ABSTRACT. The taxonomy and ecology of wild-caught *Anopheles marajoara* mosquitoes derived from rice fields in Frederick Settlement, Trinidad, were studied in the laboratory using specimens identified with species-specific random amplified polymorphic DNA (RAPD) profiles and recently developed rDNA ITS2 polymerase chain reaction methods. Adults were collected using Shannon traps and human bait in 2 houses over a 1-year period. All mosquitoes collected were taken to the laboratory, where they were identified, wing-length measured, and parity rates determined using standard methods. In addition, 25 females were blood fed and subsequently offered a blood meal every 2 h for a 60-h period. Based on the morphological keys and molecular tools used, the presence of *An. marajoara* is confirmed in Trinidad for the first time. Analysis of the seasonal distribution of *An. marajoara* revealed that over 58% were collected during the rainy season. The wing length of 660 females measured averaged 2.90 ± 0.130 mm, with no significant differences being observed among the parous and nulliparous females' wing sizes (2.90 and 2.92 mm, respectively). In addition, the monthly parous rate was not significantly correlated with mean wing-length over time ($r = 0.157, df = 16, P > 0.07$). Results from the blood feeding studies showed 85% of females blood fed immediately (hour 0) after capture in the field. However, blood feeding declined thereafter until 24 h later, when over 40% refused. This study clearly identified the presence of *An. marajoara* in Trinidad and provides information of the seasonal abundance and blood-feeding behaviors. These results suggest that this species can play a significant role in the transmission of malaria within its geographical range in the Neotropics.

KEY WORDS *Anopheles marajoara*, taxonomy, PCR methods, seasonal distribution, blood-feeding, Trinidad

INTRODUCTION

Anopheles (*Nyssorhynchus*) *marajoara* Galvão and Damasceno is a widespread Neotropical species found from Costa Rica to southern Brazil. This species was thought to be, at most, a secondary local vector of malaria parasites (reviewed by Linton et al. 1988), but recently, it was shown that it is the primary malaria vector in the northeastern Brazilian state of Amapá (Conn et al. 2002). Because of this, the importance of documenting the presence of *An. marajoara* and studying its basic biology in Trinidad and elsewhere in its distribution, is essential. It is one of the 4 members of the Abitarsis Complex, the others being *An. albittarsis* Lynch-Aribitâzaga, *An. deaneorum* Rosa-Freitas, and *An. albittarsis* B (Wilkerson et al. 1995a, 1995b). To date, *An. marajoara* is the only species in the Abitarsis Complex found north of Belem, Brazil, leading to the assumption that *An. marajoara* is the only species in the complex found in Trinidad (Map 1). The species-specific random amplified polymorphic DNA (RAPD) profiles (Wilkerson et al. 1995a, 1995b) used to confirm the existence of the 4 species (Li and Wilkerson 2005) both corroborate this assumption. Based on these methods, we present here verification of the presence of *An. marajoara* in Trinidad and give the results of basic seasonal abundance and life-cycle measures for this species on the island.

MATERIALS AND METHODS

Study site: *Anopheles marajoara* adults used in laboratory observations were collected in the rice fields of Frederick Settlement (10°86'N, 61°25'W), a village located on the Caroni Savanna Road and the Southern Main Road, 5 km west of Parico International Airport, Trinidad. The Caroni River flows on the northern side of the village, whereas the eastern, western, and southern sides contain >1,500 ha of rice cultivation. In Trinidad, there are 2 distinct seasons: the rainy season, from May to November, and the dry season, from December to May (Chadee 1992).

Mosquito collections: Between April 1993 and June 1994, *An. marajoara* collections were made weekly using human bait between 1500 and 2300 h, similar to the methodology used for *An. aquasalis* Curry collections (Chadee and Beier 1995a, 1995b). Informed consent was obtained from all mosquito collectors and the Insect Vector Control Division Internal Review Board approved the project. Collections were made in 2 houses with 2 men stationed outdoors in the yard and 2 indoors in the living room in each house. Each collector was provided with a flashlight, aspirator, and net. Mosquitoes caught on the exposed lower legs and ankles of the collectors were transferred into moistened jars lined with plaster of Paris and kept separate by location, time, and collector. In the laboratory, mosq...
Ecology of the Malaria Vector, Anopheles (Nyssorhynchus) Marajoara Galvao and Damasceno in Trinidad, West Indies

1. REPORT DATE
 2006

2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
 Ecology of the Malaria Vector, Anopheles (Nyssorhynchus) Marajoara Galvao and Damasceno in Trinidad, West Indies

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Walter Reed Army Institute of Research, Department of Entomology, Silver Spring, MD, 20910

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
 see report

14. ABSTRACT
 see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 7

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
quitoses were anesthetized, identified, and counted. The ovaries of 60% of the specimens were dissected in distilled water to determine parity (Detinova 1962).

Wing-length measurements: The wings of all dissected mosquitoes were removed and placed on glass slides in small drops of dilute saline. For each wing, the distance from the axillary incision to the apical margin was measured as described by Nasci (1986), using a binocular microscope with a calibrated eyepiece graticule.

Laboratory experiment: In January 1994, 50 female An. marajoara with no visible signs of blood were placed into a 450-ml net-screened, cylindrical ice-cream container (18 cm in height × 16.5 cm in diameter) to acclimatize to laboratory conditions. At 0500 h, 25 females were selected and individually placed into a 5-ml glass tube covered with mosquito netting and, at 0600 h, females were allowed to engorge to repletion on 2 human forearms. For the experiment, 0600 h was designated 0 h, and for the next 60 h, the 25 mosquitoes were individually offered a blood meal every 2 h.

Morphological and molecular identification: Anopheles mosquitoes of the subgenus Nyssorhynchus, collected for this study, were identified using Faran (1980) and Linthicum (1988). A sample of presumed An. marajoara was collected in August 2000 at Frederick Settlement using a Shannon trap. Larvae were also collected from a rice field at the same site and were reared to the adult stage, and exuviae retained and slide mounted. Morphological and molecular vouchers are deposited in the Smithsonian Institution, National Museum of Natural History. Sixty specimens were identified using the techniques described in Wilkerson et al. (1995a, 1995b) (RAPDs) and Li and Wilkerson (2005) (ITS2-based PCR primers).

RESULTS

A total of 1,157 Anopheles females were captured during the experimental study; 95.2% were An. marajoara and 4.8% were An. (Nys.) aquasalis Curry. Table 1 shows the seasonal distribution of An. marajoara, with 58% being collected in the wet season and 42% in the dry season. The rainfall patterns revealed that 71.4% of all rainfall was measured during the months May–November, with the highest monthly rainfall in June 1993, when 446.8 mm (17%) was collected (Fig. 1). It should be noted that, in October, the wet season is usually interrupted for about 2 weeks by a dry spell, the Indian summer, or petit carene.

The wing length of 660 females averaged 2.90 ± 0.130 mm (±SE), the coefficient of variation (CV) of wing length measurements was 4.48, and the range was 2.71–3.10 mm (Table 1). Size variation was greatest in October 1993 (5.54 mm), at almost the end of the rainy season (Fig. 2). The overall mean wing length of parous and nulliparous females was 2.90 and 2.92 mm, respectively. The means were not significantly different in a 2-way analysis of variance (ANOVA) (F = 0.21, df =
Table 1. Monthly mean (SE) wing length (mm) of parous and nulliparous *Anopheles marajoara* in Frederick Settlement, Trinidad (1993–94).

<table>
<thead>
<tr>
<th>Months (year)</th>
<th>N</th>
<th>Parous</th>
<th>N</th>
<th>Nulliparous</th>
<th>Combined</th>
<th>CV¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>April (1993)</td>
<td>43</td>
<td>2.89 (0.088)</td>
<td>25</td>
<td>2.90 (0.107)</td>
<td>2.89 (0.095)</td>
<td>3.29</td>
</tr>
<tr>
<td>May</td>
<td>63</td>
<td>2.92 (0.091)</td>
<td>39</td>
<td>2.93 (0.071)</td>
<td>2.93 (0.088)</td>
<td>3.00</td>
</tr>
<tr>
<td>June</td>
<td>35</td>
<td>2.91 (0.097)</td>
<td>17</td>
<td>2.92 (0.088)</td>
<td>2.91 (0.094)</td>
<td>3.23</td>
</tr>
<tr>
<td>July</td>
<td>57</td>
<td>2.81 (0.128)</td>
<td>6</td>
<td>2.86 (0.076)</td>
<td>2.82 (0.124)</td>
<td>4.40</td>
</tr>
<tr>
<td>August</td>
<td>42</td>
<td>2.81 (0.123)</td>
<td>3</td>
<td>2.82 (0.216)</td>
<td>2.81 (0.127)</td>
<td>4.52</td>
</tr>
<tr>
<td>September</td>
<td>49</td>
<td>2.87 (0.131)</td>
<td>11</td>
<td>2.96 (0.136)</td>
<td>2.89 (0.135)</td>
<td>4.67</td>
</tr>
<tr>
<td>October</td>
<td>135</td>
<td>2.96 (0.168)</td>
<td>9</td>
<td>2.96 (0.101)</td>
<td>2.96 (0.164)</td>
<td>5.54</td>
</tr>
<tr>
<td>November</td>
<td>157</td>
<td>2.93 (0.118)</td>
<td>3</td>
<td>2.98 (0.032)</td>
<td>2.93 (0.118)</td>
<td>4.03</td>
</tr>
<tr>
<td>December</td>
<td>63</td>
<td>2.92 (0.132)</td>
<td>5</td>
<td>2.95 (0.132)</td>
<td>2.92 (0.131)</td>
<td>4.49</td>
</tr>
<tr>
<td>January (1990)</td>
<td>179</td>
<td>2.87 (0.140)</td>
<td>10</td>
<td>2.87 (0.119)</td>
<td>2.87 (0.139)</td>
<td>4.84</td>
</tr>
<tr>
<td>February</td>
<td>12</td>
<td>2.79 (0.072)</td>
<td>0</td>
<td>2.79 (0.072)</td>
<td>2.79 (0.072)</td>
<td>2.58</td>
</tr>
<tr>
<td>March</td>
<td>41</td>
<td>2.96 (0.138)</td>
<td>21</td>
<td>2.93 (0.096)</td>
<td>2.95 (0.126)</td>
<td>4.27</td>
</tr>
<tr>
<td>April</td>
<td>27</td>
<td>2.91 (0.125)</td>
<td>24</td>
<td>2.94 (0.087)</td>
<td>2.92 (0.109)</td>
<td>3.75</td>
</tr>
<tr>
<td>May</td>
<td>18</td>
<td>2.96 (0.106)</td>
<td>1</td>
<td>3.02 (0)</td>
<td>2.96 (0.104)</td>
<td>3.51</td>
</tr>
<tr>
<td>June</td>
<td>5</td>
<td>2.97 (0.137)</td>
<td>0</td>
<td>2.97 (0)</td>
<td>2.97 (0.137)</td>
<td>4.61</td>
</tr>
<tr>
<td>Total</td>
<td>927</td>
<td>2.90 (0.135)</td>
<td>174</td>
<td>2.92 (0.135)</td>
<td>2.90 (0.130)</td>
<td>4.48</td>
</tr>
</tbody>
</table>

¹ Coefficient of variation.
² n = 1,101.

The interaction between months (time) and parity indicated that differences between the wing lengths of parous and nulliparous females changed over time, but these changes were not statistically significant ($F = 1.23$, df = 12, $P = 0.06$). Monthly parous and nulliparous wing lengths were compared. Wing lengths of parous and nulliparous females also showed monthly variations, but were not consistent over time. In addition, the monthly parous rate was not significantly correlated with mean wing lengths over time ($r = 0.157$, df = 16, $P > 0.07$).

The overall parous rate was 57.0% (376/660) (Table 2). During the dry season 55.7% (152/273) of all females were parous, indicating a high proportion of physiologically old mosquitoes being present in the rice fields of Frederick Settlement. This is very different from the number of females found nulliparous (44.3%). During the wet season, the overall parous rate was 57.9% (224/387), which

![Fig. 2. Seasonal variation in rainfall patterns (bars) and wing lengths (line) of An. marajoara mosquitoes from rice fields in Frederick Settlement, Trinidad, West Indies.](image-url)
is significantly different \((P > 0.02)\) from that found among nulliparous females 42.1\% (163/387). The parous rates during the wet and dry seasons were very similar (57.9\% vs. 55.7\%) (Table 2).

Feeding and gonotrophic cycle: From the 25 field-collected An. marajoara females offered a blood meal at 0600 h, at hour 0, 85\% responded to host stimuli, immediately blood feeding to repletion (Fig. 3). However, few responded immediately afterward but showed variable responses to host stimuli. A small proportion of the An. marajoara population responded after 4 h, with the most significant \((P > 0.01)\) multiple feeding occurring 24 h postfeeding, that is, when 40\% refed. As eggs developed, host seeking declined but feeding continued in a proportion of the population for the remainder of the gonotrophic cycle (Fig. 3).

Molecular identification: All 60 specimens tested using the above-described molecular techniques were An. marajoara.

DISCUSSION

We give here a brief review of the systematics of the Albitarsis Complex in order to put An. marajoara in context with the other members of the group. This is especially important because it is possible that reports of malaria susceptibility, or lack of it, found in the literature may refer to one or more of the other species in the complex or to population variability (Linthicum 1988). Until recently, morphological identifications were difficult or impossible, resulting in a rather involved taxonomic history (reviewed by Linthicum 1988).

<table>
<thead>
<tr>
<th>Season</th>
<th>Wet (May–November)</th>
<th>Dry (December–April)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of females</td>
<td>639 (60.6%)</td>
<td>462 (59.1%)</td>
<td>1,101</td>
</tr>
<tr>
<td>No. of females age graded</td>
<td>387 (42.1%)</td>
<td>273 (44.3%)</td>
<td>660 (60.0%)</td>
</tr>
<tr>
<td>No. of nullipars</td>
<td>163 (42.1%)</td>
<td>121 (44.3%)</td>
<td>284 (43.0%)</td>
</tr>
<tr>
<td>No. of parous</td>
<td>224 (57.9%)</td>
<td>152 (55.7%)</td>
<td>376 (57.0%)</td>
</tr>
</tbody>
</table>
When Linthicum (1988) revised the Argyritarsis Section of *Anopheles* subgenus *Nyssorhynchus*, he recognized 2 species recognized in the Albitarsis Subgroup, *An. albitarsis* and *An. marajoara*. However, he observed a great deal of variation and speculated that cryptic species were probably present. Using various techniques, such as polytene chromosomal banding patterns, isozyme analysis, morphology, and behavior, the same conclusion was reached by Kitzmiller (1976), Kreutzer et al. (1976), Steiner et al. (1982), Rosa-Freitas et al. (1990), Narang et al. (1993), and Rubio-Palis et al. (2003). To add to the confusion, other names have been applied to what is now *An. marajoara*, including *An. alopha* (now a nomen dubium) and the rather appealing name, reflecting indoor biting behavior, of *An. albitarsis domesticus*, which was synonymized by Linthicum (1988), and also rather convincingly confirmed earlier by Rios et al. (1984). Subsequent to Linthicum (1988), *An. deaneorum* Rosa-Freitas (1989) and the undescribed species B (Wilkerson et al 1995a, 1995b) were recognized. Because of RAPD diagnostic markers (Wilkerson et al. 1995a, 1995b), a general idea of the distribution of the species is now known: *An. albitarsis sensu stricto* is found in Argentina, Paraguay, and southern Brazil; *An. marajoara* is found from Costa Rica to Bolivia; *An. deaneorum* has a distribution from Rondonia and Mato Grosso states in Brazil to northern Argentina; and species B has a wide distribution approximately 1–25°N and 38–54°W in Brazil and Paraguay (Wilkerson et al. 1995a, 1995b).

Because morphological separation of the 4 species in the Albitarsis Complex is difficult or impossible, it was not feasible until RAPD markers were available to make identifications. Subsequently, Li and Wilkerson (unpublished data) carried out a detailed study of the rDNA ITS2 in the complex and found inter- and intragenomic variation in all 4 species. However, it was possible to design species-specific primers based on constant sites to make reliable identification (Li and Wilkerson 2005). Lehr et al. (in press), using the entire mitochondrial CO1 gene, suggest a 5th species nested in an *An. marajoara* clade in northern Brazil and Venezuela. The Li and Wilkerson (in press) ITS2 results do not corroborate this. In addition, population genetic studies of these same populations, using microsatellite markers, in northern Brazil, Venezuela, and Trinidad do show populational differences but not what we consider at this time to be species-level differentiation (unpublished data). Therefore, the question of the presence of another cryptic species, which would probably be the taxon we studied in Trinidad, awaits further study. For purposes of this article, because at this time most evidence does not support a 5th species, we are assuming that the Trinidad population is conspecific with true *An. marajoara* from the type locality of Ilha do Marajó, Brazil (Map 1).

Little information is available on the ecology of
Anopheles marajoara in the Neotropics. The present study confirms the presence of An. marajoara in Trinidad and replaces the mosquito species An. albitalaris, whose geographical distribution is restricted to the temperate and subtropical areas of South America (Linthicum 1988, Rosa-Freitas et al. 1990). The results show a clearly defined seasonal pattern, with more than 58% of the An. marajoara collected during the wet season (Chadee 1994), compared with 58% collected during the dry season (Chadee 1994), with over 73% of females collected during the rainy season (Chadee and Beier 1995b), while 2 peaks of activity were observed near the end of the photophase and at the beginning of the scotophase, which are features of 2 different kinds of behavior in An. marajoara: landing on humans in the field (Chadee 1992) and egg laying under laboratory conditions (Chadee 1995). That is, with peaks of landing on humans falling close to 1900 h and the time of peak oviposition between 2000 and 2200 h (Chadee 1992, 1995). These studies showed that peak landing and oviposition both occurred after sunset, thus suggesting that disease transmission may also occur at this time during the diel.

In conclusion, this study has clearly identified the presence of An. marajoara in Trinidad and the high proportion of parous females supports previous studies that showed that this species is a primary vector of malaria in Brazil (Conn et al. 2002). In addition, the large number of parous mosquitoes collected in both the wet and dry seasons and multiple blood-feeding behaviors identified during the present study suggest that this species may play a significant role in the transmission of malaria.

ACKNOWLEDGMENTS

We thank R. C. Persaud, L. D. James, S. Deonarine, J. Alfonzo, D. Lalla, and K. H. Ram from Insect Vector Control Division Laboratory, Ministry of Health, Trinidad, for assistance in the field. In addition, we are grateful to C. Li for molecular identifications and Thomas Anderson and Judith Stoffer for preparation of the map. This article is published with permission of the Ministry of Health. This research was performed under a Memorandum of Understanding between the Walter Reed Army Institute of Research and the Smithsonian Institution, with institutional support provided by both organizations. Material has been reviewed by the Walter Reed Army Institute of
REFERENCES CITED

Briegel H, Horler E. 1993. Multiple blood meals as a re-
productive strategy in Anopheles (Diptera: Culicidae).
J Med Entomol 30:975-983.

Briegel H, Rezzonica L. 1985. Concentration of host-
blood protein during feeding by Anopheles mosquitoes

Chadde DD. 1992. Indoor and outdoor host-seeking
rhythms of Anopheles albittarsis (Diptera: Culicidae) in

Chadde DD. 1994. Seasonal abundance, biting cycle and
parity of the mosquito Anopheles homunculus in Trin-
idad, West Indies. J Am Mosq Control Assor 10:522-
526.

Chadde DD. 1995. Diet oviposition patterns of Anopheles
albittarsis in Trinidad, West Indies. J Am Mosq Control
Asx 11:103-105.

Chadde DD, Beier JC. 1995a. Blood-digestion kinetics of
four Anopheles species from Trinidad, West Indies. Ann
Trop Med Parasitol 89:531-540.

of four Anopheles mosquitoes from Trinidad, West In-

Chadde DD, Beier JC. 1997. Factors influencing the du-
rating of blood-feeding by laboratory-reared and wild
Aedes aegypti (Diptera: Culicidae) from Trinidad, West

Conn JE, Wilkerson RC, Segura MNO, de-Souza-Rai-
mundo-TL, Schlichling CD, Wirtz RA, Povoa MM.
2002. Emergence of a new Neotropical malaria vector
facilitated by human migration and changes in land use.

Detinova TS. 1962. Age grouping methods in Diptera of

In: Sieiner Research. There is no objection to its presentation
and/or publication. The opinions or assertions con-
tained herein are the private views of the authors
and are not to be construed as official or as reflect-
ing true views of the Department of the Army or
the Department of Defense.

journals of the American Mosquito Control
Association Vol. 22, No. 1

Gene
ly distinguishable sympa.r.

and allopatric

tic species of

and allopatric

and allopatric