Near Field Optical Microscopy Using a Vibrating Knife Edge or Stylus

Adrian Korpel

University of Iowa
Iowa City, IA 52240

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

The problem studied was the detection of sub-wavelength detail by scanning near-field microscopy, using a vibrating knife-edge/stylus rather than an aperture probe. A related problem was phase detection of an optical field by such scanning, not necessarily in the sub-wavelength region.

(continued on reverse side)

The problem studied was the detection of sub-wavelength detail by scanning near-field microscopy, using a vibrating knife-edge/stylus rather than an aperture probe. A related problem was phase detection of an optical field by such scanning, not necessarily in the sub-wavelength region.
MOST IMPORTANT RESULTS

1. Demonstration of one-dimensional principle of operation.
2. Demonstration of non sub-wave length two-dimensional microscope with vibrating knife edge corner.
3. Demonstration of non sub-wave length two-dimensional tomographic microscope with vibrating knife edge.
4. Analysis and simulation of evanescent wave to plane wave conversion.
5. Analysis and demonstration of phase measuring properties of one-dimensional vibrating knife edge microscope.
FINAL TECHNICAL REPORT

Grant DAAL 03-91- G-0014
period 1/01/91-8/31/95

Near Field Optical Microscopy Using a Vibrating Knife Edge or Stylus

Principal Investigator: Adrian Korpel, University of Iowa

PROBLEM STUDIED

The problem studied was the detection of sub-wavelength detail by scanning near-field microscopy, using a vibrating knife-edge/stylus rather than an aperture probe. A related problem was phase detection of an optical field by such scanning, not necessarily in the sub-wavelength region.

MOST IMPORTANT RESULTS

1. Demonstration of one-dimensional principle of operation.
2. Demonstration of non sub-wave length two-dimensional microscope with vibrating knife edge corner.
3. Demonstration of non sub-wave length two-dimensional tomographic microscope with vibrating knife edge.
4. Analysis and simulation of evanescent wave to plane wave conversion.
5. Analysis and demonstration of phase measuring properties of one-dimensional vibrating knife edge microscope.

PUBLICATIONS

5. Adrian Korpel and Holly Snyder "Coherence properties of vibrating knife edge field sampling." In preparation.

Personnel supported:

Adrian Korpel (PI)
Scott Samson (graduate student) PhDEE
Kurt Feldbush (under an AASERT award) MSEE
Holly Snyder (under an AASERT award) MSEE