ADVANCEMENTS IN RADIO FREQUENCY (RF) PHOTONICS FOR SIGNAL PROCESSING APPLICATIONS ON AVIONIC PLATFORMS (PREPRINT)

Preetpaul Devgan
RF/EO Subsystems Branch
Aerospace Components and Subsystems Division

OCTOBER 2013
Interim

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE
1. REPORT DATE (DD-MM-YY)	October 2013
2. REPORT TYPE | Conference Paper Preprint
3. DATES COVERED (From - To) | 1 October 2011 – 1 October 2013
4. TITLE AND SUBTITLE | ADVANCEMENTS IN RADIO FREQUENCY (RF) PHOTONICS FOR SIGNAL PROCESSING APPLICATIONS ON AVIONIC PLATFORMS (PREPRINT)
5a. CONTRACT NUMBER | In-house
5b. GRANT NUMBER |
5c. PROGRAM ELEMENT NUMBER | 62204F
5d. PROJECT NUMBER | 2002
5e. TASK NUMBER | IH
5f. WORK UNIT NUMBER | Y058
6. AUTHOR(S) | Preetpaul Devgan
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) | RF/EO Subsystems Branch
Aerospace Components and Subsystems Division
Air Force Research Laboratory, Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command, United States Air Force
8. PERFORMING ORGANIZATION REPORT NUMBER | AFRL-RY-WP-TP-2013-0209
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force
10. SPONSORING/MONITORING AGENCY ACRONYM(S) | AFRL/RYDR
11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) | AFRL-RY-WP-TP-2013-0209
12. DISTRIBUTION/AVAILABILITY STATEMENT | Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES | PAO Case Number 88ABW-2013-2265, Clearance Date 9 May 2013. To be presented at the IEEE Avionics, Fiber Optics, and Photonics (AVFOP) Conf., San Diego, CA, Oct. 2, 2013. This is a work of the U.S. Government and is not subject to copyright protection. Paper contains color
14. ABSTRACT | This paper summarizes some of the Transformational Element Level Arrays (TELA) Light Implemented Transitional Elements (LITE) in-house research program activity conducted from October 2011 to October 2013 by the Air Force Research Laboratory Sensors Directorate Radio Frequency/Electro-Optical (RF/EO) Subsystems Branch (AFRL/RYDR). The invited paper was presented at the Institute of Electrical and Electronics Engineers (IEEE) Avionics, Fiber Optics and Photonics (AVFOP) conference in San Diego, California on October 2, 2013.
15. SUBJECT TERMS | radio frequency, arrays, in-house, photonics
16. SECURITY CLASSIFICATION OF: |
| a. REPORT | Unclassified
| b. ABSTRACT | Unclassified
| c. THIS PAGE | Unclassified
17. LIMITATION OF ABSTRACT: | SAR
18. NUMBER OF PAGES | 6
19a. NAME OF RESPONSIBLE PERSON (Monitor) | Dale Stevens
19b. TELEPHONE NUMBER (Include Area Code) | N/A
ADVANCEMENTS IN RF PHOTONICS FOR SIGNAL PROCESSING APPLICATIONS ON AVIONIC PLATFORMS

Preetpaul Devgan

Air Force Research Laboratory

WPAFB, OH

This paper summarizes some of the Transformational Element Level Arrays (TELA) Light Implemented Transitional Elements (LITE) in-house research program activity conducted from October 2011 to October 2013 by the Air Force Research Laboratory Sensors Directorate Radio Frequency/Electro-Optical (RF/EO) Subsystems Branch (AFRL/RYDR). The invited paper was presented at the Institute of Electrical and Electronics Engineers (IEEE) Avionics, Fiber Optics and Photonics (AVFOP) conference in San Diego, California on October 2, 2013.

Introduction

The maturity of RF photonic components has reached the point where fiber optic links are being system tested to replace traditional copper coax links on avionic platforms. Many demonstrations of RF photonic links have been made with traditional and non-traditional modulation formats [1-4] to improve the RF performance of the link. While the advantages of RF photonic links in regard to size and weight are indeed important, the large instantaneous bandwidth of the fiber optic links is a key driver for the use of this technology in the airframe. As signals of interest evolve to higher frequencies, the use of RF photonics provides a path to identify and catalog these new signals. With the acceptance of the fiber optic link as a replacement to coax, the next step is to move the photonic technology to provide signal processing capability in the optical domain before converting back to an electrical signal. The current challenges are to continue to explore new photonic technologies for improved RF performance at the receive end of the link. This paper will focus on advancements in RF photonic solutions for signal processing.

Photonic Signal Processing Applications

Starting with a traditional RF photonic link shown in Figure 1, the RF signal is received at the antenna and then modulated onto an optical carrier provided by the laser. The RF modulated light is then passed down a fiber optic link to a photodetector, which then recovers the RF electrical signal. The RF signal would then be passed through a tuner to frequency down convert it to an intermediate frequency (IF) chosen by the local oscillator (LO). The IF signal is then digitized at an analog to digital converter (ADC) and processed. Since the RF signal is already in the optical domain, the photodetector and electronic tuner can be replaced with an optical tuner which can down convert the signal to an electrical IF. Work has already been shown that an optical tuner can reduce mixing spurs in RF frequency down conversion [5]. Such a system is important as it can provide better spur free performance than current electronic tuners and over a larger bandwidth. In addition, work continues on photonic ADCs that can digitize 10 GHz of instantaneous bandwidth with a resolution greater than 8 effective number of bits [6]. A combination of these technologies can provide an RF-to-bits architecture without an optical to electronic conversion in the middle.

In support of the frequency down converter and ADC technologies, work continues on the optical clock that is used either for the LO or the sampler in these architectures, respectively. Optoelectronic oscillators continue to be investigated for improved performance [7,8]. However the limited frequency tunability is still a drawback to these types of low phase noise clock sources. New methods have been shown to make tunable RF sources using the injection locking of two lasers [9,10]. These sources continue to be further explored in order to determine their noise performance over their tunable range.

Other signal processing applications include signal discrimination in cluttered RF environments. Once the RF signals have been modulated onto the optical carrier, a portion of the light can be split off for spectrum
analysis. Demonstrations have already been made with a rare-earth doped crystal in a spectrum analyzer with an RF instantaneous bandwidth of 10 GHz [11] with the potential for even higher bandwidths. Another demonstration has been made with a multimode optoelectronic oscillator for selective amplification of RF signals with an input sensitivity less than 15 dB above the thermal noise limit [12]. These systems are sensitive to frequency agile signals and can be used to cue a narrowband receiver to analyze the signal.

Figure 1: RF photonic link with electronic tuner and digitizer. EOM: Electro-optic modulator, PD: Photodetector, LO: Local oscillator, IF: Intermediate frequency

Conclusion
Work continues on using RF photonic solutions for signal processing at the receive end of the fiber optic link on an avionic platform. Multiple applications exist that can benefit from the large instantaneous bandwidth of photonic systems. However to compete with electronic solutions, integrating photonic solutions into small form factors will continue to be emphasized. The ability to heterogeneously integrate photonic components onto silicon waveguides will address many issues in meeting form factor limitations. AFRL continues to seek solutions to these problems.

Acknowledgements
This research was funded through Defense Advanced Research Projects Agency (DARPA), Air Force Office of Scientific Research (AFOSR), Office of Naval Research (ONR), and AFRL.

References