Multi-Objective Path Planning for a Team of Unmanned Aerial Vehicles (UAVs) in a Dynamic and Uncertain Environment

Manisha Mishra
Xu Han, David Sidoti, Diego Fernando Martínez Ayala, Dr. Woosun An
Prof. Krishna R. Pattipati (UTC Professor in Systems Engineering, UCONN)
Prof. David L. Kleinman (Professor Emeritus, UCONN & NPS)

Department of Electrical and Computer Engineering
University of Connecticut

Contact: krishna@engr.uconn.edu

19th International Command and Control Research and Technology Symposium
June 16th-19th, 2014, Alexandria, Virginia, USA
Multi-Objective Path Planning for a Team of Unmanned Aerial Vehicles (UAVs) in a Dynamic and Uncertain Environment (BRIEFING CHARTS)
Outline

• Introduction
• Technical Challenges
• Hierarchical Mission Planning Framework
• Multi-Objective Path Planning for UAVs
• Problem Formulation
• Simulation Results
• Conclusion
• Future Work
• References
Introduction: UAV Mission Planning

• UAVs have **ultra long endurance** and can accept **high mission risk**; these attributes make them suitable for **dull, dirty, and dangerous** tasks in complex environments:

 - **Military**:
 - Intelligence, Surveillance & Reconnaissance (ISR)
 - Search and Rescue Operations (SAR)
 - Demining Operations

 - **Security**:
 - Border Patrol
 - Surveillance of Smuggling Operations
 - Interdiction Operations

 - **Civil**:
 - Disaster Management
 - Forest Fire Detection
 - Traffic Monitoring

• In the future, UAVs are expected to operate with a higher level of autonomy to carry out complex tasks, while efficiently coordinating with unmanned ground and unmanned underwater vehicles ⇒ **Need for systematic mission planning processes**
Technical Challenges

- Lack of see and avoid capability:
 - May lead to mid-air collisions with manned vehicles
 - Restricts UAVs to operate in segregated regions in the airspace
 - Needs substantial human supervision
 - Limits operational flexibility

Flying UAV within national borders in controlled, segregated airspace over an unpopulated area

- Limited sensor ranges and payload capacity requires multiple UAVs to:
 - Work cooperatively
 - Expedite the mission execution
 - Reduce the possibility of mission failure
Hierarchical Architecture for UAV Mission Planning

- Systematic mission planning structure for conducting complex tasks involving multiple UAVs

Mission
- **Military**: Weapon delivery, ISR
- **Security**: Counter-terrorism, SAR
- **Civil**: Forest fire detection

Prior Intel

Environmental Constraints
- Weather
- Terrain
- Obstacles

Mission Environment

Asset Task

Status/Situational Awareness

Cooperative Mission Planning for Multiple UAVs

Cooperative Trajectories with Coordinated Guidance

Mission Execution

Dynamic Mission Environment

Dynamic Path Planning

Target Search & Tracking

Dynamic Task Assignment

Formation Hold

Individual Controller for UAV

Individual Controller for UAV

Reference Trajectory

Velocity/Position

Multi-Objective Path Planning for UAVs

Objective: *Coordinated* multi-objective path planning for a group of UAVs in a dynamic environment to carry out *time-critical mission tasks*:

- Minimize mission risk (path cost, e.g., distance of UAV from obstacle)
- Minimize task latencies

Mission Scenario

Given:
- Dynamic environment with static and dynamic obstacles, e.g., high rise buildings, manned aircraft
- Task locations, deadlines, task requirements

Constraints:
- Motion constraints
- Network flow constraints
- Task start time
- Synchronization

Time Horizon

Task Deadlines

Task Requirements

Start Base

End Base

Start

End

Feasible paths

Path nodes

Path

Dynamic Obstacles

Static Obstacles

UAV

Task Locations
UAV Path Planning Formulation

- **Multi-Objective Mixed Integer Linear Programming (MILP) Problem:**
 - **Objective I: Minimize cumulative path risk** - Time varying travel and usage cost

 \[
 \text{Obj}_1 : \min \sum_{t=0}^{T} \sum_{k=1}^{K} \sum_{(i,j) \in \Omega} r_{ijkt} x_{ijkt} \\
 x_{ijkt} = \begin{cases}
 1, & \text{if UAV } k \text{ moves from cell } i \text{ to cell } j \text{ at time } t \\
 0, & \text{otherwise}
 \end{cases}
 \]

 where \(T \) is the time horizon, \(K \) is the total number of UAVs and \(\Omega \) is the set of accessible paths

 \(r_{ijkt} \) is the path risk experienced by UAV \(k \) in moving from cell \(i \) to cell \(j \) at time \(t \)

- **Objective II: Minimize task latency** - Delay in meeting the task deadline

 \[
 \text{Obj}_2 : \min \sum_{l=1}^{L} t_{l}^{\text{latency}}, \quad t_{l}^{\text{latency}} = \max(0, t_{l}^{\text{start}} + t_{l}^{\text{process}} - t_{l}^{\text{deadline}})
 \]

 where

 \(t_{l}^{\text{start}}, t_{l}^{\text{process}}, t_{l}^{\text{deadline}} \) denote the start time, processing time and deadline for task \(l \)

 \(L \) denotes the total number of tasks

Mission Area Risk Map

- Obstacles
- Risk intensity
- Task Locations
- UAV
- Fuel Efficient Shortest Path
- Safe Path with Task Delay
- Conflicting Objectives
Multi-Objective MILP Problem Constraints

- **Network Flow Constraints**: Time-varying travel and usage cost

\[
\begin{align*}
\sum_{t=1}^{T} \sum_{i \in Q(l,t)} x_{iikt} &= 1, \forall k & 1(a) \\
\sum_{t=1}^{T} \sum_{i \in P(N,t)} x_{i^\text{in}kt} &= 1, \forall k & 1(b) \\
\sum_{t=1}^{T} \sum_{j \in Q(i,t)} x_{ijkt} &= \sum_{t=1}^{T} \sum_{j \in P(i,t)} x_{jikt} = 0, \forall k, \forall i \neq 1 \& i \neq N & 1(c) \\
\sum_{t=1}^{T} \sum_{j \in Q(i,t)} x_{ijkt} \leq \sum_{t=1}^{T} \sum_{j \in P(i,t)} x_{jikt}, & \forall k, \forall i \neq 1, \forall \tilde{T} < T & 1(d)
\end{align*}
\]

where

- \(x_{ijkt} \): Path risk
- \(k \): UAV index
- \(N \): Total number of cells
- \(T \): Time horizon
- \(Q(i,t) \): Successor cells of \(i \) at time \(t \)
- \(P(i,t) \): Predecessor cells of \(i \) at time \(t \)

- **Task Execution Constraints**: Delay in meeting the task deadline

\[
\begin{align*}
t_{\text{depart}}^{\text{loc}(l)} &= t_{\text{start}}^{\text{loc}(l)} + t_{\text{process}}^{\text{loc}(l)}, \forall l, \forall k \in \Psi_{l}^{\text{assign}} & 2(a) \\
t_{\text{start}}^{\text{loc}(l)} &= \max_{k \in \Psi_{l}^{\text{assign}}} t_{\text{arrival}}^{\text{loc}(l)}, \forall l & 2(b) \\
\sum_{j \in P(\text{loc}(l),t)} \sum_{k=1}^{K} x_{j\text{loc}(l)kt} & \leq q_{l}, \forall l, \forall t & 2(c)
\end{align*}
\]

where

- \(t_{\text{depart}}^{\text{loc}(l)} \): Departure time of UAV \(k \)
- \(t_{\text{arrival}}^{\text{loc}(l)} \): Arrival time of UAV \(k \)
- \(q_{l} \): Maximum number of UAVs for task \(l \)
- \(\Psi_{l}^{\text{assign}} \): Set of assigned UAVs for task \(l \)
- \(\text{loc}(l) \): Location of task \(l \)
Multi-Objective MILP Problem Constraints

- **Collision Avoidance Constraints**: Ensures safe path by avoiding collision with obstacles

\[
\begin{align*}
 t_{k'i}^{\text{arrive}} - t_{ki}^{\text{depart}} & \geq \Delta t - M \alpha_{kk'i} \quad \forall i, k, k' \neq k \quad 3(a) \\
 t_{ki}^{\text{arrive}} - t_{k'i}^{\text{depart}} & \geq \Delta t - M (1 - \alpha_{kk'i}) \quad \forall i, k, k' \neq k \quad 3(b) \\
 \alpha_{kk'i} & \in \{0,1\}, \forall i, k, k' \neq k
\end{align*}
\]

where
- \(M \): Large number
- \(\alpha_{kk'i} \): Binary variable indicating when UAV \(k \) arrives after \(k' \)
- \(\Delta t \): Time gap

- **Arrival and Departure Constraints**: Tracks the execution status of tasks

\[
\begin{align*}
 t_{k1}^{\text{arrive}} & = 0, \forall k \quad 4(a) \\
 t_{ki}^{\text{depart}} + t_{k}^{\text{travel}} x_{ijkl} & \leq t_{ki}^{\text{arrive}} + M (1 - x_{ijkl}), \forall k, \forall i, \forall j \neq 1, \forall t \\
 t_{ki}^{\text{depart}} & \geq t_{ki}^{\text{arrive}}, \forall i \notin \{\text{loc}(l)\}, \forall k \\
 t_{ki}^{\text{depart}} & \geq t_{ki}^{\text{arrive}}, \forall i \in \{\text{loc}(l)\}, \forall k \notin \Psi_{l}^{\text{asgn}} \\
 t_{ki}^{\text{arrive}} & = \text{Departure time of UAV } k \text{ from cell } i \\
 t_{ki}^{\text{travel}} & = \text{Travel time of UAV } k \\
 t_{ki}^{\text{arrive}} & = \text{Arrival time of UAV } k \text{ at cell } i
\end{align*}
\]
Multi-Objective UAV Path Planning Results

- **Solution**: Decomposed MILP solution approach:
 - **Phase I**: Minimize the path risk of each UAV given the estimated arrival time at each task location
 - **Phase II**: Minimize the task latency with respect to the arrival time of each UAV at each task location given the path in Phase I

- **Scenario I**: Coordinated path planning in different contexts

 a) No manned aircraft

 b) One manned aircraft

 c) Two manned aircraft
Multi-Objective UAV Path Planning Results

- **Scenario II**: Coordinated path planning around static obstacles

![Scenario II Diagram]

- **Scenario III**: Coordinated path planning around static and dynamic obstacles

![Scenario III Diagram]

- **Scenario I**: An increase in the number of manned aircraft delays the task processing time in order to guarantee safe trajectory planning within a confined mission area

- **Scenario II & III**: Mission tasks are completed on time in a large environment with static and dynamic obstacles
Python Implementation of 3D A* Algorithm

• Given:
 – Mission: Path planning
 – Environment: 3D mission space
 – Asset: UAV
 – Task: Plan path from start point to end point while avoiding static obstacles

• Future Work: 3D path planning for multiple UAVs within a dynamic environment
Python Implementation of 3D A* Algorithm

• Given:
 – **Mission**: Path planning
 – **Environment**: 3D mission space
 – **Asset**: UAV
 – **Task**: Plan path from start point to end point while avoiding static obstacles

• **Future Work**: 3D path planning for multiple UAVs within a dynamic environment
Conclusion

• Summary
 – UAVs are useful for dull, dirty, and dangerous military and civilian operations
 – A multi-objective UAV path planning problem was investigated for coordinated task execution in a dynamic environment including:
 ▪ Mathematical formulation of the path planning problem
 ▪ A two-phase algorithm to solve the resulting MILP problem
 – 3D A* algorithm was implemented in Python

• Future Work
 – Explore approximation techniques, such as ant colony system and genetic algorithms
 – Revise the current planning structure to a distributed setting
 – Explore 3D path planning and address the vertical collision avoidance problem
 – Incorporate pop-up threats and sudden UAV breakdown scenarios
Future UAV Mission Planning Challenges

- Provide capabilities more efficiently through *modularity and interoperability*
- Increase in autonomous *multi-platform control*
- More *survivable* with improved and *resilient communications* and security from tampering
- Efficient *manned and unmanned teaming to reduce the number of personnel* required to operate and maintain the systems
- Consider *realistic models* and incorporate/fuse data from different sources

UAV Mission Planning Objectives

- *Dynamic coordination* of multiple unmanned vehicles operating on ground, air, and water
- Develop efficient *algorithms to mimic human-like behavior* in unmanned aerial vehicles for proactive decision support
- Data protection and exploitation using *High Performance Computing (HPC)*
- *Reduce operator workload* by improving autonomy using hierarchical mission planning
- Improve *data flow and standard message architectures* for reliable communication

High Performance Computing Impacts

- Provides a *consolidated plug-and-play* application architecture
- Improves *scalability and feasibility* for unmanned aerial system vendors
- Improved *battle space awareness* via tasking, collection, processing, exploitation, and dissemination (TCPED) processes, required to translate vast quantities of sensor data into a shared understanding of the environment
- HPC enables *cross domain data sharing* of information and adapts rapidly to changing threats
- HPC addresses the challenges in *cloud computing* and *multilayer security*, communications, open standards, data storage, cost, ease of technology insertion, etc.
References

