**REPORT DOCUMENTATION PAGE**

**1. AGENCY USE ONLY (Leave Blank)**

**2. REPORT DATE**
1993

**3. REPORT TYPE AND DATES COVERED**
THESIS/DISSERTATION

**4. TITLE AND SUBTITLE**
Digital Tracking and Control of Astral Images

**5. FUNDING NUMBERS**

**6. AUTHOR(S)**
Steven F. Barrett

**7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
AFIT Student Attending: Univ of Texas

**8. PERFORMING ORGANIZATION REPORT NUMBER**
AFIT/CI/CIA-93-282

**9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
DEPARTMENT OF THE AIR FORCE
AFIT/CI
2950 P STREET
WRIGHT-PATTERSON AFB OH 45433-7765

**10. SPONSORING/MONITORING AGENCY REPORT NUMBER**

**11. SUPPLEMENTARY NOTES**

**12a. DISTRIBUTION/AVAILABILITY STATEMENT**
Approved for Public Release IAW 190-1
Distribution Unlimited
MICHAEL M. BRICKER, SMSgt, USAF
Chief Administration

**12b. DISTRIBUTION CODE**

**13. ABSTRACT (Maximum 200 words)**

**14. SUBJECT TERMS**

**15. NUMBER OF PAGES**
279

**16. PRICE CODE**

**17. SECURITY CLASSIFICATION OF REPORT**

**18. SECURITY CLASSIFICATION OF THIS PAGE**

**19. SECURITY CLASSIFICATION OF ABSTRACT**

**20. LIMITATION OF ABSTRACT**

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prepared by AFIT/SC 2-94-10
Laser induced retinal lesions are used to treat a variety of eye diseases such as diabetic retinopathy and retinal tears or breaks. Both the location and size of the retinal lesions are critical for effective treatment and minimal complications. Currently, once an irradiation is begun, no attempt is made to alter the laser beam location on the retina. However, adjustments are desirable to correct for patient eye movements. Lesions form in much less than one second and typical treatment for a disease such as diabetic retinopathy requires as many as 2000 lesions per eye. This type of tedious task is ideally suited for computer implementation.

A system has been developed to track a specific lesion coordinate on the retinal surface and provide corrective signals to maintain laser position on the coordinate. Six distinct retinal landmarks are tracked on a high contrast retinal image using two-dimensional blood vessel templates. Use of therapeutic lesions as tracking algorithm landmarks is also investigated. An X and Y laser correction signal is derived from the landmark tracking information and provided to a pair of galvanometer steered mirrors to maintain the laser on a prescribed location. Once the laser position has been corrected, a function checks the terminal laser position for minor corrections.

A development speed tracking algorithm has been implemented and tested using both vessel and lesion templates. Closed loop feedback control of laser position is demonstrated with calibrated retinal velocities and in vivo testing of the development system.

Trade off analysis of parameters affecting tracking system performance is provided. The analysis is used to specify requirements and implementation details for a real time system.
Bibliography

[1] Rylander, H. Grady, M.D. and Professor of Electrical Engineering, The University of Texas at Austin, Austin, TX, technical conversation.


[38] “ISG Series Cameras for High Performance Electronic Imaging”, Xybion Electronic Systems, San Diego, CA.


[74] “A-102 and AX200 Driver Amplifiers Operating Manual”, General Scanning, 500 Arsenal Street, P.O. Box 307, Watertown, MA 02272.

[75] “Series G Optical Scanners”, General Scanning, 500 Arsenal Street, P.O. Box 307, Watertown, MA 02272.

[76] “XY Scan Head Series: X-Y Scan Head”, General Scanning, 500 Arsenal Street, P.O. Box 307, Watertown, MA 02272.


[90] "Comparative Properties of Reflective Materials and Coatings", Labsphere, Incorporated, North Sutton, NH.


[97] “Innova 100 Series Ion Lasers”, Coherent Laser Products Division, 3210 Porter Drive, P.O. Box 10321, Palo Alto, CA 1986.

[98] James L. Letchworth, Animal Resources Manager, Animal Resources Center, The University of Texas at Austin, Austin, TX, technical conversation.


[101] “G100 and G300 Series Galvanometer Optical Scanners”, General Scanning Incorporated, 500 Arsenal St., P.O. Box 307, Watertown, MA.


[108] "EG&G Optoelectronics Short Form Catalog Emitters and Detectors", EG&G Solid State Products Group, 35 Congress St., P.O. Box 5006, Salem, MA.


[115] Lewis, P., "Pentium may be a revolution - or not", *Austin American Statesman*, April 5, 1993.

