Common Ground in Geocollaboration

John M. Carroll, Gregorio Convertino, Craig Ganoe, Mary Beth Rosson, Wendy Schafer
College of Information Sciences and Technology and Center for Human-Computer Interaction
The Pennsylvania State University
Common Ground in Geocollaboration
Project Objectives

- Investigate a collaborative workspace that provides:
 - multiple role-specific views and team view
 - geo-spatial planning task
- Integrate research from Information Visualization and Computer-Supported Cooperative Work
- Prototype for geo-collaborative tactical operations planning; use our open-source collaborative infrastructure
- Define measures for evaluating common ground in experimental settings
- Articulate relationships between common ground and other computer-supported collaboration constructs
Research Question

• How can collaborative construction of a geo-spatial plan visualization ameliorate problems of too much and too little common ground?

• Approach:
 – Obtain and edit real/realistic map content
 – Design and implement experimental task
 – Implement collaborative map interactions
Outcomes

Common Ground Experiment

Role-specific map-views

Complementary knowledge

Team view is constructed jointly
Multiple views design

- Three users, each with specific role
- Each user sits at a separate computer
Multiple View Issues

- How do users share information using maps?
- How do they stay aware of others’ actions and references?
- What features are available with each view? (navigation, query, annotation)
- How do you coordinate actions across views?
Geocollaboration

• Geocollaboration: How can people collaborate with map software?
• Numerous design decisions
• Existing software tools make different choices
BRIDGE Collaborative Map

- Users add spots to map and link to other content
• Navigation controls for working alone, following, or leading
Geocollaboration Architecture

• Geocollaboration Software Architecture
 – Based on a survey of existing map tools
 – Supports a variety of geocollaboration features

• Software offers:
 – Toolkit for developing geocollaboration applications
 – Support for using multiple features in combination
 – Sandbox for developing new features
• Open-source development project
• Integrates two existing software toolkits:
 – CORK: collaborative infrastructure, replicated objects
 – GeoTools: GIS toolkit, standards compliant
• Focus on reusable and extensible objects
<table>
<thead>
<tr>
<th>Geocollaborative BRIDGE Tools</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared User Activity</td>
<td>Shared Geographic Map</td>
</tr>
<tr>
<td>Shared History (BRIDGE)</td>
<td>Shared Geospatial Data: Shapefiles, User-Created Data, Styles</td>
</tr>
<tr>
<td>Shared Cursors</td>
<td></td>
</tr>
<tr>
<td>Shared Viewpoints</td>
<td></td>
</tr>
<tr>
<td>Collaborative Infrastructure (CORK)</td>
<td>GIS Tookit (GeoTools)</td>
</tr>
</tbody>
</table>
Reuseable Objects

- Same map data is useful for multiple applications
 - Centre county roads, rivers, and buildings:
 - Emergency management software
 - Underground Railroad research
- Applications require different rendering techniques
 - EM: different road types and lane markings
 - UGRR: major roads, historic building sites
Architecture Class Diagram

- User-created content
- Standard map data format
- Map data paired with styles
Multiple Views Application

- Build views from existing map objects
- Share mouse cursors across maps
Emergency Management Scenario

• Emergency task: plan a rescue for a family stranded by flood

• Three, interdependent roles
 – Public works (utilities and roadway infrastructure)
 – Environment (floodplains and weather)
 – Mass care (shelters/rescuees’ needs and vehicles)

• Roles based on an emergency operations center
Demonstration
Other Features

- Draw annotations, pass across views
- Align viewports
- Synchronize team view navigation
Comments, Questions, Suggestions? Thanks!

Supported by Office of Naval Research (N00014-00-1-0549), and MORAE group by TechSmith.