Award Number: DAMD17-00-1-0131

TITLE: Role of Novel Matrix-Degradating Metalloproteinase in Breast Cancer Invasion

PRINCIPAL INVESTIGATOR: Sudhir V. Shah, M.D.

CONTRACTING ORGANIZATION: University of Arkansas
Little Rock, Arkansas 72205-7199

REPORT DATE: May 2002

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Role of Novel Matrix-Degrading Metalloproteinase in Breast Cancer Invasion

Authors: Sudhir V. Shah, M.D.

Funding Numbers: DAMD17-00-1-0131

Performing Organization:
University of Arkansas
Little Rock, Arkansas 72205-7199
E-Mail: shahsudhirv@uams.edu

Sponsoring Agency:
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Abstract:

```
(Required) (Maximum 200 Words)
```

Subject Terms:
breast cancer, matrix-degrading metalloproteinase

DISTRIBUTION / AVAILABILITY STATEMENT:
Approved for Public Release; Distribution Unlimited

Security Classification:
Unclassified

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td></td>
</tr>
<tr>
<td>SF 298</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>3</td>
</tr>
<tr>
<td>Conclusions</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>4</td>
</tr>
<tr>
<td>Appendices</td>
<td>None</td>
</tr>
</tbody>
</table>
INTRODUCTION
The objectives of the present proposal are to identify and clone the protein recognized by the anti-meprin antibody; to study its functional characteristics relevant to invasion; and to examine its prevalence in breast cancer patients. We hypothesized that breast cancer cells are capable of breaking down the extracellular matrix barrier and this plays an important role in breast cancer invasion and metastasis. This study is based on our previous observation that breast cancer tissue expresses a meprin-like protein, which can be identified by immunostaining of breast cancer tissue using anti-meprin antibody.

During the first year, our research was focused on the expression of meprin alpha in bacteria and raising antibody to the recombinant protein in order to have a tool for the identification of the meprin-like protein in tissues and extracted proteins. We also performed immunohistology studies of human breast tumor and kidney tumor tissues, and produced data on experimental tumor growth with and without inhibition of meprin.

BODY
During the second year, we attempted to clone the protein recognized by the anti-meprin antibody, which is expressed in breast cancer tissue. We used human breast cancer cDNA expression library in lambdaSCREEN (Novagen). Plating this library allows IPTG-induced expression of cDNA inserts as polypeptides with the following detection using antibody. After 5 rounds of cloning (Figure 1), we have selected five clones reacted with anti-meprin antibody, and purified four of them to homogeneity. Some nucleotide homology was observed between the clones (Figure 2), however, none of them was meprin. Two clones were 97% homologous to beta-2-microglobulin (B2M), and two other were
99% homologous to LINE-1 retrotransposon. Although B2M expression was found by Klein et al. (1) to correlate with breast tumors, it is a frequent finding during library

Figure 3. Homology between clone 1 and beta-2-microglobulin mRNA (GenBank access number NM004048.1)

```plaintext
Query: 1
\[\text{Sequence}\]
```

Figure 4. Homology between clone 3 and human LINE-1 mRNA (GenBank access number AC019171)

```plaintext
Query: 1
\[\text{Sequence}\]
```

```plaintext
Query: 61
\[\text{Sequence}\]
```

```plaintext
Query: 121
\[\text{Sequence}\]
```

```plaintext
Query: 181
\[\text{Sequence}\]
```

```plaintext
Query: 241
\[\text{Sequence}\]
```

```plaintext
Query: 301
\[\text{Sequence}\]
```

```plaintext
Query: 361
\[\text{Sequence}\]
```

```plaintext
Sbjct: 602 gcgaacctagggtgagcagaattc 631
```
screening. More interestingly, LINE-1 retrotransposones encode a 40-kDa protein (p40) with unknown function (2). Several studies showed that this protein is expressed in invasive breast carcinomas, but not in non-malignant carcinomas or normal breast tissue (2, 3).

To express, purify and further characterize the cloned proteins, they have been sub-cloned in pJYN expression vector (Figure 5).

Figure 5. Final inserts sub-cloned in pJYN after digestion with restriction enzymes BamH1 and HindIII.

Figure 2. Nucleotide homology between the isolated clones.

homologous to LINE-1 retrotransposon sequence coding p40 protein with unknown function, which was shown to be expressed in invasive breast tumors;

(5) sequences are sub-cloned in pJYN vector for in vitro expression.

REPORTABLE OUTCOMES

CONCLUSIONS
Our data may indicate that p40 is a meprin-like protein which is important for breast cancer invasion and metastasis. These data are in good correlation with our previously obtained results suggesting that breast tumor development is dependent on the meprin or meprin-like proteinase activity in the tissue.
REFERENCES

APPENDICES
N/A