Title: Functional Organic Monolayers

Authors: John C. Spence, Jinsong Wu

Performing Organization: Arizona State University
Office of Research and Sponsored Projects Administration
P.O. Box 873503
Tempe, AZ 85287-3503

Funding Numbers: DAAD190010500

Final Report Date: 1-Sep-2000 - 31-Oct-2005

Supplementary Notes: The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

DISTRIBUTION AVAILABILITY: Approved for Public Release; Distribution Unlimited

Subject Terms: Sensors, Organic Molecules, Diffraction Techniques, Lensless Imaging, Electron microscopy

Security Classification: UNCLASSIFIED

Limitation of Abstract: UL

NSN: 7540-01-280-5500
ABSTRACT

1. New electron and X-ray diffraction methods have been developed for the structure analysis of organic sensors and detectors.
2. The structure of an organic colorimetric biosensor has been determined by electron diffraction.
3. A new hard hard light-element crystal structure has been discovered and its structure determined.
4. A new method of lensless imaging for electrons and X-rays has been discovered. This method replaces lenses with a computer. X-ray diffraction patterns collected at the Lawrence Berkeley Laboratory Advanced Light source (synchrotron) have been inverted to images of test objects with a resolution of about 30nm.
5. The lensless imaging method has been applied to electron diffraction patterns obtained in a TEM from metal nanoparticles containing defects. Atomic resolution images of these defects at interfaces have been reconstructed from electron microdiffraction patterns. The method makes it possible to reconstruct images from new forms of radiation for which no lenses exist.

List of papers submitted or published that acknowledge ARO support during this reporting period. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

Number of Papers published in non peer-reviewed journals: 0.00

(c) Papers presented at meetings, but not published in conference proceedings (N/A for none)

Number of Papers not Published: 0.00

(d) Manuscripts

Number of Manuscripts: 0.00

Number of Inventions:

Graduate Students

M. Stevens. 50%

Number of Graduate Students supported: 1.00
Total number of FTE graduate students: 1.00

Names of Post Doctorates

Dr Jinsong Wu 100%

Number of Post Docs supported: 1.00
Total number of FTE Post Doctorates: 1.00

List of faculty supported by the grant that are National Academy Members

Names of Faculty Supported

Prof J.C.H.Spence

Number of Faculty: 1.00

Names of Under Graduate students supported

Number of under graduate students: 0.00

Names of Personnel receiving masters degrees
Number of Masters Awarded: 0.00

Names of personnel receiving PHDs

Dr. M. Stevens

Number of PHDs awarded: 1.00

Names of other research staff

Sub Contractors (DD882)

Inventions (DD882)
Under this ARO award 41512MS we have developed and applied an entirely new method of imaging atomic structures without using a lens. The method may therefore be used to form images with any radiation for which no lenses exist. Applications of this "lensless imaging" technique, which replaces a lens with a computer, have now been made using neutron beams, X-ray beams and electron beams. Only the scattering pattern is needed to form an image. This pattern of scattered intensity is applied to an iterative algorithm which solves the phase problem for scattering from isolated, non-periodic objects. We have now published examples at 30nm resolution using synchrotron radiation, and (Nature Materials 05) at atomic resolution using electron diffraction. The atomic resolution image shows atomic defects in the grain boundaries of a thin metal film. The resolution of these images is not limited by the numerical aperture of any lens, and the method shows high promise for application to solving proteins which cannot be crystallized. We have also extended the application of this phasing method to cryo-electron microscopy of two-dimensional protein crystals, where it allows three-dimensional image reconstruction using many diffraction patterns but few images.

Based on this solution to the non-crystallographic phase problem we have proposed (in Phys Rev Letts, 2004) a bold new method of solving protein structures which cannot be crystallised. (Crystallization is an important bottle-neck in new drug design and in structural biology generally). The method uses a stream of frozen droplets which run across a synchrotron beam, containing proteins. The proteins are aligned by a powerful infrared laser.

In addition to this work, we have developed new electron diffraction techniques to solve the atomic structure of the thin organic films used as sensors and detectors. We have also used these techniques to analyse a new very hard, light elements material whose discovery we collaborated in. This may be the first in a family of new, covalent carbonate network structures with useful properties (catalysis, coatings). Finally, using the same electron diffraction methods, we have discovered a new phase of pentacene, a material important for attempts to develop organic semiconductors.

During the course of this research we have developed a method of high aspect-ratio lithography, using the etched tracks from high-energy particle beams.

Details of all this work are contained in the publications listed earlier.