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1) Sensor placement

• 1) Place sensors to maximise 
probability of any sensor 
detecting a release

• 2) Place sensors to maximise 
detection capability of the 
sensor network

• 3) Place sensors for optimal 
hazard prediction

• 4) Target UAVs and other 
mobile sensors...
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2) Sensor procurement

• 1) Design individual sensors based on key metrics
– sensitivity

– probability of detection

– false positive rate

– response time

• 2) Procure heterogeneous network of sensors to 
optimise key metrics at the system level, for the area to 
be protected

• 3) Design sensor network to optimise quality of hazard 
prediction
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Optimal biosensor for identification 
- resonant mirror
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Better biosensor for hazard 
prediction - particle counter? 

Impact of single sensor on source term estimation only - conclusions are limited!
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3) Fusion of sensor and model data
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Seek single, best estimate of 

current and future hazard by combining

sensor data and model predictions.

Alternative views:

hazard refinement / uncertainty reduction

Seek single, best estimate of 

current and future hazard by combining

sensor data and model predictions.

Alternative views:

hazard refinement / uncertainty reduction
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3a) Literature Review

• Investigated wide variety of possible methods
– Bayes theory

– Kalman Filter

– Fuzzy Logic

– Genetic Algorithms

– Neural Networks

– Variational Assimilation

– Optimal Interpolation

• Chosen short list of suitable techniques for implementation 
into a synthetic environment
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Bayesian fusion
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Mathematically rigorous
incorporates uncertainty

Simple in concept

Incorporates prior knowledge

Can be extended to incorporate 
any information

observer range and bearing

×No absolute probabilities

×Difficult to implement (complex 
integrals)

×Computationally demanding
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Kalman filter
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Sequential predictor-corrector 
data fusion method

incorporates uncertainty

Provides prediction of the error 
covariances

Incorporates prior knowledge

×KF only for linear models
× Use extended or ensemble KF 

for non-linear models

×Can be computationally 
demanding
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Variational Data Assimilation
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Variational method
Assimilates all sensor data 
simultaneously

Determines optimal analysis by 
solving the cost function

Provides gradient of analysis 

×Can be very computationally 
demanding

×Does not determine the 
analysis directly



© Dstl 2005
31 October 2005 Dstl is part of the 

Ministry of Defence

Overview of optimal techniques

Use observations at the same time Use a time sequence of observations

Sequential Optimal Interpolation Kalman Filter, Bayes

Variational 3DVAR 4DVAR

• Most interested in techniques that use a 
time sequence of observations

– Assumption that observations occur at the 
same time introduces additional error 

• Comparison of sequential and 
variational methods
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3b) Uncertainty propagation

• Crucial to quantify uncertainty 
in model predictions, as well as 
sensor data

– source magnitude, time and 
location (x,y,z)

– number of sources

– meteorology (in complex 
environments) and turbulence

– effects (e.g. casualties)

– is data representative?

• MOD-funded uncertainty project

Reduce 
uncertainty, 

refine hazard
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Uncertainty propagation

• Dstl have developed an 
uncertainty propagation 
framework:

– takes probabilistic output 
from SCIPUFF / UDM

– propagates uncertainty in 
casualties due to

• respirator
• breathing rate
• toxicology
• medical counter 

measures

0%0%100%Casualty 
Risk

Different 
Location

With IPEWithout 
IPE

Course of 
Action
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Uncertainty propagation
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• Dstl have developed an 
uncertainty propagation 
framework:

– takes probabilistic output 
from SCIPUFF / UDM

– propagates uncertainty in 
casualties due to

• respirator
• breathing rate
• toxicology
• medical counter 

measures
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3c) Sensitivity study

• Vary each input parameter in 
turn

– source m,x,y,z,t

– meteorology

– turbulence

• Use synthetic environment to 
determine effect on output from 
range of possible sensors

– CB sensors

– meteorological sensors
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3c) Sensitivity study

Blue - 33.5kg 1750m away 100m altitude / 

Pink - 6 kg 1000m away 10m altitude

Identify inputs that have

• little effect on sensor output
– neglect ⇒ simplify problem

• correlations with other inputs
– retrieve dominant input

– use knowledge of correlations 
to understand / estimate 
uncertainty in hazard 
prediction

• large effect on sensor output
– apply short-listed techniques 

to retrieve these inputs
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3d) Implementation in synthetic 
environment
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• It is essential to test the short-
listed techniques in a realistic 
synthetic environment

– meteorological forecasts 
subject to significant error

• 30° error common
– experimental concentration 

profiles show strong effects of 
turbulence

– no sensor is perfect

Measured effects of turbulence
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3d) Implementation in synthetic 
environment
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• It is essential to test the short-
listed techniques in a realistic 
synthetic environment

– meteorological forecasts 
subject to significant error

• 30° error common
– experimental concentration 

profiles show strong effects of 
turbulence

– no sensor is perfect
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Synthetic environment

Spray of NADH in water solution (0.642% concentration)
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R2:                      0.97
Intercept:             160
Scaled gradient: 0.62

• Dstl’s synthetic environment 
includes

– model of meandering puffs

– UDM

– model of turbulence within puff

– realistic sensor models

– biological background model

– Monte Carlo variation of model 
parameters

Analysis of data for biological sensor model
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Future plans

• Completion of sensitivity study
– what information do we 

attempt to retrieve?

• Test short-listed techniques in 
synthetic environment for 
chemical, then biological 
releases

– Biological data fusion 
complicated by fluctuating 
biological background

– quantitative metrics (AFN, AFP)
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Biological sensor fusion
• Biological sensor model

Simple particle counter sensor Immuno-Assay detector

Low fidelity, analogue signal High fidelity, digital (2 state) signal

Conclusion: Information requirements differ depending on decision 
to be made

Try to explain better


