp rate
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Confirmation with Larger Tests

Cookoff tests
Multiple scales (1-L and less)
Similar self-heating temperature 145-155C
Mild Response
Conduct scale up testing in large vessel 
What about larger scales?

12-Liter cookoff test
Conduct in 15-L jacketed reactor
Heat with silicon oil at rate of 3.3C/hr
Performed by BAE at Holston with Army consultation 
Further demonstrate 

Reaction is independent of size 
F-K or Semenov models predictions are too conservative

Geometry more comparable to production melt kettles than 
1-L spherical flask
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Video Stills from 12-L Cookoff Test

Circulating Bath = 163 C
Melt Temperature = 170 C

Circulating Bath = 162 C
Melt Temperature = 163 C

Circulating Bath = 160 C
Melt Temperature = 150 C

Tmelt (C) Observation
135 Bubbling, discoloration, and convection
140 Onset of self-heating, vigorous mixing 
150 Smoke, expulsion of material                                    

Sample heating at 3x the ramp of the circulating bath
>150 Heating continued; Majority of explosive expelled               

Tmelt increased to greater than 300C
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12-L Cookoff Post-test Analysis

Reactor 
Undamaged
Coated in ejected material

Thermocouples still functional

Coating of fine yellow powder
Considerable ejected material 

and splatter
No evidence of burning or 

equipment damage
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Comparison of 1-L and 12-L 
Cookoff Tests on NIE

Set-up/Observation 1-L Test 12-L Test
Excess volume/head-space Minimal >25%

Venting 1 small flask neck 1 large, several small ports

Heating Air Silicone oil

Mixing/Convection None Significant

Ejection Slow exudation Rapid expulsion

Source of Self-heating From center Towards top

Temperature of self-heating 148 C 145 C

Violence of Event None None

Post-test Fine yellow powder 
coating

Fine yellow powder coating
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Conclusions and 
Recommendations



 
Non-ideal formulations
 F-K and Semenov models are often too conservative
 Use of sealed, confined Henkin test questionable for predictive models
May not follow traditional scaling rules for critical temperature
May lack “catastrophic” event



 
Formulation NIE
 Despite the incorrectly predicted hazards, NIE is safe to process and 

handle on large production scales
 Safety margin of 35C realized
 Recommend processing at lower end of range suggested 



 
For formulation development, conduct predictive calculations


 

Best tool currently available
 If models suggest safe processing, it is definitely safe
 If models predict “unsafe” operations, it may be worthwhile to 

investigate further 
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Questions?
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