Award Number: DAMD17-97-1-7087

TITLE: Magnetic Resonance-Guided Interstitial Laser Photocoagulation for the Treatment of Breast Cancer

PRINCIPAL INVESTIGATOR: Steven Harms, M.D.

CONTRACTING ORGANIZATION: University of Arkansas for Medical Sciences
Little Rock, Arkansas 72205-7199

REPORT DATE: September 2000

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
This study explored the use of MRI directed laser ablation as a potential non-surgical treatment method for malignant breast neoplasms. RODEO MRI was used to determine lesion extent and interactively coordinate therapy. MRI compatible needles were placed with stereotaxic guidance. Biopsy proven malignant breast lesions (30 patients) were treated with a bare tip fiber connected to a diode laser operating at 805 nm for a total of 600-seconds/treatment zone. The effectiveness was established with H & E and PCNA stains. A total of 68 treatment zones were performed. Surgery (18 mastectomy, 12 lumpectomy) was performed between 2 hours and three days following laser treatment. Serial sectioning of the surgical specimens and stains of the ablation zones correlated in size with the hypointense zones seen on MRI. The average ablation zone size was 10 mm in diameter. Effective cell death was demonstrated in 60/68 zones on PCNA stains. Three patients had minor skin burns that were removed at surgery.

Interactive MRI can be used to coordinate interstitial laser photoocoagulation therapy. Laser thermal ablation can effectively destroy malignant breast neoplasms. MRI directed laser therapy offers the potential for treatment of small breast neoplasms without the disfigurement associated with breast conservation surgery.
# TABLE OF CONTENTS

## INTRODUCTION
- Subject ......................................................... 1
- Purpose ......................................................... 1
- Scope ........................................................... 1

## BACKGROUND
- Goals of Breast Cancer Therapy .............................. 1
- ILP for Cancer Treatment ...................................... 2
- MR Imaging ....................................................... 2
- Stereotaxis ....................................................... 2
- MR Control of ILP Therapy for Breast Cancer .............. 2

## BODY
- EXPERIMENTAL METHODS AND PROCEDURES ................. 3
  - Stereotaxis .................................................. 3
  - MR Imaging ................................................ 4
  - ILP .......................................................... 4
  - MR/Pathology Correlations ................................ 4
  - Data Analysis ............................................. 4
- RESULTS AND DISCUSSION .................................... 5
  - Stereotaxis .................................................. 5
  - MR Imaging ................................................ 6
  - Interstitial Laser Photocoagulation ......................... 6
  - MR/Pathology Correlation ................................ 6

## KEY RESEARCH ACCOMPLISHMENTS ................................ 7

## REPORTABLE OUTCOMES
- Presentations .................................................. 7
- Scheduled Presentations ...................................... 9
- Publications ................................................... 9

## CONCLUSIONS .................................................... 9

## PERSONNEL ....................................................... 9

## REFERENCES ..................................................... 10

## APPENDICES
INTRODUCTION

This research project is investigating the use of MR-directed interstitial laser photocoagulation (ILP) as an innovative alternative to breast conserving surgery. The purpose of this research is to prove that combining minimally-invasive treatment (ILP) with the diagnostic accuracy of MR imaging provides a treatment for breast cancer that is vastly superior cosmetically to breast conserving surgery, and at a significantly lower cost. This research project is designed to (1) demonstrate the potential of ILP for use as a minimally invasive therapy for breast cancer, (2) demonstrate the capability of MR imaging to accurately localize breast cancer and stereotactically position needles for ILP and (3) validate with rigorous MR/pathological correlations the capability of breast MR imaging to accurately determine the treatment zone resulting from ILP.

BACKGROUND

Goals of Breast Cancer Therapy

The goals of current breast cancer treatment include early detection, while the disease is confined to the breast, and local control that results in minimal deformity. Because of the inability to accurately determine the extent of disease before therapy, more extensive treatment is often provided than is actually necessary to cure the disease. This tendency toward over-treatment results in greater morbidity for the patient and high costs for the health care system.

The highly accurate MRI method for breast cancer used by our group was developed with the motivation that better depiction of lesion extent could dramatically improve the treatment of breast cancer. Recent studies demonstrate the capability of ILP for the minimally invasive treatment of solid tumors. In conjunction with Fischer Imaging (Denver, CO), we have developed a prototype stereotaxic biopsy table that is specifically designed for accurate MRI positioning. The goal of this research is to combine high resolution MRI definition of cancer extent, accurate stereotaxic MRI positioning, and ILP into an alternative method for breast conservation surgery. The use of this novel treatment approach would vastly improve cosmesis, reduce morbidity, and lower costs, thus eradicating some of the most detrimental effects of breast cancer therapy.

ILP for Cancer Treatment

ILP has recently been used as a minimally invasive treatment for certain solid tumors. It is based upon the local delivery of low level heat (approximately $50^\circ$ C) over a period of about 10 minutes. A percutaneous approach is used to place a laser fiber within the lesion using imaging guidance [1-10]. The extent of tissue destruction is a function of fiber position and the temperature gradients created with the interaction of the laser and the cellular components of the tissue. The necrotic tissue that is created by ILP subsequently heals by resorption, regeneration, and/or fibrosis [1-10].

In the United Kingdom, approximately 50 patients with breast cancer have been treated on an experimental protocol using ILP with ultrasound guidance [10]. The analysis of the surgical specimens following this treatment showed obliteration of the lesion, demonstrating the effectiveness of ILP for the treatment of breast carcinoma. However, even though these early results show substantial promise for ILP as a potential treatment alternative for breast cancer, better imaging control than is presently available with sonographic or computed tomographic imaging is needed to determine disease extent and treatment effectiveness [10].

Unlike many solid tumors that have a well-defined interface with adjacent normal tissues, breast cancer infiltrates the surrounding tissue, making the margin difficult to appreciate on most imaging studies and even at surgery. The heterogeneity of breast tissue makes the theoretical prediction of laser heating effectiveness difficult. The surgical correlate of "free margins," obtained with the analysis of the pathology specimen, is needed to determine when ILP has sufficiently destroyed the tumor, leaving a margin of normal tissue. Recent studies have determined that MRI can identify the zones of regional heating resulting from ILP [11-14]. The cellular death induced by ILP produces a phase change that can
be visualized on MR images. This MRI hypointense zone can be used to determine the adequacy of ILP treatment of breast cancer and directly define the extent of cell death. The most important role of MR in this setting is the ability to accurately define tumor and treatment margins.

**MR Imaging**

A high contrast, high resolution MR imaging method called RODEO (ROtating Delivery of Excitation Off-resonance) was developed by our group specifically for breast cancer imaging. Since the introduction of this new imaging technique in 1991, over 1200 breast examinations have been performed by our research group. This breast MRI experience constitutes one of the world’s largest series employing consistent MRI technology and represents the only large series of MRI/serially sectioned pathology correlations. Correlation with rigorous pathological analysis in over 400 serially sectioned mastectomy specimens has validated the accuracy of this method in demonstrating the extent of breast cancer. The sensitivity (94%) and specificity (66%) of RODEO breast MR were twice that of conventional breast imaging when the same cases were evaluated by readers who were blinded to the results of the other examination. In addition, the demonstration by MR imaging of additional, undetected disease foci in 38% of breasts closely approximates the reported prevalence of “subclinical” disease that is reported in rigorous pathological analyses. RODEO imaging can equally detect invasive carcinoma as well as ductal carcinoma in situ [24-29]. The remarkable ability of MR imaging to detect tumor margins and extent of disease indicates its potential for successful imaging control during ILP [15-29].

**Stereotaxis**

Mammographically-directed stereotaxic biopsy has become a recognized alternative to surgical biopsy for certain cases of breast cancer, with stereotaxic biopsy reliability now approaching that of surgical biopsy [30-32]. A variety of prototype stereotaxic devices have been built for MR-directed breast biopsy and needle localization [33-38]. These devices generally consist of components that provide breast immobilization, lesion localization, translation of MR imaging coordinates to spatial coordinates, and needle guidance. Since corrections for gradient nonlinearity are needed for accurate needle localization, all methods use some form of fiducial markers that reference the biopsy system to the MR coordinate system. This enables the accurate positioning of needles in three dimensions for subsequent treatment of the lesion using ILP.

**MR Control of ILP Therapy for Breast Cancer**

The current surgical approach for breast conservation in the treatment of breast cancer, lumpectomy followed by analysis of the specimen and possible re-excision, requires several days of hospitalization for completion. Pathological analysis is used to determine the adequacy of the surgical resection. Often (40%-70% of cases), the presence of positive margins associated with the lumpectomy specimen requires additional surgery, either re-excision or mastectomy [39-43]. A Japanese study employing rigorous pathological analysis demonstrated a 95% positive margin rate in simulated lumpectomies [44]. In addition, incomplete tumor excisions and residual microscopic carcinoma may be associated with higher recurrence rates, as suggested by the tendency of larger tumors to recur more frequently [43].

MR-guided ILP, on the other hand, could be vastly more efficient and effective, involving only 2 hours of the patient’s time for complete obliteration of the tumor. ILP offers a minimally invasive treatment for breast cancer while MRI accurately defines cancer extent and determines the zone of cellular death. In addition, stereotaxic MRI positioning provides the degree of accuracy needed for insertion of the laser and eliminates the need for breast compression. This unique combination of interactive treatment and diagnostic modalities could improve patient care through reduced morbidity, better cosmesis, and removal of the discomfort of breast compression, while, at the same time, lowering health care costs through less surgery and hospitalization time. For the patient with breast cancer, this means that local anesthesia and a needle puncture could replace the current regimen of surgery, hospitalization, general anesthesia, recovery, and breast deformity.

Our study tests the feasibility and outcome of MR-directed ILP in 30 patients with breast cancer who are scheduled for surgical removal of the lesion (mastectomy or lumpectomy).
EXPERIMENTAL METHODS AND PROCEDURES

We currently have funding to conduct breast MR examinations in a series of patients who have suspicious mammographic or clinical findings. A series of 30 patients who were planning to undergo surgery for removal of the lesion were selected to participate in the trial. Entrance criteria included:

1. Focal lesion on MRI with a maximum lesion diameter of 1.5 cm (may be associated with other lesions, but for the purposes of this pilot study, only one lesion will be treated with MR-guided ILP).
2. No previous radiation therapy to the breast.
3. No previous surgery on the lesion to be treated.
4. No contraindications to MR imaging or gadolinium contrast agent.

Patients were paid $300 for participation in this study.

Stereotaxis

Patient positioning and breast stabilization are essential for obtaining accurate stereotaxis and, thus, successful implementation of MR-guided ILP.

A commercial prototype MR imaging stereotaxic localization and biopsy unit manufactured by Fischer Imaging (Denver, CO) was used initially for this study. This instrument did not work to our satisfaction. Subsequently, an alternative approach was used, based upon a laser guidance system developed in our laboratory.

MR Imaging

All studies employed a high resolution, high contrast RODEO pulse sequence that has the capability of accurate tumor localization based upon validation by over 400 serially sectioned pathology specimens. MR compatible localization wires and biopsy needles are supplied by EZM (Westbury, NY).

After the patient was positioned on the table and the breast had been stabilized with the thermal setting plastic, pre- and post-contrast 128-slice RODEO scans were obtained for localization. Gadopentetate dimeglumine was used as the contrast medium and was administered as an intravenous bolus at 0.1 mmol/kg (8-16 ml). While remaining in position on the stereotaxic table, the patient was moved to the front of the magnet, where the stereotaxic c-arm is located. The patient then received a local anesthetic and, using the c-arm, a needle was placed into the center of the lesion. A laser fiber was then inserted into the needle to the center of the projected treatment zone.

Interstitial Laser Photocoagulation

After the laser fiber had been successfully placed, the patient was returned to the magnet center and laser ablation was begun. The ILP therapy closely followed the methods used by Bown et al. [1-3, 10]. A Nd-YAG laser was used at a power of 1-2 Watts, providing a temperature of about 50° C. The treatment lasted approximately 10 minutes, but total treatment time was determined by the hypointense zone that is seen on MRI.

During laser ablation, MR scans were obtained at 2-minute intervals using rapid 32-slice acquisitions. During heating, a zone of hypointensity appeared on the MR images around the laser tip due to the phase change resulting from the cellular death. When this hypointense zone adequately covered the post-contrast tumor image as well as an adequate disease-free margin, the heating was discontinued.
MR/Pathology Correlations

The gross specimens were sectioned serially. The gross tumor size ranged from 1.0 to 6 cm in the maximum dimension with a mean maximum diameter of 3.0 cm. Histologic examination was performed by routine H & E stains and proliferating cell nuclear antigen stain (PCNA). The determination of size of the treatment zone was achieved with the PCNA stain. The PCNA stain targets actively replicating DNA. Zones of less than 10% PCNA activity compared with surroundings were considered adequately treated. This evaluation was designed to conservatively estimate treatment volume. The procedure works best in zones that are completely within tumor. Zones in normal tissue or on the boundary of normal tissue will not have sufficiently different staining activity from surroundings to accurately depict tissue ablation. The treatment zones were measured in two dimensions and the average measurement used for comparison with the MRI measurement. Final histologies were: infiltrating ductal carcinoma grade I—5 subjects, infiltrating ductal carcinoma grade II—5 subjects, infiltrating ductal carcinoma grade III—16 subjects, and Infiltrating lobular carcinoma—2 subjects. Node dissections or sentinel node procedures were performed on all subjects. The nodal status was as follows: no positive nodes—20 subjects, 1-3 positive nodes—4 subjects, and greater than 3 positive nodes—5 subjects.

Data Analysis

ILP therapy: The capability of ILP as a method for the minimally invasive treatment of breast cancer was measured by rigorous pathological analysis of the surgical specimen. Either the lumpectomy or the mastectomy specimen was serially sectioned with liberal histological sampling. The tissue was analyzed for the location and extent of charring, cellular destruction, and hemorrhage relative to the position of the laser fiber and the margins of the hypointense MRI zone. In particular, we evaluated the consistency of the laser effect and the potential for asymmetric or skipped areas. These data were compared with previous results from animal model studies performed in our laboratory and with results reported in the literature. The data were used to validate the ability of ILP to effectively destroy breast cancer cells in vivo and leave a disease-free margin.

MRI localization for stereotaxis: MR images were interpreted prospectively by the PI, and stereotaxic positioning was performed based upon this interpretation. At the end of the study, the ability of radiologists to interpret the MRI information for ILP treatment positioning was evaluated retrospectively. To test the reliability of MRI for lesion identification and localization, three radiologists who were blinded to the initial location selection were asked to select a position for centering the laser. The variability and accuracy of selection of the three radiologists was then determined retrospectively.

MRI treatment control: The MR images that were obtained during ILP were interpreted prospectively by the PI to determine when an adequate hypointense zone was achieved. To test the capability of radiologists to consistently interpret these data, three radiologists were asked to retrospectively define the hypointense zone on the final set of treatment images. The accuracy and variations among radiologists were determined using the pathology gold standard. The histological and biochemical changes in the pathology specimen were analyzed and correlated with the location of the MRI signal changes and the location of the laser fiber tip. The questions we hoped to answer were:

1. Can MRI detect asymmetric heating or potential skip areas?
2. What is the histological appearance of the boundary zone?
3. Is MRI an adequate control method for ILP?

RESULTS AND DISCUSSION

Lesion targeting was performed with pre- and post-contrast high resolution RODEO images. After needle placement, a RODEO image was generated to confirm the accuracy of the stereotaxis. After completion of the laser ablation, a hypointense treatment zone is demonstrated on the post-
A total of 68 treatment zones were performed in 29 patients. A total of 7 zones included some normal tissue and were difficult to correlate with PCNA activity. One of these treatments occurred when the laser tip slipped back into the needle. The other zones that included significant normal tissue were due to inaccuracies in needle placement that occurred early in the development of the stereotaxic localization system. Two zones were incompletely treated and the treatment terminated due to pain. Of the 59 zones where pathologic correlation with PCNA was possible, the average treatment zone diameter on MRI was 1.16 cm (range 0.7 to 2.0 cm). The average diameter of the PCNA activity reduction was 1.01 cm (range 1.75 to 0.55 cm). Considering some distortion that occurs during the preparation of pathologic tissue and the errors in measurement that occur with overlapping zones, the MR appearance could be considered a reasonably accurate representation of treatment zone size.

Three patients with smaller tumors (diameter 2.2, 3.0, and 1.0 cm) had total ablation of the tumor by the laser therapy. Lack of residual contrast enhancement on the MR images indicated complete treatment that was confirmed at pathology. All of the other 26 patients with residual enhancement had residual tumor confirmed at pathology.

All patients tolerated the procedure well. No serious complications developed. The most frequent complaint was due to pressure on the sternum by the MR breast coil. One patient developed a subcutaneous hemorrhage. Most patients sustained less hemorrhage than typically experienced with core needle biopsy. This is attributed to the photocoagulation effects of the laser. The procedure was stopped due to burning pain in two subjects. Only one patient complained of post-procedure burning pain. Of the 12 patients who were surgically treated on subsequent days, minor pain was treated adequately with oral acetomenophen. No narcotics were required. One patient sustained a minor skin burn due to laser treatment of a lesion near the skin. In this case, the lesion was on the medial side of the breast and the skin could not be directly visualized during the treatment. Another patient sustained a minor skin burn when the laser tip slipped back into the needle. Both of these skin burns were removed at surgery. Therefore, the determination of long term cosmetic effects of the skin burns is not possible. The treatment was suspended when the patient experienced pain in the subject where the laser slipped back into the needle. Subsequent to this patient, a luer lock was used to attach the laser to the needle.

This study demonstrates the feasibility of breast MR guided interstitial laser photocoagulation as a minimally invasive alternative to surgical lumpectomy. It is clear that breast MR can effectively determine margins of infiltrating breast cancers (15-29). Current stereotaxic techniques have approached a reliability that would be consistent with most clinical needs (30-38).

Numerous prior studies have determined the ability of ILP to effectively destroy tissue. It is an established treatment alternative for palliation of many tumors (1-9). One would presume that the treatment would also be effective for breast cancer. Yet, the ability to destroy breast cancer by ILP to date is solely based upon histologic evidence (10). When the lumpectomy is performed soon after ILP, the establishment of cell death may be problematic. Routine H & E stains are often inconclusive, especially in regions of normal tissue. We added the PCNA stain to more accurately determine effective ablation. Even these techniques do not directly determine cell death. It is presumed that the markedly diminished DNA replication activity relative to surroundings accurately describes cell death. Studies performed in the UK with a longer delay between ILP and surgery are more conclusive (10), but ultimately a treatment trial with careful patient follow-up is needed to validate the effectiveness of the treatment method.
A problem with minimally invasive therapy of breast cancer is the need for thorough pathologic evaluation of the specimen. Many breast cancers are a mixture of pathologic components. The most malignant component usually determines the course of adjuvant therapy. A lesion that is thought to be pure DCIS on core biopsy may be found to harbor invasive cancer or microinvasion when the entire lesion is evaluated by pathology. Therefore, a needle diagnosis of DCIS will probably not be eligible for minimally invasive therapy due to the potential for existence of occult invasive disease or microinvasion. Many biochemical markers are now needed for the determination of adjuvant therapy including estrogen receptors, progesterone receptors, her-2-neu, etc. Adequate core samples should be obtained and biochemical markers established prior to minimally invasive therapy.

Despite the potential for greatly improved cosmesis, minimally invasive therapy for breast cancer has not yet been used as a substitute for traditional lumpectomy. There are several reasons for the cautious application of minimally invasive therapy techniques in breast cancer. The use of minimally invasive therapy in most current applications involves palliation of disease, where the therapeutic alternatives incur more risk or not available. For example, metastatic colorectal metastases occur late in the course of disease and the alternative approach, liver resection, incurs significant morbidity. The downside risk of a failed minimally invasive therapy is little. Conversely, early breast cancer has an excellent prognosis if surgically treated. The risk of a failed minimally invasive therapy is a missed opportunity for treatment of a curable disease. These ethical concerns have been a major limitation in the conduction of trials that substitute minimally invasive therapy for traditional lumpectomy. Most validation studies, therefore, follow minimally invasive treatment with surgery with pathologic correlation to determine treatment effectiveness.

Minimally invasive therapy will not be for every patient. As mentioned previously, clear pathologic margins are needed to assure the best prognosis. There is disagreement on what constitutes an adequate margin. It is clear, however, that a 1 cm margin would be acceptable and a reasonable objective for minimally invasive therapy. Therefore, to treat a 1 cm lesion with a 1 cm margin would require a treatment zone of 3 cm. With current bare tip laser fibers, only a 1 cm treatment zone can be reliably produced. To treat a 3 cm zone would require many treatment sessions. The need for many overlapping zones would increase the potential for skip areas and inadequate treatment. New laser systems are being developed for faster treatment over a larger region. Even if larger zones are achieved, the size of the zone may be clinically limited. Lesions near the chest wall are more painful to treat due to sensation in the muscle. Lesions near the skin may result in skin burns and necrosis that would obviate the cosmetic benefits of minimally invasive therapy. The mass of destroyed tissue is slowly absorbed by the body. If the treatment zone is too big, the time to resorption will be increased. Larger volumes of destroyed tissue may not ever be totally absorbed. The presence of a long-standing breast mass after therapy is not a desirable treatment outcome.

Despite the limitations of minimally invasive therapy for breast cancer, the number of potential candidates are increasing. The size of breast cancers at diagnosis is getting smaller due to the widespread use of mammographic screening. Currently about one third of breast cancer is 1 cm or smaller at discovery. Many predict that half of breast cancers will soon be 1 cm or smaller. Many of these, however, will be pure DCIS and will not be amenable to minimally invasive therapy.

The encouraging results from pilot studies and the availability of sufficient clinical tools would indicate that a clinical trial may be warranted in the near future. This trial should evaluate the effectiveness of minimally invasive therapy for the treatment of small breast cancers compared with traditional surgical lumpectomy. It should be noted that the results described in this paper do not test therapeutic effectiveness and that the methods have not been validated for clinical use. The actual use of minimally invasive therapy as a substitute for surgical lumpectomy should only be considered after the completion of a successful, well-controlled clinical trial.
KEY RESEARCH ACCOMPLISHMENTS

- Interstitial laser photocoagulation is an effective method for completely destroying tumor tissue.
- RODEO MRI can accurately demonstrate lesion margins.
- MRI stereotaxis can be used to accurately place needles for ILP.
- RODEO MRI can accurately determine ILP treatment margins.

REPORTABLE OUTCOMES

- PRESENTATIONS
  - 1998

  University of South Florida Medical Center
  "New Frontiers: MR Imaging of the Breast: Current Status and Future Potential"
  May 6-8, Key West, FL

  University of South Florida College of Medicine Breast Imaging Update
  "Breast MRI: The Essentials"

  U.S. Public Health Services Office on Women’s Health
  "International MRI Expert Working Group"; "Current and Potential Role in Local Staging: Implications for Treatment Options"
  Sep 8, 1998, Washington, DC

  Colorado Radiological Society, University of Colorado Health Services Center
  "Integration of Breast Magnetic Resonance Imaging with Breast Cancer Treatment"
  Oct 8-9, 1998, Denver, CO

  Southwest Oncology Group
  "Potential Use of Breast MRI in Clinical Trials"
  Oct 22-23, 1998, San Antonio, TX

  The Wendy & Emery Reves International Breast Cancer Symposium
  "RODEO MRI Guided Laser Lumpectomy: The Potential for Treatment Without Disfigurement"
  Oct 16-19, 1998, Dallas, TX

  Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences School of Medicine
  "New Frontiers in Breast MRI"
  Nov 2, 1998, Nashville, TN

  NSABP
  "Overview of MRI Current Abilities and Future Needs"
  Nov 18-19, 1998, Pittsburgh, PA

  Radiological Society of North America (RSNA)
  "Laser Lumpectomy with Interactive MR Imaging: Histopathological Correlation"
  Nov 29-Dec 4, 1998, Chicago, IL

  1999

  The International Society for Optical Engineering (SPIE)
  "RODEO MRI Guided Laser Ablation of Breast Cancer"
  Jan 23-24, 1999, San Diego, CA
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Sally Jobe Breast Centre – Breast Imaging &amp; Intervention into the 21st Century</td>
<td>Feb 2-12, 1999</td>
<td>Sanibel, FL</td>
</tr>
<tr>
<td>16th Annual Miami Breast Cancer Conference</td>
<td>Feb 25-27, 1999</td>
<td>Miami, FL</td>
</tr>
<tr>
<td>Southern Surgeons Club – Annual Meeting</td>
<td>May 3, 1999</td>
<td>Little Rock, AR</td>
</tr>
<tr>
<td>Arkansas Public Health Association</td>
<td>May 6, 1999</td>
<td>Hot Springs, AR</td>
</tr>
<tr>
<td>21st Family Practice Intensive Review Course</td>
<td>June 6, 1999</td>
<td>Little Rock, AR</td>
</tr>
<tr>
<td>Rural Hospital Program Compressed Video Network</td>
<td>June 8, 1999</td>
<td>Little Rock, AR</td>
</tr>
<tr>
<td>National Surgical Adjuvant Breast &amp; Bowel Project</td>
<td>June 21, 1999</td>
<td>Toronto, Canada</td>
</tr>
<tr>
<td>Grand Rounds, Yale University</td>
<td>Sept 23-24, 1999</td>
<td>New Haven, CN</td>
</tr>
<tr>
<td>Educational Symposium, Susan G. Komen Memorial Chapter</td>
<td>Oct 1, 1999</td>
<td>Peoria, ILL</td>
</tr>
<tr>
<td>Breast Cancer Update 1999</td>
<td>Oct 7-8, 1999</td>
<td>Seattle, WA</td>
</tr>
<tr>
<td>American College of Surgeons Annual Clinical Congress</td>
<td>Oct 10-15, 1999</td>
<td>San Francisco, CA</td>
</tr>
<tr>
<td>93rd Annual Assembly, Southern Medical Association</td>
<td>Nov 10-14, 1999</td>
<td>Dallas, TX</td>
</tr>
</tbody>
</table>

**FIRST PRIZE WINNER:**
"RODEO MRI Directed Laser Lumpectomy: An Alternative to Surgery for Benign and Malignant Breast Tumors"

**2000**

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Annual Tyler Breast Conference 2000</td>
<td>Feb 19-20, 2000</td>
<td>Tyler, TX</td>
</tr>
<tr>
<td>Radiology: Diagnostic Radiology Review with Emphasis on MRI</td>
<td>Mar 4-5, 2000</td>
<td>Memphis, TN</td>
</tr>
<tr>
<td>Society of Surgical Oncology</td>
<td>Mar 16-19, 2000</td>
<td>New Orleans, LA</td>
</tr>
</tbody>
</table>

**MR-Guided ILP for the Treatment of Breast Cancer**
**PUBLICATIONS**


**CONCLUSIONS**

Preliminary results indicate that:

1. RODEO MRI can accurately identify cancers for laser ablation.
2. Stereotaxic MRI needle positioning can be performed.
3. Fast RODEO MRI can accurately depict zones of ablation for interactive ILP.
4. ILP is an effective method for the minimally-invasive ablation of breast cancer.
5. MRI-guided ILP is safe and is a potential alternative to surgical lumpectomy.
6. MRI-guided ILP may have lower costs and provide better cosmesis than surgical lumpectomy.
PERSONNEL

The following personnel received pay from this research effort:

- Steven E. Harms, M.D.
- Diana M. Lindquist, Ph.D.
- Mary P. Jones, R.N.P.

REFERENCES


MR Directed Interstitial Laser Photocoagulation of Breast Cancer

Steven E. Harms, MD¹, FACR, Sohelia Korourian, MD²,
V. Suzanne Klimberg MD³, Ronda Henry-Tillman, MD³, Ami Desai, MD¹,
Mary Price Jones, RN¹, David Cardwell BSE¹, Diana Lindquist, PhD¹,
Hamid Mumtaz, MD, PhD³, Kent Westbrook, MD³

Departments of Radiology¹, Pathology², and Surgery³
University of Arkansas for Medical Sciences
Little Rock, AR 72205

Address correspondence to:
Steven E. Harms, MD, FACR
Department of Radiology
University of Arkansas for Medical Sciences
4301 W. Markham, Slot 556
Little Rock, AR 72205
(501)257-6622
seharms@earthlink.net
Abstract

PURPOSE: To determine the feasibility of noninvasive magnetic resonance directed interstitial laser photocoagulation (ILP) for the treatment of breast cancer.

MATERIALS AND METHODS: MR compatible needles were placed with stereotaxic guidance after local anesthesia. A total of 59 ILP treatment zones were completed in 29 patients with invasive breast cancer prior to surgery. Interactive monitoring of the laser therapy was performed with dynamic T1 weighted, fat suppressed 3D MR imaging. The treatment zone size was measured on high resolution 3D images and compared to the size of the treatment effects seen with proliferating cell antigen stains (PCNA).

RESULTS: Less than 10% residual PCNA activity was seen in all of the zones that were completed, which indicated a significant therapeutic effect of the laser. The average diameter of the treatment zones measured on MR imaging was 1.16 cm and compared favorably with the pathological average zone diameter of 1.01 cm. Stereotaxic localization was incorrect in the placement of 7 zones. Minor skin burns occurred in 2 patients. The treatment was stopped due to pain in 2 patients.
CONCLUSION: Breast MR imaging can be used to accurately identify breast cancer, stereotaxically place needles for therapy, interactively coordinate the delivery of ILP, and correlate with pathology on the size and effectiveness of the treatment.
Introduction

Modern society favors breast cancer treatment that preserves the cosmetic appearance of the breast. Breast conservation surgery was developed to reduce disfigurement associated with mastectomy with an equivalent therapeutic outcome(1-6). Most patients now prefer lumpectomy over mastectomy surgery. Third party payers widely accept the breast conservation alternative, despite the increased cost and need for radiation therapy.

Small breast cancers (< 1 cm) have an excellent prognosis, with a disease-free survival at 20 years approaching 90% (7-12). These results were derived from long-term follow-up on studies where breast conservation was not yet available. It is clear from the outcomes that the disfigurement of mastectomy was not necessary for these small breast cancers.

The excellent prognosis of small cancers indicates a potential for less deforming therapy. The next step beyond surgical lumpectomy is minimally invasive therapy. Minimally invasive therapy has been applied for a variety of solid tumors in other organs including liver, brain, prostate, lung, pancreas, and uterus (13-21). These methods are effective in destroying tissue and the application for the destruction of breast tumors is straightforward (22-27).

A major problem with the application of minimally invasive therapy in breast cancer is the need for knowledge of complete removal of the cancer. It is well-known that subclinical residual disease is present after lumpectomy surgery. A number of rigorous pathologic studies using serial sectioning of mastectomy
specimens have documented the occurrence of otherwise unsuspected foci of disease in about 40% of breasts (28-30). The NSABP (National Adjuvant Breast and Bowel Project) B-06 trial demonstrated a recurrence rate of about 40% in subjects treated with lumpectomy alone compared with a recurrence rate of about 10% in those treated with lumpectomy and radiation (1). The benefit of radiation is attributed to the presence of undetected subclinical disease.

Despite the use of radiation, it is now recognized that the establishment of pathologically-clear surgical margins in the lumpectomy specimen significantly improves the prognosis. Unfortunately, the estimation of tumor extent by conventional imaging and physical examination are inaccurate, resulting in positive pathologic margins in about half of lumpectomy surgeries (31-36). A Japanese study that performed simulated lumpectomy followed by mastectomy and serial section pathology demonstrated positive margins in 90% of cases (37).

The ability of high contrast, high resolution breast MR to accurately depict lesion margins is critical in the use of minimally invasive therapy. A major objective in our serial section correlative study was to demonstrate accuracy of MR margins compared with pathology (38-41). Accurate stereotaxic localization of needles is also a critical technological component of minimally invasive therapy for breast cancer. The capability of stereotaxic MR guidance systems is in evolution. The speed and accuracy of these techniques are improving (42-48).

The purpose of this effort is to demonstrate the feasibility of minimally invasive breast cancer therapy using MR guidance. The study results confirmed
the ability of interstitial laser photocoagulation (ILP) to effectively destroy breast cancer, the ability of MRI to determine treatment zone sizes compared with pathology, and the effectiveness of MRI guidance systems.

Methods

A series of 31 women subjects with biopsy proven carcinoma were entered into the RODEO directed ILP protocol. Informed consent was obtained according to the direction of the University of Arkansas for Medical Sciences Institutional Review Board. One subject was withdrawn from the study due to a MRI malfunction prior to the laser procedure. One subject was withdrawn because the final biopsy report was benign. The 29 subjects completing the protocol ranged in age from 32 to 81 years with a mean of 55.5 years. There were 19 Caucasians, 9 African-American, and 1 native American. Of the treatments, 17 were on the left breast and 12 on the right.

All subjects underwent treatment with surgical resection after the laser procedure. The surgical treatment included lumpectomy in 11 patients and mastectomy in 18 patients. All patients had axillary node evaluations by either sentinel node examination or axillary node dissection. The surgical procedure was usually performed the same day (17 patients). Six patients had surgery the day after the laser procedure. Three patients had the surgery on day four. One patient each had surgery on day 5, day 10, and day 14 after the laser treatment.

The gross specimens were sectioned serially. The gross tumor size ranged from 1.0 to 6 cm in the maximum dimension with a mean maximum
diameter of 3.0 cm. Histologic examination was performed by routine H & E stains and proliferating cell nuclear antigen stain (PCNA). The determination of size of the treatment zone was achieved with the PCNA stain. The PCNA stain targets actively replicating DNA. Zones of less than 10% PCNA activity compared with surroundings were considered adequately treated. The pathologic evaluation was designed to conservatively estimate treatment volume. The PCNA technique is more reliable in zones that are completely within tumor. Zones in normal tissue or on the boundary of normal tissue will not have sufficiently different staining activity from surroundings to accurately depict tissue ablation. The treatment zones were measured in two dimensions and the average measurement used for comparison with the MRI measurement. Final histologies were: infiltrating ductal carcinoma grade I—5 subjects, infiltrating ductal carcinoma grade II—6 subjects, infiltrating ductal carcinoma grade III—16 subjects, and infiltrating lobular carcinoma 2—subjects. Node dissections or sentinel node procedures were performed on all subjects. The nodal status was as follows: no positive nodes—20 subjects, 1-3 positive nodes—4 subjects, and greater than 3 positive nodes—5 subjects.

All MR imaging was performed on a 1.5 Tesla General Electric Signa scanner with 5-8x level software. The RODEO (ROtating Delivery of Excitation Off-resonance) pulse sequence 20/4.6 was employed for all examinations. The image display matrix was 128x256x256 for images before and after treatment. The scan time for a 128 slice scan is about 5 minutes. During treatment, shorter scans of 32 to 64 slices were generated for scan times of about 1 and 2 minutes.
respectively. Gadolinium contrast (Nycomed) 0.1 mmol/kg was given before
treatment for lesion targeting and after treatment to assess the treatment zone
size. The diameter of the hypointense zones were measured in two dimensions
on the post-contrast images. The average dimension was compared to the
average pathologic dimension.

A prototype stereotaxic needle positioner was used in all cases. This
positioner allowed placement of 18 g MR compatible needles (EZM) to within 2
mm of the target. MR images were generated after needle placement to confirm
accuracy prior to the laser treatment.

A Diomed-25 continuous wave diode laser operating a 604 nm was used
for all procedures. For some patients, a splitter was employed that allowed the
use of up to 4 bare tip fibers simultaneously. For most patients, a single bare tip
fiber was used but repositioned for each treatment. A standard treatment zone
procedure consisted of a pre-char of 18-25 Watts power for 5 seconds followed
by a continuous 3 Watts power for 600 seconds.

Local anesthesia was provided with approximately 20 cc of buffered 1%
lidocaine and 1% bupivicaine. Oral Xanex 0.5 mg was given for anxiety to most
patients. No narcotics were used for pain. If patients complained of burning pain,
then more local anesthetic was given or the procedure was terminated. For
lesions near the skin on the lateral aspect of the breast, a cold pack was applied
locally to reduce the potential for heating the skin.
Results

Lesion targeting was performed with pre- and post-contrast high resolution RODEO images (Fig. 1). After needle placement, a RODEO image was generated to confirm the accuracy of the stereotaxis (Fig. 2). After completion of the laser ablation, a hypointense treatment zone is demonstrated on the post-contrast RODEO images (Fig. 3). The hypointense zone is measured and compared with the PCNA stained size (Fig. 4).

A total of 68 treatment zones were performed in 29 patients. A total of seven zones included some normal tissue and were difficult to correlate with PCNA activity. One of these treatments occurred when the laser tip slipped back into the needle. The other zones that included significant normal tissue were due to inaccuracies in needle placement that occurred early in the development of the stereotaxic localization system. The location of these zones within normal tissue was identified prospectively on the final MR correlative images. Two zones were incompletely treated and the treatment terminated due to pain. Of the 59 zones where pathologic correlation with PCNA was possible, the average treatment zone diameter on MRI was 1.16 cm (range 0.7 to 2.0 cm). The average diameter of the PCNA activity reduction was 1.01 cm (range 1.75 to 0.55 cm). Considering some distortion that occurs during the preparation of pathologic tissue and the errors in measurement that occur with overlapping zones, the MR appearance can be considered a reasonably accurate representation of treatment zone size.

Three patients with smaller tumors (diameter 2.2, 3.0, and 1.0 centimeters) had total ablation of the tumor by the laser therapy. Lack of residual
MR contrast enhancement at the completion of laser therapy indicated effective ablative that was confirmed at pathology. All of the other 26 patients with residual enhancement had residual tumor confirmed at pathology.

All patients tolerated the procedure well. No serious complications developed. The most frequent complaint was due to pressure on the sternum by the MR breast coil. One patient developed a subcutaneous hemorrhage. Most patients sustained less hemorrhage than typically experienced with core needle biopsy. This is attributed to the photocoagulation effects of the laser. The procedure was stopped due to burning pain in two subjects. Only one patient complained of post-procedure burning pain. Of the 12 patients who were surgically treated on subsequent days, minor pain was treated adequately with oral acetaminophen without narcotics. One patient sustained a minor skin burn due to laser treatment of a lesion less than one centimeter from the skin surface. In this case, the lesion was on the medial side of the breast and the skin could not be directly visualized during the treatment. Better guidance and monitoring of medial lesions is needed. Another patient sustained a minor skin burn when the laser tip slipped back into the needle. The treatment was suspended when the patient experienced pain in the subject where the laser slipped back into the needle. Subsequent to this patient, a luer lock was used to stabilize the laser within the trocar introducer. Both of these skin burns were removed at surgery. Therefore, the determination of long term cosmetic effects of the skin burns is not possible.
Discussion

This study demonstrates the feasibility of breast MR guided interstitial laser photocoagulation as a minimally invasive alternative to surgical lumpectomy. It is clear that breast MR can effectively determine margins of infiltrating breast cancers (38-41, 49-51). Current stereotaxic techniques have approached a reliability that would be consistent with most clinical needs (42-48).

Numerous prior studies have determined the ability of ILP to effectively destroy tissue. ILP is an established treatment alternative for palliation of many tumors (13-21). One would presume that the treatment would also be effective for breast cancer. Yet, the ability to destroy breast cancer by ILP to date is solely based upon histologic evidence (22-27). When the lumpectomy is performed soon after ILP, the establishment of cell death may be problematic. Routine H&E stains are often inconclusive, especially in regions of normal tissue. We added the PCNA stain to more accurately determine effective ablation. Even these techniques do not directly determine cell death. It is presumed that the markedly diminished DNA replication activity relative to surroundings accurately depicts cell death. Studies performed in the UK with a longer delay between ILP and surgery are more conclusive (24-26), but ultimately a treatment trial with long-term patient follow-up is needed to validate the effectiveness of the treatment method.

A problem with minimally invasive therapy of breast cancer is the need for thorough pathologic evaluation of the specimen. Many breast cancers are a mixture of pathologic components. The most malignant component usually
determines the course of adjuvant therapy. A lesion that is thought to be pure DCIS on core biopsy may be found to harbor invasive cancer or microinvasion when the entire lesion is evaluated by pathology. Therefore, a needle diagnosis of DCIS will probably not be eligible for minimally invasive therapy due to the potential for existence of occult invasive disease or microinvasion. Many biochemical markers are now needed for the determination of adjuvant therapy including estrogen receptors, progesterone receptors, her-2-neu, etc. Adequate core samples should be obtained and biochemical markers established prior to minimally invasive therapy.

Despite the potential for improved cosmesis, minimally invasive therapy for breast cancer has not yet been used a substitute for traditional lumpectomy. There are several reasons for the cautious application of minimally invasive therapy techniques in breast cancer. The use of minimally invasive therapy in most current applications involves palliation of disease where the therapeutic alternatives incur more risk are not available. For example, metastatic colorectal metastases occur late in the course of disease and the alternative approach, liver resection, incurs significant morbidity. The downside risk of a failed minimally invasive therapy is little. Conversely, early breast cancer has an excellent prognosis if surgically treated. The risk of a failed minimally invasive therapy is a missed opportunity for treatment of a curable disease. These ethical concerns have been a major limitation in the conduct of trials that substitute minimally invasive therapy for traditional lumpectomy. Most validation studies, therefore,
follow minimally invasive treatment with surgery with pathologic correlation to
determine treatment effectiveness.

Minimally invasive therapy will not be indicated for every patient. As
mentioned previously, clear pathologic margins are needed to assure the best
prognosis. There is disagreement on what constitutes an adequate margin. It is
clear, however, that a 1 cm margin would be acceptable and a reasonable
objective for minimally invasive therapy. Therefore, to treat a 1 cm lesion with a
1 cm margin would require a treatment zone of 3 cm. With current bare tip laser
fibers, only a 1 cm treatment zone can be reliably produced. To treat a 3 cm zone
would require many treatment sessions. The need for many overlapping zones
would increase the potential for skip areas and inadequate treatment. New laser
systems are being developed for faster treatment over a larger region. Even if
larger zones are achieved, the size of the zone may be clinically limited. Lesions
near the chest wall are more painful to treat due to sensation in the muscle.
Lesions near the skin (<1cm) may result in skin burns and necrosis that would
obviate the cosmetic benefits of minimally invasive therapy. The mass of
destroyed tissue is slowly absorbed by the body. If the treatment zone is too big,
then the time to resorption will be increased. Larger volumes of destroyed tissue
may not ever be totally absorbed. The presence of a longstanding breast mass
after therapy is not a desirable treatment outcome.

Despite the limitations of minimally invasive therapy for breast cancer, the
number of potential candidates are increasing. The size of breast cancers at
diagnosis is getting smaller due to the widespread use of mammographic
screening. Currently about one third of breast cancer is 1 cm or smaller at discovery. Many predict that half of breast cancers will soon be 1 cm or smaller. Many of these, however, will be pure DCIS and will not be amenable to minimally invasive therapy.

The encouraging results from pilot studies and the availability of sufficient clinical tools would indicate that a clinical trial may be warranted in the near future. This trial should evaluate the effectiveness of minimally invasive therapy for the treatment of small breast cancers compared with traditional surgical lumpectomy. It should be noted that the results described in this paper do not test therapeutic effectiveness and that the methods have not been validated for clinical use. The actual use of minimally invasive therapy as a substitute for surgical lumpectomy should only be considered after the completion of a successful, well-controlled clinical trial.
REFERENCES


12. Leitner SP, Swern AS, Weinberger D, Duncan LJ, Hetter RVP: Predictors of recurrence for patients with small (one centimeter or less) localized breast cancer (T1a,bN0M0). Cancer 1995; 76:2266-2274.


41. Abraham DC, Jones RC, Jones SE, Cheek JH, Peters GN, Knox SM, Grant MD, Hampe DW, Savino DA, Harms SE. Evaluation of Neoadjuvant


Acknowledgement: We thank Jan McKee for her editorial assistance, Helen Beam for assuring communication and coordination, and the technologists of UAMS for their assistance in the performance of this clinical trial.