Neurobiologically Inspired Geometric Diffusion for Target Recognition

1. REPORT DATE (DD-MM-YYYY)
12-03-2012

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
1-Aug-2007 - 31-Jul-2011

4. TITLE AND SUBTITLE
Neurobiologically Inspired Geometric Diffusion for Target Recognition

5. AUTHOR(S)
Steven W. Zucker

6. PERFORMING ORGANIZATION NAMES AND ADDRESSES
Yale University
Office of Sponsored Programs
Yale University
New Haven, CT 06520 -

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

8. SECURITY CLASSIFICATION OF:
UU

10. SPONSOR/MONITOR'S ACRONYM(S)
ARO

9. ABSTRACT
We address the target recognition problem by focusing on intermediate-level vision. Early biological vision extracts edges and contours of various lengths. High-level recognition is either view or template-based, which is fragile with respect to lighting, size, or clutter; or medial-axis-based, which requires a perfect bounding contour. Diffusion processes are central to neurobiology, and we have discovered how to use them to bridge the gap between (local) edges and

11. SPONSOR/MONITOR'S REPORT NUMBER
53254-CS.7

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT
We address the target recognition problem by focusing on intermediate-level vision. Early biological vision extracts edges and contours of various lengths. High-level recognition is either view or template-based, which is fragile with respect to lighting, size, or clutter; or medial-axis-based, which requires a perfect bounding contour. Diffusion processes are central to neurobiology, and we have discovered how to use them to bridge the gap between (local) edges and

15. SUBJECT TERMS
final report, computer vision, intermediate-level recognition, biologically inspired

16. SECURITY CLASSIFICATION OF:
<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU</td>
<td>UU</td>
<td>UU</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
UU

19. NAME OF RESPONSIBLE PERSON
Steven Zucker

20. TELEPHONE NUMBER
203-432-6434
Neurobiologically Inspired Geometric Diffusion for Target Recognition

ABSTRACT

We address the target recognition problem by focusing on intermediate-level vision. Early biological vision extracts edges and contours of various lengths. High-level recognition is either view or template-based, which is fragile with respect to lighting, size, or clutter; or medial-axis-based, which requires a perfect bounding contour. Diffusion processes are central to neurobiology, and we have discovered how to use them to bridge the gap between (local) edges and (global) descriptions for matching. We have proved that the equilibria of these distributions signals information from the distance map that underlies medial axis computations. This equilibrium distribution therefore makes explicit global pattern from local features and can be used for matching. We have shown how this provides a novel solution to detecting airports and other "complex features" in imagery, and how it suggests a novel solution to the border-ownership problem in neuroscience.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL:

Number of Papers published in peer-reviewed journals:

(b) Papers published in non-peer-reviewed journals (N/A for none)

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

Number of Presentations: 4.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL:
Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012/03/10 0: 6</td>
<td>Steven W. Zucker. Distance Images and the Enclosure Field: Applications in Intermediate-Level Computer and Biological Vision, Dagstuhl Proceedings (03 2012)</td>
</tr>
<tr>
<td>2012/03/10 0: 5</td>
<td>Steven W. Zucker. Local Field Potentials and Border Ownership: a conjecture about computation in visual cortex, J Physiol (Paris) (11 2011)</td>
</tr>
<tr>
<td>2011/10/27 1: 3</td>
<td>Pavel Dimitrov, Steven W. Zucker. Distance Maps and Plant Development #2, arXiv.org (05 2009)</td>
</tr>
<tr>
<td>2011/10/27 1: 2</td>
<td>Pavel Dimitrov, Steven W. Zucker. Distance Maps and Plant Development #1, arXiv.org (05 2009)</td>
</tr>
</tbody>
</table>

TOTAL: 5

Number of Manuscripts:

Books

<table>
<thead>
<tr>
<th>Received</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patents Submitted

Patents Awarded

Awards

Advisory Board, Center for Stochastic Geometry and Bioimaging, Copenhagen.

Adrian Seminar in Neuroscience, University of Cambridge, 12 October, 2009.
Keynote Address, Johansen Workshop, University of Copenhagen, 24 - 25 January, 2008.

Graduate Students
Names of Post Doctorates

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>FTE Equivalent</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavel Dimitrov</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justin Hart</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthew Lawlor</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daniel Holtmann-Rice</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.92</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Names of Faculty Supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>National Academy Member</th>
<th>FTE Equivalent</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven W. Zucker</td>
<td>0.08</td>
<td></td>
<td>0.08</td>
<td>1</td>
</tr>
</tbody>
</table>

Names of Under Graduate students supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>FTE Equivalent</th>
<th>Total Number</th>
</tr>
</thead>
</table>

Student Metrics

This section only applies to graduating undergraduates supported by this agreement in this reporting period:

- The number of undergraduates funded by this agreement who graduated during this period: 0.00
- The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields: 0.00
- The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: 0.00
- Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): 0.00
- Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering: 0.00
- The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense: 0.00
- The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: 0.00

Names of Personnel receiving masters degrees

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
</table>
Names of personnel receiving PHDs

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavel Dimitrov</td>
<td>1</td>
</tr>
</tbody>
</table>

Names of other research staff

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE Equivalent:</td>
<td></td>
</tr>
<tr>
<td>Total Number:</td>
<td></td>
</tr>
</tbody>
</table>

Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress
Background

There are a range of target recognition problems, starting with extremely simple ones such as bar code recognition and extending through more difficult problems such as face detection and recognition. Finally, there are those problems of interest to the military, security, medical and surveillance communities that are less well defined. They involve notions of detecting a “threat” or a change in an “airport” but without proper computational definitions of them.

Approaches to all of these problems begin with the idea that local features can be aggregated into a kind of hierarchy, with smaller, more local features giving rise to slightly less local ones, and so on until a classifier stage is reached. Significant steps along these lines include Low [1], Viola [2] and LeCunn [3].

Poggio and colleagues [4] have applied a similar methodology to object recognition, but with a biological motivation. Building on the idea that the visual parts of the brain consist of a “hierarchy” of different areas, and assuming that each area builds a description that is more abstract and global than the previous one, a staged linear combination is combined with the MAX operation to emulate the feedforward pathways for object recognition. However this system is effectively the same in its capability to those above.

Problem Statement

We address the target recognition problem by focusing on intermediate-level vision. Early biological vision extracts edges and contours of various lengths, but these essentially describe local information. High-level recognition is either template-based, which is fragile with respect to lighting, size, or clutter; or medial-axis-based, which requires a perfect bounding contour. Intermediate-level vision must bridge this gap.

The heart of our approach can be described in two ways. First, mathematically, we have discovered a theorem about how aspects of the distance map, a central component to shape descriptions, can be “read out” of the equilibrium of a diffusion process deriving from edge arrangements. From a neurobiological perspective, it incorporates feedforward and feedback projections, both of which are fundamental, and does so in a novel fashion.

More generally, diffusion processes are central to neurobiology, and we have discovered how to use them to bridge the gap between (local) edges and (global) descriptions for matching. Suppose edges could produce an abstract “substance” which diffuses through surrounding substrate until equilibrium. We have proved that the equilibria of these distributions approximate the distance map that underlies medial axis computations. This equilibrium distribution therefore makes explicit global pattern from local features and can be used for matching. Our goal is to exploit this for recognition by defining features on this new map. If successful, new, improved and extremely efficient ATR algorithms should arise from these biologically-based techniques.

Summary of the Most Important Results

1. Development of a system of reaction-diffusion differential equations to show how area effects can be integrated into “action at a distance” phenomena.
2. Applied this system to a problem in biology: what is the signal that ground cells send to vein cells to initiate new vein formation?

3. Applied this system to a problem in computer vision: detection of airports from high-altitude imagery. To our knowledge this system is the first to formulate a formal approach to such ``complex feature detection'' problems.

Bibliography

2. Paul Viola and Michael Jones, Robust Real-Time Face Detection International Journal of Computer Vision 57(2), 137<80><93>154, 2004

Appendix

During the year we have extended in detail our a model for diffusion; we have written several papers about it that relate to both biology (predicting the manner in which veins develop in plants) and computer vision (definition of complex features such as airports). Such configurations are difficult to define recognition procedures for because, while airports have runways and buildings, they need not be in precisely the same or even approximate relationships. Thus existing computer vision techniques cannot be applied. We are continuing to develop the analogy with plants and we are exploring the distance-map information and what this implies for complex features. Our major new work in the past year was the extraction of basic information from these ``distance images" using non-linear dimensionality reduction techniques. The surprising result is that a manifold emerges with the principle eigenfunctions spanning density and edge orientation, somewhat analogous to the (intensity, hue, saturation) representation of color. Current work is defining classifiers for airports on this manifold.

Technology Transfer