Otoacoustic Emissions,
A New Tool
for Hearing Conservation Testing
(Reprint)

By

Kevin T. Mason
John E. Ribera

Aircrew Protection

19950719 058

April 1995

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

Kevin T. Mason
KEVIN T. MASON
LTC, MC, MFS
Director, Aircrew Protection Division

ROGER W. WILEY, O.D., Ph.D.
Chairman, Scientific Review Committee

Released for publication:

Dennis F. Shanahan
Colonel, MC, MFS
Commanding

Accession For

 travelling

Not announced

Justification

By

Distribution

Availability Codes

Mail and/or Special
Researchers at the U.S. Army Aeromedical Research Laboratory are investigating a revolutionary hearing test called otoacoustic emissions (OAEs). With OAE testing, an Army aircrew member's annual hearing test will be reduced to listening passively to a few tones for a few seconds. The paper describes the method of conducting OAE testing and presents figures to demonstrate findings. The advantages of OAE are tabulated.
Otoacoustic Emissions, a New Tool for Hearing Conservation Testing

Kevin T. Mason, M.D., M.P.H.
LTC, MC, MFS
Director, Aircrew Protection Division

and

John E. Ribera, Ph.D.
MAJ, MS
Research Audiologist, Acoustics Effects Branch
U.S. Army Aeromedical Research Laboratory

Annual hearing test

It is time for your annual hearing test. You sit in a booth. The air is stale and stuffy. You put on the familiar earphones. Make sure you have got the red one on the right ear. You grab a button in your hand and wait for tone pulses. You get the attention of the tester, "Wait, I'm tangled in these wires." There it is, a tone, and you press the button. Darn, somebody just moved . . . was that a tone? The tones get fainter and fainter. Click, click. You are straining to hear that very distant tone. Beep, beep, beep. Bang, somebody kicked the booth. Thinking to yourself, "I missed that tone. Boy, it is getting hot in here. I can not believe how loud that high-pitched whine is getting in the background. Is that the machine or me? This is not going so well." Minutes go by. Click, click. Finally, it is over. Okay, you passed!

OAE testing, your annual hearing test will be reduced to listening passively to a few tones for a few seconds. And, no more button pressing!

OAE method

An OAE ear piece is placed comfortably in the ear. It has a miniature sound source that emits two tone pulses of different frequencies (f1 and f2) into the ear canal. These are conducted to the inner ear (cochlea). The inner ear is stimulated by the tones and generates a third tone, called a distortion product. The distortion product tone is a biomechanical emission of acoustic energy from the inner ear; hence the name, otoacoustic emissions (ear sound emissions). With hearing loss, the inner ear loses its ability to produce the distortion product tone at affected frequencies.

A miniature microphone in the OAE ear piece detects the stimulation tones and the distortion product tone. In a few seconds, many stimulation tones of varying frequencies are sent into the ear, generating various distortion product tones. Aircrew members do
not have to actively listen for tones and push a button. They just relax, sit still, and the test is over in less than 2 minutes.

A computer measures the original stimulation tones and the distortion product tones. The computer makes a two-axis graph. Background noise is plotted on the graph by amplitude in decibels and by frequency in Hertz. The amplitude of the distortion product tone is plotted at the frequency of the second stimulation tone (f2) that caused the distortion tone. Audiologists examine the shape of the plotted curves. They measure the difference between the background noise and the distortion product amplitudes. Figure 1 shows an aircrew member with normal hearing. In contrast, Figure 2 shows an aircrew member with hearing loss. Note how the distortion product curve and the background noise curve approach each other above 3000 Hz in the patient with abnormal hearing. The inner ear is not responding properly to stimulation tones at and above 3000 Hz, producing OAE with reduced amplitudes compared to a patient with normal inner ear function.

Advantages

Current pure tone testing stations can be upgraded readily to measure OAE. Table 1 shows the advantages of using OAE testing instead of the traditional pure tone testing.

Validation tests

USAARL is conducting validation OAE tests. We are testing aircrew members of all ages and genders, with a broad range of hearing capabilities. Volunteers will undergo standard audiometric testing, speech discrimination tests, and OAE tests during short sessions. Data will be examined to find out if new hearing conservation program standards can be based on OAE testing instead of pure tone testing. If you are interested in testing this new technology as a volunteer, contact MAJ Ribera at DSN 558-6823/6804 or COMM (205) 255-6823/6804.

Bibliography

Figure 1. Otoacoustic emissions plot in an aviator with normal hearing.

Figure 2. Otoacoustic emissions plot in an aviator with abnormal hearing at and above 3000 Hz.
Table 1.
Advantages of using otoacoustic emissions compared to standard pure tone testing.

1. Simple, passive, automated measure of hearing.
2. Provides objective results.
3. Provides frequency-specific measure of inner ear function.
4. Results are highly reproducible between examinations.
5. Reliable indicator of noise-induced hearing loss.
Initial distribution

Commander, U.S. Army Natick Research, Development and Engineering Center
ATTN: SATNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Executive Director, U.S. Army Human Research and Engineering Directorate
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Chairman
National Transportation Safety Board
800 Independence Avenue, S.W.
Washington, DC 20594

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Commander
Naval Air Development Center
ATTN: Code 602-B
Warminster, PA 18974

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer
Armstrong Laboratory
Wright-Patterson
Air Force Base, OH 45433-6573

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: SFAE-IEW-JS
Fort Monmouth, NJ 07703-5305

Commander, U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

Director
Federal Aviation Administration
FAA Technical Center
Atlantic City, NJ 08405

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Director
Walter Reed Army Institute of Research
Washington, DC 20307-5100
IAF Liaison Officer for Safety
USAF Safety Agency/SEFF
9750 Avenue G, SE
Kirtland Air Force Base 	NM 87117-5671

Naval Aerospace Medical
Institute Library
Building 1953, Code 03L
Pensacola, FL 32508-5600

Command Surgeon
HQ USCENTCOM (CCSG)
U.S. Central Command
MacDill Air Force Base, FL 33608

Director
Directorate of Combat Developments
ATTN: ATZQ-CD
Building 515
Fort Rucker, AL 36362

U.S. Air Force Institute
of Technology (AFIT/LDEE)
Building 640, Area B
Wright-Patterson
Air Force Base, OH 45433

Henry L. Taylor
Director, Institute of Aviation
University of Illinois-Willard Airport
Savoy, IL 61874

Chief, National Guard Bureau
ATTN: NGB-ARS
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

AAMRL/HEX
Wright-Patterson
Air Force Base, OH 45433

Commander
U.S. Army Aviation and Troop Command
ATTN: AMSAT-R-ES
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

Commander
U.S. Army Aviation and Troop Command
Library and Information Center Branch
ATTN: AMSAV-DIL
4300 Goodfellow Boulevard
St. Louis, MO 63120

Federal Aviation Administration
Civil Aeromedical Institute
Library AAM-400A
P.O. Box 25082
Oklahoma City, OK 73125

Commander
U.S. Army Medical Department
and School
ATTN: Library
Fort Sam Houston, TX 78234

Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USM
Fort Sam Houston, TX 78234-6200

Air University Library
(ATN/LSE)
Maxwell Air Force Base, AL 36112

Product Manager
Aviation Life Support Equipment
ATTN: SFAE-AV-LSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798
Commander and Director
USAE Waterways Experiment Station
ATTN: CEWES-IM-MI-R,
CD Department
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70189-0407

Assistant Commandant
U.S. Army Field Artillery School
ATTN: Morris Swott Technical Library
Fort Sill, OK 73503-0312

Mr. Peter Seib
Human Engineering Crew Station
Box 266
Westland Helicopters Limited
Yeovil, Somerset BA20 2YB UK

U.S. Army Dugway Proving Ground
Technical Library, Building 5330
Dugway, UT 84022

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

AFFTC Technical Library
6510 TW/TSTL
Edwards Air Force Base,
CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

Struhold Aeromedical Library
Document Service Section
2511 Kennedy Circle
Brooks Air Force Base, TX 78235-5122

Dr. Diane Damos
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

U.S. Army White Sands
Missile Range
ATTN: STEWS-IM-ST
White Sands Missile Range, NM 88002

Director, Airworthiness Qualification Test
Directorate (ATTC)
ATTN: STEAT-AQ-O-TR (Tech Lib)
75 North Flightline Road
Edwards Air Force Base, CA 93523-6100

Ms. Sandra G. Hart
Ames Research Center
MS 262-3
Moffett Field, CA 94035

Commander
USAMRMC
ATTN: SGRD-UMZ
Fort Detrick, Frederick, MD 21702-5009
COL Yehezkel G. Caine, MD
Surgeon General, Israel Air Force
Aeromedical Center Library
P. O. Box 02166 I.D.F.
Israel

71st Rescue Squadron
71st RQS/SG
1139 Redstone Road
Patrick Air Force Base,
FL 32925-5000

Director
Aviation Research, Development
and Engineering Center
ATTN: AMSAT-R-Z
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

HQ ACC/DOHP
205 Dodd Boulevard, Suite 101
Langley Air Force Base,
VA 23665-2789

Commander
USAMRMC
ATTN: SGRD-ZB (COL C. Fred Tyner)
Fort Detrick, Frederick, MD 21702-5012

41st Rescue Squadron
41st RQS/SG
940 Range Road
Patrick Air Force Base,
FL 32925-5001

Commandant
U.S. Army Command and General Staff
College
ATTN: ATZL-SWS-L
Fort Leavenworth, KS 66027-6900

HQ, AFOMA
ATTN: SGPA (Aerospace Medicine)
Bolling Air Force Base,
Washington, DC 20332-6128

Director
Army Personnel Research Establishment
Farnborough, Hants GU14 6SZ UK

48th Rescue Squadron
48th RQS/SG
801 Dezonia Road
Holloman Air Force Base,
NM 88330-7715

Dr. A. Kornfield
895 Head Street
San Francisco, CA 94132-2813

48th Rescue Squadron
48th RQS/SG
801 Dezonia Road
Holloman Air Force Base,
NM 88330-7715

Mr. George T. Singley, III
Deputy Assistant Secretary of the Army
for Research and Technology
and Chief Scientist
ATTN: Room 3E374
103 Army Pentagon
Washington, DC 20310-0103

ARNG Readiness Center
ATTN: NGB-AVN-OP
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

35th Fighter Wing
35th FW/SG
PSC 1013
APO AE 09725-2055

66th Rescue Squadron
66th RQS/SG
4345 Tyndall Avenue
Nellis Air Force Base, NV 89191-6076
The Honorable Gilbert F. Decker
Assistant Secretary of the Army
for Research, Development,
and Acquisition
ATTN: Room 2E672
103 Army Pentagon
Washington, DC 20310-0103

Dr. Craig Dorman
Office of the Deputy Director,
Defense Research and Engineering
ATTN: Room 3D129LM
103 Army Pentagon
Washington, DC 20310-0103

HQ, AFOMA
ATTN: SGPA (Aerospace Medicine)
Bolling Air Force Base,
Washington, DC 20332-6188

Cdr, PERSCOM
ATTN: TAPC-PLA
200 Stovall Street, Rm 3N25
Alexandria, VA 22332-0413