FINAL REPORT
October 1, 1996 to September 30, 1999

Computational Methods
for Image Reconstruction
and Enhancement

Principal Investigator
Curtis R. Vogel
Department of Mathematical Sciences
Montana State University
Bozeman, MT 59717-2400
Phone: 406-994-5332
FAX: 406-994-1789
E-mail: vogel@math.montana.edu
World Wide Web: http://www.math.montana.edu/~vogel

AFOSR Grant F49620-96-1-0456
AFOSR Program: Computational Mathematics

Program Directors:
Major Scott Schreck (Now Retired)
Dr. Marc Jacobs
Major Robert Canfield
Computational Methods for Image Reconstruction and Enhancement

Curtis R. Vogel

Montana State University
Department of Mathematical Sciences
Bozeman, MT 59717-2400

AFOSR
801 North Randolph Street, Room 732
Arlington, VA 22203-1977

This project had two goals: (1) the development of new computational techniques for image restoration; and (2) the application of these techniques to problems of interest to the US Air Force. The primary application was the identification of space objects from image data collected with ground-based optical telescopes. The achievements of the project included: (1) the publication of a number of research papers in applied and computational mathematics and applied optics journals; (2) the development of two software packages, one for image deblurring and the other for object and phase reconstruction in atmospheric optics; and (3) support for a graduate student in the research toward and preparation of the student’s PhD thesis. Algorithms developed under this project have recently been implemented on supercomputers at the USAF Maui High Performance Computing Center to process image data from the USAF Maui Optical Station.
Contents
1 Introduction 3
2 Objectives 5
3 Major Accomplishments and New Findings 6
4 Personnel Supported by Grant 11
5 Publications 12
6 Presentations 13
7 Collaborative Research and Transactions at US Air Force Laboratories 15
8 Inventions or Patent Disclosures 16
9 Summary 16
1 Introduction

This project dealt with regularization methods for ill-posed inverse problems and the implementation of these methods for applications in atmospheric imaging which are of interest to the US Air Force. To explain the concept of ill-posedness, some mathematical notation and terminology is needed. In the model equation

\[d = Kf + \eta, \]

the \(f \) represents a desired "true" solution, and \(d \) represents measured data. The \(K \) represents a process which transforms the true solution, while \(\eta \) represents "noise", which is independent of the solution. The problem of retrieving the solution \(f \) from noisy data \(d \) is called well-posed if the transformation operator \(K \) is invertible, and the inverse operator \(K^{-1} \) is continuous. This means that if one could somehow make the noise term \(\eta \) "arbitrarily small", then \(K^{-1}d \) would be guaranteed to be "arbitrarily close" to the desired true solution \(f \). A problem that is not well-posed is said to be ill-posed. To obtain an accurate approximate solution to an ill-posed problem, one must apply regularization. This entails the construction of a family of "approximate inverse operators" for the \(K \) in (1) which are "stable" and "convergent". For a precise mathematical definition, see [6, Ch. 3] or [25, Ch. 2].

Ill-posed inverse problems occur quite commonly in science and engineering. Examples range from biomedical and seismic imaging to groundwater flow characterization. An ill-posed problem of great importance to the Air Force is the reconstruction of images that have been degraded, or "blurred", by atmospheric turbulence effects. A mathematical model for the blurring process is the Fredholm first kind integral operator of convolution type,

\[(Kf)(x_1, x_2) = \int \int s(x_1 - x'_1, x_2 - x'_2) f(x'_1, x'_2) \, dx'_1 \, dx'_2. \]

Figure 1 below shows simulated data obtained with this model. With this application comes some specialized terminology. The \(f \) in (2) is called the object, while the \(s \) is called the point spread function, abbreviated by PSF. In atmospheric optics, the PSF has a very special form,

\[s = \left| \mathcal{F}^{-1} (A e^{i\phi}) \right|^2, \]

where \(A \) is the aperture function, \(\phi \) is the phase function, or wavefront profile, and \(\mathcal{F} \) denotes the two dimensional Fourier transform. See [14] for details.
Figure 1: Simulated Image Data. The upper left subplot shows the object, a satellite in earth orbit; the upper right subplot shows the atmospheric phase, or wavefront profile; the lower left subplot shows a conventional image (no phase diversity) with blurring resulting from atmospheric turbulence; and the lower right subplot shows a blurred image with phase diversity.

The wave fronts of light emanating from an idealized point source at infinity are planar. As the light propagates through the atmosphere, these wave fronts are distorted due to variations in the index of refraction caused by temperature differences. The phase characterizes this wavefront distortion.

This past decade has seen the development of hardware which uses deformable mirrors to compensate for wavefront distortion to improve the quality of the recorded image. This hardware solution to the atmospheric blurring problem is known as adaptive optics [17]. Adaptive optics has several shortcomings: It requires an approximate point source, or guide star, to estimate the phase. This may be difficult to obtain, particularly for daylight
imaging. Wavefront compensation is imperfect due to factors like the finite number of actuators in the mirror and the time lag between the detection and compensation. Postprocessing, i.e., the application of image reconstruction algorithms implemented with computer software, is needed to further enhance the image. This provides the motivation for this project.

2 Objectives

The original goal of this project was the development of fast, robust computational algorithms for image reconstruction. For the US Air Force the most notable application is identification and tracking of objects in earth orbit using ground-based optical telescopes. Numerous other applications occur in biomedical imaging. The relevant mathematical model was given by equations (1)-(2), and the PSF s in (2) was assumed to be known. Discrete versions of these equations, obtained by pixelization of the data and applying numerical quadrature to the integral operator K, are notoriously difficult to solve. They are typically quite large, e.g., a 128×128 pixel array yields a system with tens of thousands of unknowns. As a consequence of the ill-posedness of the underlying continuous equation, the discrete system is also highly ill-conditioned. In practical terms, a small amount of noise in the recorded image can cause enormous errors in the reconstructed image. This ill-conditioning can be overcome by applying regularization. The PI is an expert in regularization methods and their numerical implementation. His initial contribution to this project was the application of a variety regularization methods to problems in image reconstruction, and the development and implementation of fast algorithms.

During a visit to a US Air Force laboratory (the Starfire Optical Range, Kirtland AFB, New Mexico), the PI became aware that the simple convolution integral equation model (2) was incomplete. A key component of the model, the PSF s, was typically not available. However, the PSF could be determined from a physical quantity known as the phase, or wavefront profile, ϕ in equation (3). The PI then expanded his goals to include the development of fast, robust computational algorithms for phase estimation. Phase estimation is important in its own right, having applications in laser communications and laser weapons systems.
3 Major Accomplishments and New Findings

The PI's initial focus was on the development and implementation of new regularization methods. A standard approach to the solution of (1) is Tikhonov regularization [6], or penalized least squares, where one minimizes the functional

$$ J(f) = \|Kf - d\|^2 + \alpha \langle Lf, f \rangle. $$

(4)

Here $\langle f, g \rangle = \int \int f(x)g(x) \, dx$ denotes the L^2 inner product, the regularization parameter α is a small and positive, and L is a symmetric positive semidefinite linear diffusion operator, e.g., the negative Laplacian $Lf = -u_{xx} - u_{yy}$. A shortcoming of quadratic cost functionals like this is that they produce smooth solutions. Images with sharp features have discontinuities and are not smooth. See the object in Figure 1. A new approach to the removal of noise from discontinuous images had recently been developed by Rudin and Osher [15], based on total variation, abbreviated TV,

$$ TV(f) = \int \int \sqrt{u_x^2 + u_y^2} \, dx \, dy. $$

(5)

Since the TV functional is not quadratic, iterative solution methods must be applied to the resulting Euler-Lagrange equations. Rudin and Osher used explicit time marching, or equivalently, the steepest descent algorithm, for TV denoising. Steepest descent is notoriously slow to converge for ill-conditioned systems. Hence, it proved impractical for image deblurring. The PI, together with a graduate student Mary Oman, developed an alternative solution method that was dubbed lagged diffusivity fixed point iteration [18].

For the minimization of the Tikhonov functional (4) with $\langle Lf, f \rangle$ replaced by $TV(f)$, this iteration takes the form

$$ (K^*K + \alpha L_{TV}(f^{\nu})) f^{\nu+1} = K^*d, \quad \nu = 0, 1, \ldots. $$

In [5], the PI and David Dobson proved that this iteration is globally convergent (i.e., it converges no matter what initial guess is taken). The PI and Oman [23] demonstrated that this method converges rapidly on realistic simulated atmospheric imaging data similar to that shown in Figure 1. On the theoretical side, Robert Acar and the PI have rigorously proved [1] that TV-penalized least squares is indeed a regularization.

Experience of the PI and many others has shown that incorporating non-negativity constraints can dramatically improve the quality of the reconstructed images. Unfortunately, this can also dramatically increase computational cost. In [19] the PI implemented a rapidly convergent projected
Newton algorithm for nonnegatively constrained, regularized image deblurring. Also discussed in this paper was the efficient solution of large, structured linear systems which arise at each iteration of the projected Newton algorithm. In a follow-up paper [8], Martin Hanke, James Nagy, and the PI formulated a general class of efficient quasi-Newton techniques for image deblurring.

The PI and a graduate student, Steve Hamilton, wrote a collection of MATLAB codes which implemented a variety of regularization methods for image deblurring. Included in this package are standard (quadratic) Tikhonov regularization and (nonquadratic) TV regularization. The codes allow for the incorporation of nonnegativity constraints.

Another goal was the development of robust, efficient computational techniques to solve the linear systems arising from the linearization and discretization of regularized inverse problems. As indicated above, these problems typically are quite large. Hence, it is impractical to apply direct matrix decomposition techniques. Instead, iterative methods like the conjugate gradient (CG) method are used. As a consequence of ill-posedness, these systems tend to be somewhat ill-conditioned when the regularization parameter is small. This means that CG convergence may be quite slow, and acceleration techniques called preconditioners are needed. The key to effective preconditioning is to make use of special structure.

The blurring operator K in (2) gives rise to matrix equations with block Toeplitz-Toeplitz block structure, abbreviated BTTB. Circulant preconditioners have been shown to be very effective for BTTB systems [2, 3]. Unfortunately, other matrices arising in image reconstruction often do not have BTTB structure. This is the case when total variation regularization is used. It is also the case when the blurring process is not spatially translation invariant. The PI and Martin Hanke developed and analyzed a class of multilevel preconditioners that require only that K be a compact linear operator [9, 22]. Compact operators arise not only in image reconstruction, but also in a variety of other important inverse problems. Follow-up work has been carried out by Kyle Riley [12, 11, 13], a PhD student of the PI's.

As indicated above, the model (2) is often incomplete in the sense that the PSF s is unknown. A variety of approaches have been taken to overcome this difficulty. With multiframe blind deconvolution [16], a time-varying sequence of images is captured. It is assumed that the PSF s varies with time, but the object f remains constant from frame to frame. An alternative approach is multichannel phase diversity [7]. Here the model (3) for the PSF
is assumed, with \(\phi \) representing the phase, or wavefront aberration. Additional information about the phase is obtained by using beam splitters and imposing known phase perturbations and then capturing additional images. Figure 2 illustrates a 2-channel phase diversity setup, while the bottom subplots in Figure 1 show simulated phase diversity image data. The PSF’s in the M-channel setting take the form

\[
s_m[\phi] = \left| \mathcal{F}^{-1} \left(Ae^{i(\phi + \theta_m)} \right) \right|^2, \quad m = 1, \ldots, M,
\]

where the \(\theta_m \)'s denote the known phase perturbations. Given data \(d_m = s_m[\phi] * f + \eta_m, m = 1, \ldots, M \) where \(s * f \) denotes the convolution integral in equation (2) and \(\eta_m \) denotes error, the goal is to estimate both the object \(f \) and the phase \(\phi \).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{phase_diversity_diagram}
\caption{A Simplified Illustration of the Experimental Setup for 2-Channel Phase Diversity Imaging.}
\end{figure}

An optimization-based scheme for the joint estimation of object and phase was presented by Paxman et al. in [10]. The PI and his co-workers (Robert Plemmons of Wake Forest University, Tony Chan of UCLA, and Brent Ellerbroek of the Starfire Optical Range) have made a number of refinements to this scheme. In [20] object and phase regularization terms were incorporated.
in a penalized least squares framework. The phase penalty term made use of
the covariance structure of the stochastic process used to model atmospheric
turbulence. In [24] the PI implemented a limited memory BFGS scheme
for the robust, efficient solution of the penalized least squares minimization
problem. The PI together with Ellerbroek wrote a package in the MATLAB
programming environment for the simulation of noisy, blurred atmospheric
image data, and the inversion of this data to obtain the object and atmos-
pheric phase profiles. The inversion codes allow for either single or multiple
time frames and either single or multiple phase diversity channels. Robert
Plemmons and his colleagues have translated these MATLAB codes into
FORTRAN [4], and the codes are running on an IBM SP2 supercomputer at
the Air Force’s Maui High Performance Computing Center (MHPCC). The
algorithms and codes will soon be tested with real atmospheric image data
obtained at the Air Force Maui Optical Station (AMOS).

References

Toeplitz-block least squares problems”, \textit{SIAM J. Numer. Anal.}, 30

software for atmospheric image reconstruction”, preprint, presented at
the AMOS Technical Conference, Maui, HI, September 1999.

total variation denoising”, \textit{SIAM Journal on Numerical Analysis}, 34

4 Personnel Supported by Grant

- The PI: Curtis R. Vogel, Professor of Mathematics, Montana State University.

- 3 Graduate Research Assistants: Kyle Riley, Steve Hamilton, and Scott Hyde. Kyle Riley completed his Ph.D. in Mathematics in July 1999 under the direction of the PI. He is now employed as an assistant professor at the South Dakota School of Mines in Rapid City, South Dakota. Steve Hamilton is currently a Ph.D. student in mathematics at Montana State University. Scott Hyde is a Ph.D. student in Statistics, also at Montana State University.
5 Publications

6 Presentations

• Oct. 11, 1997. UCLA Department of Mathematics. Gave colloquium talk entitled “Phase diversity based deconvolution and phase retrieval”.

14

7 Collaborative Research and Transactions at US Air Force Laboratories

During the course of this project, the PI visited the Starfire Optical Range (SOR) at Kirtland AFB, New Mexico, four times. His contacts at the SOR were Dr. Brent Ellerbroek and Dr. Julian Christou. The first visit occurred in June 1997. The PI gave an informal lecture on computational deblurring (i.e., two-dimensional deconvolution) algorithms and demonstrated some deblurring software. At that time, the PI’s goal was to supply the Air Force
with robust, efficient software to improve the resolution of ground-based telescopes used to identify and track objects in earth orbit. In discussions with Ellerbroek and Christou, the PI became aware that the telescope image data available was not enough to apply his algorithms. A key piece of information, the point spread function (PSF) s in model equation (2), was simply not available.

As a result of this first visit, the PI expanded his research goals to include the estimation of the PSF as well as true image from the recorded (noisy, blurred) image data. An examination of mathematical models for image formation and a search of the literature revealed that a technique known as phase diversity could be used to estimate a quantity known as the phase (which yields the PSF) together with the true image. The PI’s next several visits to the SOR dealt with light propagation through the atmosphere and phase diversity. The PI began a collaboration with Dr. Ellerbroek which resulted in a MATLAB software package to simulate image formation in atmospheric optics. The PI also wrote MATLAB codes for the estimation of the phase and the true image from phase diversity image data. One of the PI’s academic research collaborators, Professor Robert Plemmons of Wake Forest University, has since translated these codes into FORTRAN and implemented them on a supercomputer at the Air Force’s Maui High Performance Computing Center.

8 Inventions or Patent Disclosures

None. This project dealt with the development of computational algorithms and computer software. These have been made available to the Air Force and to the general public.

9 Summary

This project dealt with the development and computer implementation of fast, robust algorithms for atmospheric image deblurring. Specific accomplishments include

- The development of new computational algorithms for total variation and nonnegatively constrained image deblurring.
• The development and analysis of new multilevel preconditioners for the fast solution of linear systems arising in regularized, linearized inverse problems.

• The application of penalized least squares regularization methods for the joint estimation of object and phase (wavefront profile) from multiframe and multichannel phase diversity image data.

• The development of two software packages. One package is a collection of MATLAB routines for image deblurring. The second consists of MATLAB codes for the simulation and inversion of atmospheric phase and image data. The second package has been translated into FORTRAN and implemented on supercomputers at the Air Force's Maui High Performance Computing Center.

Preprints and reprints of papers prepared under this project and computer software prepared under this project can be downloaded directly from the PI's web site at

http://www.math.montana.edu/~vogel/

To get the papers, click on Publications. To get the software, click on Software.

A PhD thesis was written by Kyle Riley, a student directed by the PI and supported under this project. This thesis can also be downloaded from the PI's web site under Publications.