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Electric armourElectric armour

Effects on jet by:
Joule heating

Heating, melting
Local vaporisation

Lorentz forces
Local instability growth
Fragmentation, disintegration 
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Electric armour – protective mechanismElectric armour – protective mechanism

Magnetic forces transforms the jet from a cylindrical 
shape (axial coherence) to ring- or disc shaped 
structures

Magnetic forces transforms the jet from a cylindrical 
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structures
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Experimental test setupExperimental test setup
A 1.7 mF, 400 kJ pulsed power supply

Two-plate electrode arrangement
Current and voltage diagnostics
Three X-rays to depict the jet
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Experimental results (0, 39 kJ, 96 kJ)Experimental results (0, 39 kJ, 96 kJ)
36 µs (31)

86 µs (81)
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Experimental results 39 and 96 kJExperimental results 39 and 96 kJ
Number of fragments independent of electric energy

Same fragmentation behaviour but more rapid 
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Experimental results 96 kJExperimental results 96 kJ
Radial expansion velocity of jet elements:

Around 200 m/s (3 < vaxial < 6.6 km/s)
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86 µs

Calculated
envelope with vrad = 200 m/s
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Experimental results 96 kJExperimental results 96 kJ
No clear mechanical effect in-between the electrodes
Rapid transformation at exit of electrode region 

Fragmentation
Disk- and ring formation
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Modelling of jet – current
interaction
Modelling of jet – current
interaction

GRALE
Hydrodynamic 2D ALE code

Axial symmetry and plane problems
Magnetohydrodynamic (MDH) 
capability included

Only Lagrange-coordinates for the  
MHD-module 
Pulsed power supply included as 
current source

Material model includes:
Thermal softening
Temperature dependent resistivity
Melt (vaporisation) energies
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Only Lagrange-coordinates for the  
MHD-module 
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Material model includes:
Thermal softening
Temperature dependent resistivity
Melt (vaporisation) energies

Jet movement
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Current density and magnetic field (96 kJ)Current density and magnetic field (96 kJ)
Diffusion of magnetic field and current into the jet (skin effect)

Homogeneous current distribution at times >30 µs 
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Temperature and magnetic field (96 kJ)Temperature and magnetic field (96 kJ)
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Temperature distribution homogenous radially
Reaches melting- and evaporation temperatures rapidly
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IBS, New Orleans 2008     FOI Sweden

Temperature distribution homogenous radially
Reaches melting- and evaporation temperatures rapidly

Temperature distribution homogenous radially
Reaches melting- and evaporation temperatures rapidly

Temperature distribution (96 kJ)Temperature distribution (96 kJ)

Electrode 2Electrode 1 96 kJ experiment
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Magnetic fieldMagnetic field
Magnetic field frozen in when conductivity is high (low temperature)

Diffusion velocity increases with temperature (low conductivity)

Magnetic field frozen in when conductivity is high (low temperature)
Diffusion velocity increases with temperature (low conductivity)
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Lorentz forceLorentz force
Radial component of the Lorentz’ force is:

Compressible in-between electrodes (≈ 3 KN/mm3)

Tensile at electrode 2 (≈ 0.7 KN/mm3 )
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Lorentz forceLorentz force
Axial component of the Lorentz’ force is:

Zero in-between electrodes
Tensile at electrode 2 (≈ 0.3 KN/mm3 )

Axial component of the Lorentz’ force is:
Zero in-between electrodes
Tensile at electrode 2 (≈ 0.3 KN/mm3 )

18                              22                         26 µs

Electrode 2
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ConclusionsConclusions
The experiments shows:

Jet fragmentation (particulation) accelerates with increasing 
electric energy

Similar number of fragments (disks- or rings). 
Close to exit of the electrode region, the jet is rapidly 
transformed into discs or rings

Radial velocity of around 200 m/s for the 96 kJ experiment
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ConclusionsConclusions
Modelling shows:

The jet is homogenously heated radially
Temperature reaches vaporisation temperatures 

Magnetic field is compressive in-between the electrodes
May enhance the natural necking of the stretching jet

Magnetic field is pulled out of the electrode region causing a 
rapid change in direction of magnetic forces

From compressive to tensile in radial direction
From zero to tensile in axial direction

These tensile forces may contribute to the rapid disc-
or ring formation after current interaction ends
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