Estimation Of Ocean Surface Wind Speed And Direction From Polarimetric Radiometry Data

1. REPORT DATE
30 SEP 2008
2. REPORT TYPE
Annual
3. DATES COVERED
00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Estimation Of Ocean Surface Wind Speed And Direction From Polarimetric Radiometry Data

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Michigan, Department of Naval Architecture and Marine Engineering, 2600 Draper Road, Ann Arbor, MI, 48109-2145

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

14. ABSTRACT
To measure vector wind fields over the global oceans on a continuous basis using satellite-borne microwave radiometers

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 - a. REPORT unclassified
 - b. ABSTRACT unclassified
 - c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
2

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Estimation of Ocean Surface Wind Speed and Direction from Polarimetric Radiometry Data

David R. Lyzenga
Department of Naval Architecture and Marine Engineering
University of Michigan
2600 Draper Road
Ann Arbor, MI 48109-2145
phone: (734) 764-3216 fax: (734) 936-8820 email: lyzenga@umich.edu

Award Number: N0014-08-1-0963

LONG-TERM GOALS

To measure vector wind fields over the global oceans on a continuous basis using satellite-borne microwave radiometers.

OBJECTIVES

To develop accurate and efficient methods for estimating the surface wind speed and direction from polarimetric radiometry data.

APPROACH

The approach taken in this project is to formulate algebraic solutions for the quantities of interest, based on analytical models which have been developed using numerical simulations (Lyzenga, 2006) as well as analyses of data collected by the WindSat polarimetric radiometer (Gaiser et al., 2004).

WORK COMPLETED

A set of algorithms has been developed and tested using a relatively small subset of WindSat data. Comparisons have been made between the wind directions inferred from polarimetric data collected from a single look direction as well from two look directions (fore and aft scans).

RESULTS

Preliminary results indicate that better wind direction estimates are obtainable by using measurements of the third Stokes parameter from two look directions, as opposed to using measurements of the third and fourth Stokes parameters from a single look direction. For wind speeds greater than 8 m/s, the rms error in the wind direction was estimated to be 11.3 degrees using two look directions, and 33 degrees using a single look direction (Kim and Lyzenga, 2008). This suggests that a system capable of measuring the third Stokes parameter over the full conical scan angle may be more valuable than a fully polarimetric system with a partial scan angle range. However, these results need to be confirmed using a much larger WindSat data set.
IMPACT/APPLICATIONS

The results of this investigation are expected to be relevant to the design of future satellite radiometers as well as the processing of data from these radiometers.

REFERENCES

PUBLICATIONS