Report Date: July 2010

Report Type: Conf Paper (Briefing Charts)

Title and Subtitle: Semantic Search with Self-Maintaining Classes

Author(s): Terry Patten and Stephen Hookway

Performing Organization Name(s) and Address(es):
Charles River Analytics, Inc.
625 Mount Auburn Street, Suite 3
Cambridge, MA 02138-4555

Sponsoring/Monitoring Agency Name(s) and Address(es):
AFRL/RIEB
525 Brooks Road
Rome NY 13441-4505

Distribution Availability Statement:
Approved for public release; distribution unlimited. PA #: 88ABW-2010-3417
Date Cleared: 21-June-2010

Supplementary Notes:
This work was funded in whole or in part by Department of the Air Force contract number FA8750-08-C-0157. The U.S. Government has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license to use, modify, reproduce, release, perform, display, or disclose the work by or on behalf of the Government.

Abstract:
The SBIR contract entitled Knowledge-based Access and Data Integration (KADI) resulted in a paper being presented at the 2010 International Conference on Semantic Web and Web Services held at Las Vegas, NV on 12-15 July-2010.

Subject Terms:
Semantic Integration, Imagery, Intelligence Surveillance Reconnaissance, Service Oriented Architecture

Security Classification of:

<table>
<thead>
<tr>
<th>a. Report</th>
<th>b. Abstract</th>
<th>c. This Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

Limitation of Abstract:

<table>
<thead>
<tr>
<th>17. Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Name of Responsible Person:
Fred N. Haritatos

Telephone Number (Include area code):
N/A
Semantic Search With Self-Maintaining Classes

Prepared for:
SWWS 2010
Las Vegas

This work was supported by US Air Force Contract
FA8750-08-C-0157

12-15 July 2010

Presented by:
Terry Patten
Stephen Hookway

www.cra.com
Semantic search is all about *inferring* membership in query classes

Traditionally, semantic search has focused on class-subclass inference (subsumption)
- Query: Aircraft
- Match: MiG-23
 - Subclass of Fighter
 - Subclass of MilitaryAircraft
 - Subclass of Aircraft

Most often, classes are enumerated through subsumption trees

But class membership can also be inferred using
- Logic (a class is the intersection of several other classes)
- Properties (a class includes any x that has property y)

In general, class membership descriptions can be complex
- In OWL 2 these are called “Class Expressions”
- In Description Logic these are called “Complex Concepts”
Inferring class membership using class expressions is a powerful semantic search technique because:

- It provides a mechanism loosely analogous to database "views"
 - Alternate ways of organizing information can be built on top of an existing ontology

- Query classes do not have to reflect the subsumption hierarchy

- Query classes do not have to be enumerated

- The inferred classes are self-maintaining because their membership automatically changes as the membership of underlying classes changes
A Case Study: Threats to Air Operations

- Problem: Air Force analysts searching image metadata for “threats to air operations”
- Currently, these searches are done using keywords
- But there may be many names for weapon systems:
 - NATO designations
 - Coalition partner names
 - Anglicized manufacturer names
- Having to include all these names in queries places a burden on the analyst
 - An ontology can keep track of all these names
 - This is an old technique: using a thesaurus to expand a query
- But even with only one term for each weapon, there are still a lot of weapons to list
- We would like to search for whole classes of threats
Searching for Threat Classes

- Threats to air operations include members of traditional weapons classes such as:
 - Aircraft
 - Missiles
 - Artillery

- But not all members of these traditional military classes are threats to air operations
 - Bombers are aircraft, but are not really a threat to an air operation
 - Ballistic missiles are not a threat
 - Surface-to-surface artillery is not a threat

- It is tempting to enumerate the threats to air operations
 - What are all the types of Threats from the air ...
 - What are all the types of Threats from the surface ...

- A better idea is to infer threats based on weapon properties
Using OWL-DL we can say that the class of weapons that fires air-to-air missiles is a subclass of threats to air operations.

We don’t have to say (explicitly) what weapons are in that class—they are inferred based on the property.

We don’t have to know (or care) where in the ontology such weapons exist.

This technique allows us to cut across existing subsumption hierarchies and create alternate views of the knowledge.

In particular, we can create views that line up well with useful queries.
Example: BM-21

- The BM-21 is a multiple-rocket launcher
 - Classic surface-to-surface artillery
- But adversaries modified the rockets
 - Used timed-fuzes
- And pointed the weapon straight up
 - Rockets become heavy flak

- The list of munitions that the BM-21 fires is updated to include these modified, now anti-aircraft rockets

- Since weapons that fire anti-aircraft artillery munitions are a subclass of threats to air operations...
 - The BM-21 *automatically* becomes a threat as soon as that property appears
This class expression defines—and maintains—a useful class:

- Prior to having anti-aircraft munitions, the BM-21 is not a member of this class.
- Once the BM-21 fires anti-aircraft munitions it automatically becomes a member of this class.
Case Study Summary

- Weapons are threats to air operations if they
 - Fire air-to-air missiles
 - Fire surface-to-air missiles
 - Fire anti-aircraft artillery munitions
 - Etc.

- We define a class expression for each of these

- And make them all subclasses of “ThreatsToAirOperations”

- Weapons automatically become members of the Threat class if they match the class expressions

- The class expressions automatically maintain class membership

- For scalable OWL-DL, we are implementing our semantic search using PelletDb (http://clarkparsia.com/pelletdb/)
 - A tight integration of Pellet and Oracle Semantic Technology
This technique can be used in *any* domain where some query classes do not line up well with the subsumption hierarchy.

Some non-military possibilities:
- Find me all the risky investments ...
- Find me all the high-performance cars ...
- Find me all the dangerous substances ...
- ...

...