CONTRACT NO: DAMD17-86-C-6194

TITLE: MURAMYL PEPTIDE-ENHANCED SLEEP: PHARMACOLOGICAL OPTIMIZATION OF PERFORMANCE

PRINCIPAL INVESTIGATOR: James M. Krueger

CONTRACTING ORGANIZATION: University of Tennessee, Memphis Health Science Center
894 Union Avenue
Memphis, Tennessee 38163

REPORT DATE: June 1, 1991

TYPE OF REPORT: Annual Report

PREPARED FOR: U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;
distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
It is now recognized that sleep results from neuronal activity which is regulated by the interactions of neurons with substances produced by neurons and other cellular components of the brain. Over the past 30 years, our technical abilities to identify and synthesize biochemicals has greatly improved; these advances have led to the identification of several endogenous sleep factors (SFs) (substances that promote sleep). Over the past five years of this contract, we have identified several new SFs and synthesized analogs that may be developed into new, more effective, and safer somnogenic agents. The broad goal of this USAMRDC-supported work has been to develop the information needed to determine if it is reasonable to propose either endogenous SFs or synthetic analogs as potential sleep-inducing agents for military use. To meet this goal, we previously reported our progress.
on 21 sets of experiments; this year, an additional 5 sets of experiments were performed. Briefly we found: 1) That several synthetic fragments of tumor necrosis factor α that contain the TNF31-36 sequence are somnogenic. A patent application has been filed on this discovery; 2) We also showed for the first time that the cell walls of archaebacteria (pseudomurein) have biological activity in mammals; 3) We found that prostaglandin D2 or E2 failed to greatly affect rabbit sleep suggesting that sleep altering abilities of these substances are species specific; 4) We showed that cholecystokinin elicits sleep in rabbits; this hormone is probably responsible for the feelings of sleepiness after a meal; 5) Finally, we began a series of studies examining on a cellular level, how various SFs alter the expression of surface antigens on brain cells. Our results are discussed within the context of a theory on sleep regulation.

This report is the fifth and last annual report under our current USAMRDC contract. The progress we have made over the past five years under the auspices of this contract will probably revolutionize the way we think about sleep. The details of this progress will be provided in the final report, but a brief list of our major findings is provided here:

1) We showed for the first time that sleep is, indeed, altered over the course of infectious disease.
2) We determined for bacteria what microbial components (and their chemical structural requirements) drive sleep responses (muramyl peptides and endotoxin).
3) We have learned much about which endogenous products induced by the microbial agents are responsible for sleep responses.
4) We have begun to describe on a cellular level how these endogenous SFs affect brain cells.
5) We have developed several completely new somnogenic agents based on the chemical structures of endogenous SFs; two patents have been applied for.
6) Finally, we have developed a theory of brain organization in regard to sleep regulation and theorized how various SFs interact with each other forming regulatory feedback loops that regulate sleep.

Some of this progress has been theoretical, but much has also been very practical. From the view point of pharmacological enhancement of performance, it seems likely to us that the new synthetic somnogenic agents we discovered can be developed into usable sleep-inducing agents.
FOREWORD

In conducting the research described in this report, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council [DHEW Publication No. (NIH) 78-23, Revised 1978].

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.
TABLE OF CONTENTS

- Summary .. ii
- Foreword .. iv
- Introduction 1
- Methods .. 4
- Specific Experimental Protocols 7
- Results ... 17
 - Experiment No. 1 17
 - Experiment No. 2 20
 - Experiment No. 3 22
 - Experiment No. 4 23
 - Experiment No. 5 25
- Discussion 28
- References 51
- Tables ... 76
- Figures .. 87
- Distribution List 103
LIST OF TABLES

Table 1 Effects of TNFα, TNFβ, TNFβ fragments and FMLP peptides on rabbit sleep-wake activity and brain temperatures 76
Table 2 Effects of IV injection of pseudomurein or microspheres on rabbit SWS, REMS, EEG delta voltage and Tco 78
Table 3 Effects of PGE2 on rabbit sleep 79
Table 4 Effects of PGD2 on rabbit sleep 80
Table 5 Effects of CCK injection on maximal EEG delta-wave amplitude during NREMS 81
Table 6 Summary of effects of substances tested on HLAα expression 82
Table 7 List of putative sleep factors 85
Table 8 Criteria for NREMS factors with regard to physiological sleep 86
Table 9 Criteria for sleep factors 86
LIST OF FIGURES

Fig. 1: Effects of IV injection of pseudomurein on rabbit SWS, REMS, EEG-delta wave voltage and brain temperature 87

Fig. 2: Effects of ICV injection of PGE\(_2\) on brain temperature of rabbits 88

Fig. 3: Effects of ICV injection of PGE\(_2\) on NREMS and REMS 89

Fig. 4: Effects of ICV injection of PGD\(_2\) on NREMS and REMS 90

Fig. 5: Effects of IP injections of CCK on sleep-wake activity and brain temperature 91

Fig. 6: Effects of ICV injection of CCK on sleep-wake activity and brain temperature 92

Fig. 7: Growth curves of glioblastoma cell lines HTB14, HTB16, and HTB17 93

Fig. 8: IFN\(\gamma\)-induced HLA\(_{DR}\) expression 94

Fig. 9: Time course of IFN\(\gamma\)-induced HLA\(_{DR}\) expression 95

Fig. 10: TNF\(\alpha\) amplifies IFN\(\gamma\)-induced HLA\(_{DR}\) expression 96

Fig. 11: Time course of TNF\(\alpha\) effects on IFN\(\gamma\)-induced HLA\(_{DR}\) expression 97

Fig. 12: TGF\(\beta\)1 inhibition of IFN\(\gamma\)-induced HLA\(_{DR}\) expression 98

Fig. 13: TGF\(\beta\)2 inhibition of IFN\(\gamma\)-induced HLA\(_{DR}\) expression 99

Fig. 14: I\(\beta\) inhibition of IFN\(\gamma\)-induced HLA\(_{DR}\) expression 100

Fig. 15: Activational system for sleep 101

Fig. 16: Interaction of sleep factors with neuronal sets 102
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aCSF</td>
<td>artificial cerebrospinal fluid</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CCK</td>
<td>cholecystokinin</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CSE</td>
<td>control standard endotoxin</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DSIP</td>
<td>delta-sleep inducing peptide</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalographic</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunosorbant assay</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary acidic protein</td>
</tr>
<tr>
<td>GH</td>
<td>growth hormone</td>
</tr>
<tr>
<td>GRF</td>
<td>growth hormone releasing hormones</td>
</tr>
<tr>
<td>GSSG</td>
<td>oxidized glutathione</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>ICAM</td>
<td>intercellular adhesion molecule</td>
</tr>
<tr>
<td>ICV</td>
<td>intracerebroventricular</td>
</tr>
<tr>
<td>IL1</td>
<td>interleukin-1</td>
</tr>
<tr>
<td>IP</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>LAL</td>
<td>limulus amoebocyte lysate</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>MDP</td>
<td>muramyl dipeptide</td>
</tr>
<tr>
<td>MEM</td>
<td>minimal essential medium</td>
</tr>
<tr>
<td>MHCII</td>
<td>major histocompatibility complex class II</td>
</tr>
<tr>
<td>NREMS</td>
<td>non-rapid-eye-movement sleep</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PFS</td>
<td>pyrogen-free saline</td>
</tr>
<tr>
<td>PG</td>
<td>prostaglandin</td>
</tr>
<tr>
<td>PGD₂</td>
<td>prostaglandin D₂</td>
</tr>
<tr>
<td>PRL</td>
<td>prolactin</td>
</tr>
<tr>
<td>REMS</td>
<td>rapid-eye-movement sleep</td>
</tr>
<tr>
<td>rhIFNγ</td>
<td>recombinant human interferon γ</td>
</tr>
<tr>
<td>RIA</td>
<td>radioimmunoassay</td>
</tr>
<tr>
<td>5-HT</td>
<td>serotonin</td>
</tr>
<tr>
<td>SF</td>
<td>sleep factor</td>
</tr>
<tr>
<td>SRIF</td>
<td>somatostatin</td>
</tr>
<tr>
<td>SWS</td>
<td>slow-wave sleep</td>
</tr>
<tr>
<td>Tbr</td>
<td>brain temperature</td>
</tr>
<tr>
<td>Tco</td>
<td>colonic temperature</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>VIP</td>
<td>vasoactive intestinal peptide</td>
</tr>
<tr>
<td>W</td>
<td>wakefulness</td>
</tr>
</tbody>
</table>
INTRODUCTION

The causes of sleep have been intensely debated for the past two or more millennia. Hippocrates concluded that sleep results from the retreat of blood and warmth into the body's inner regions. Aristotle proposed an alternative hypothesis that captured the minds of Europeans for nearly 2,000 years. He proposed that vapors arising from food digesting in the stomach were transported throughout the body via the humors, thereby inducing sleep. Aristotle's idea provides the fundamental concept of sleep factors (SFs); that a change in the amount of some substances(s), in response to a physiological process, acts to promote sleep. Of course the specifics of what is changed, what induces the change, where it happens, etc. have changed over the years and still remain in debate.

Our modern views of the causes of sleep began early in the twentieth century. Legendre and Pieron (114) experimentally addressed the hypothesis that the brain produces, during wakefulness (W), substances that induce sleep. To investigate this hypothesis, cerebrospinal fluid from sleep-deprived dogs was transferred into normal dogs. The recipient animals were then observed to sleep longer than usual. They concluded that a "hypnotoxin" (SF, sleep-inducing substance) was present in the cerebrospinal fluid. Although the chemical nature of the hypnotoxin described by Legendre and Pieron was not determined. These experiments, as well as similar experiments published by Ishimori in Japanese (1909) about the same time, established the fundamental observations to which others in the latter half of this century were to return.
By the 1920s, a new line of inquiry began to dominate the field concerned with sleep regulation. These new hypotheses emphasized the dominant role that neurons and their dynamic patterns of electrical impulses play in sleep regulation. About sixty years ago, these neurophysiological theories of sleep regulation received a major boost when von Economo (183) correlated lesions produced by a viral infection in the hypothalamus to sleep disturbances; when the lesions were in the anterior hypothalamus, patients were insomniacs. Von Economo used these data to postulate that the anterior hypothalamus is involved in sleep regulation and that sleep results from active neural processes within the brain rather than from the simple withdrawal of neural stimulation (a massive amount of subsequent data support both of these hypotheses). Ironically, although an infectious disease (von Economo's virus) played an important role in the support of neural theories of sleep, the connections between the sleepiness that is symptomatic of nearly all infectious diseases and the hypnotoxin theories of sleep were not made for another 60 years. Throughout this time, the neurophysiological theories of sleep regulation rapidly evolved in sophistication and detail in parallel with the explosive growth in knowledge and techniques available in electrophysiology.

More recently, there also has been an impressive growth in our technical ability to isolate and detect biochemicals. These advances have led to the recognition that neurons and glial cells produce, transport, package, release, and respond to a large numbers of biochemicals. Some of these substances change the patterns of electrical activity of neurons and also induce sleep. As a consequence, today these previous, seemingly dichotomous theories of sleep regulation, the hypnotoxin and
neural theories, are now viewed as complementary to each other. Furthermore, these advances in biochemical techniques have led to the intense pursuit of SFs over the past twenty years and resulted in the identification of several SFs. These results suggested to us that new, safer and effective somnogenic agents can be developed. Thus, the major objective of our USAMRDC-supported work has been to develop information needed to determine if it is reasonable to propose either endogenous SFs or synthetic analogs as potential sleep-inducing agents. As part of this goal, we have initiated the process to obtain patents on two different classes of somnogenic compounds.

With the above objective in mind, in the first year of our contract period (June 1, 1986 - May 30, 1987), five sets of experiments were performed; in the second year (June 1, 1987 - May 30, 1988) six sets of experiments were carried out; in the third year (June 1, 1988 - May 30, 1989) five sets of experiments were performed and in the fourth year (June 1, 1989 - May 30, 1990) five sets of experiments were reported. Results from those experiments are described in our annual reports dated June 1, 1987; June 1, 1988; June 1, 1989 and June 1, 1990. This year, June 1, 1990 - May 30, 1991 five sets of experiments were performed; they are numbered one through five as follows:

1) In the first experiment, we show that several synthetic fragments of tumor necrosis factor (TNF)α that contains the TNF_{31-36} sequence are somnogenic. (A patent application for this discovery has been filed).

2) Second, we showed that the cell walls (pseudomurein) of an archaeabacteria (Methanobacterium thermoautotrophican) has biological activity (sleep promoting) in mammals.
3) Third, we showed that neither prostaglandin (PG)E₂ or PGD₂ were somnogenic in rabbits thus suggesting that the somnogenic actions of these agents are species specific.

4) Fourth, we showed that cholecystokinin (CCK) elicits sleep in rabbits. This hormone is released after food intake thus suggesting that it may be responsible for the feelings of sleepiness after eating.

5) Finally, we described how the expression on astrocytes of major histocompatibility class II antigen is altered by a variety of somnogenic agents.

METHODS

Animals. Male New Zealand White Pasteurella-free rabbits (3-4 kg) were provided with a lateral cerebral ventricular guide cannula, a brain thermistor and stainless steel screw electroencephalographic (EEG) electrodes as previously described (102, 139, 145). A calibrated thermistor, (50 k Ω, model 4018, Omega Engineering, Stanford, CT) was implanted through a burr hole in the skull over the parietal cortex to measure brain temperature (T_{br}). EEG electrodes were placed over the frontal and parietal cortices. The leads from the EEG electrodes and the thermistor were led to an Amphenol plug; the wires, electrodes, and guide tube were held in place with dental acrylic (Duz-All, Coralite Dental Products, Skokie, IL). Animals were allowed to recover from the surgery two or more weeks.

The rabbits were kept on a 12:12 hr light:dark cycle (light on at 0600 hr) at 21°C ± 1°C. Rabbits were placed in the recording chambers
(Hotpack 352600, Philadelphia, PA) for at least two 24 h habituation sessions before recordings were taken from animals for the first time. When recordings were taken from animals, they were placed in the experimental chambers the preceding evening. The light:dark schedule and ambient temperatures of the recording chambers were kept the same as that of the housing facility. Food and water were available ad libitum.

Recordings and sleep analyses. A flexible tether connected an electronic swivel to the Amphenol connector on the rabbit head, this apparatus was suspended by a shock-absorbing system; this allowed the animals to have relatively complete freedom of movement within the experimental cages. To detect body movements, ultrasonic motion detectors were used. Cables from the motion detectors and the electronic swivel were connected to Grass 7D polygraphs in an adjacent room. EEG, T_{br}, and movement were recorded on the polygraphy paper. In addition, the EEG signal was led through two band pass filters, (0.5-3.5 Hz δ and 4.0-7.5 Hz θ) the signals were rectified and the ratio of θ/δ activity was continuously computed and recorded on the polygraph paper simultaneously with the EEG, T_{br} and body movements. This θ/δ ratio served as an aid in identifying periods of rapid-eye movement sleep (REMS) (139). T_{br}s were also recorded using a data logger (Acrosystem 400, Beverly, MA); values taken every 10 min were stored on computer disks.

Vigilance states were identified as previously described (139). Non REMS (NREMS) (also called slow wave sleep [SWS] in this report) was associated with decreasing T_{br}s, low EEG θ/δ ratio and a high amplitude EEG. In contrast, REMS was characterized by a rapid rise in T_{br} upon entry into REMS, high θ/δ ratios and a relative low-amplitude EEG. Polygraph records were visually scored in 12 sec epochs (102). The
duration of a particular sleep or wake episode was measured by entering episode lengths (distances on the recording paper) into a computer with a calibrated digitizer board (Jandel Scientific). The percentages (duration) of NREMS and REMS were calculated for 1 and 6 hr periods. Differences between results obtained on experimental days and control days were evaluated by use of the Wilcoxon matched-pair signed rank test. The Kruskal-Wallis one way analysis by ranks were used to determine dose dependency effects.

Test substances were dissolved in small volumes of dimethyl sulfoxide (DMSO) or ethanol; aliquots of those preparations were diluted with artificial cerebrospinal fluid (aCSF) (2 mM KCl, 1.15 mM CaCl₂ and 0.9 mM MgCl₂ in pyrogen free saline, 115 mM NaCl, Abbott, Chicago, IL) such that the doses used were in 25 μl. For control experiments and equal amounts of aCSF containing DMSO or ethanol was used as injectant. These recordings were obtained from the same animal thus a matched-pairs design was used. Most substances were injected into a lateral cerebral ventricle (intracerebroventricular, ICV). Injection volume was 25 μl; each injection took about 2 min. In the case of CCK, it was also injected IP. Finally, suspensions of pseudomurein were injected IV before recordings began. Rabbits were injected between 0845 and 0915 hr. After injections, animals were returned to the experimental cages and were recorded from for the next 6 hr.
Specific Experimental Protocols

Experiment No. 1: Somnogenic activity of TNF fragments.

Compounds tested. Human recombinant TNFα (hu r TNFα) and hu r TNFβ were obtained from R & D Systems, Inc., Minneapolis, MN. TNFα peptides 10-69 and 140-157 were gifts from Dr. Louis Chedid (University of South Florida). TNFα peptides 10-36, 31-45, 46-65, 31-68, 44-68, 31-45, 45-65, 69-100, and 101-135 were synthesized by Dr. Jerome Seyer. FMLP was purchased from Sigma Chemical Co., (St. Louis, MO). Peptides were dissolved in small volumes of DMSO before being diluted with aCSF for ICV injection.

Experiment No. 2: Somnogenic activity of pseudomurein.

Materials. Lyophilized Methanobacterium thermoautotrophicum was a gift from O. Kandler and W. König. Pseudomurein was isolated as described before for staphylococcal cell walls (77, 111). Briefly, whole cells were disintegrated by shaking the cell suspension with glass beads in a cell mill. Membranes and proteins were removed by successive treatment of the cell walls with EDTA, Triton X-100, and trypsin. Possible other contaminants were removed by treatment with trichloroacetic acid. After extensive washing the cell walls were lyophilized.

In preparation for IV injection into rabbits, the lyophilized pseudomurein was suspended in appropriate volumes of pyrogen free saline (PFS) (0.9% NaCl, Abbott, North Chicago, IL, USA) to provide the desired concentrations (Table). One ml of sample or vehicle alone was injected into a marginal ear vein. In some cases it was suspended in PFS containing 1 mg/ml Polymyxin B sulfate (Sigma, St. Louis, MO, USA) and pre-
incubated for one hour at 37°C prior to the injection to inactivate possible endotoxin contamination.

In a separate control experiment polybead polystyrene microspheres (0.98 μm diameter, 2.5% solids = 5x10^{10} spheres/ml, Polysciences, Wassingnton, PA, USA) were diluted to 5x10^{9}/ml in PFS before IV injection.

Amino acid analysis of the pseudomurein sample was performed by Dr. Jerome M. Seyer (Veterans Administration Medical Center, Memphis, TN) to verify the purity of the sample. Conforming with the known structure of pseudomurein (95), only three amino acid were detected: alanine (2.08 nmol/μg pseudomurein), glutamic acid (1.84 nmol/μg), and lysine (1.79 nmol/μg). No other amino acids were found at a sensitivity that would have detected < 50 pmol/μg. Amino sugars could not be identified under the conditions used.

The Limulus Amoebocyte Lysate assay (LAL, sensitivity 0.25 EU/ml) and Control Standard Endotoxin (CSE, E. coli 0113, Associates of Cape Cod, Woods Hole, MA) were used to test samples for endotoxin contamination and to determine the amount of Polymyxin B sulfate necessary to neutralize the minimal LAL reactivity detected in the pseudomurein samples.

A within subject experimental design was used: experimental and control recordings were obtained from the same rabbits on different days. Controls for pseudomurein or microsphere samples were injected with PFS, controls for pseudomurein plus polymyxin samples received a solution of 1 mg/ml polymyxin B in PFS which was pre-incubated at 37°C for 1 h prior to injection. Average hourly values were used to evaluate
effects across the six hour recording period by means of the the Wilcoxon matched-pairs signed-ranks test.

Experiment No. 3: Back of somnogenic activity of PGE$_2$ and PGD$_2$.

Compounds tested. PGD$_2$ was obtained from Sigma Chemical Co. (St. Louis, MO) and from Cayman Chemical Co. (Ann Arbor, MI). Two different lots of PGD$_2$ were obtained from Cayman Co. Results obtained using these two lots and those obtained using the Sigma preparation did not differ from each other and thus were pooled when appropriate. The ability of the PGD$_2$ used to bind with antibodies used in radioimmunoassays (RIA) was determined using either the RIA method described by Leffler (Department of Physiology, University of Tennessee, Memphis) or using a commercially available RIA PGD$_2$ kit obtained from Advanced Magnetics, Inc. (Cambridge, MA). In both cases, the antibodies bound the PGD$_2$ preparation providing indirect evidence that the chemical form of the PGD$_2$s tested were indeed PGD$_2$. PGE$_2$ was obtained from Sigma Chemical Co.

Experimental Protocols. PGE$_2$ or PGD$_2$ were dissolved in small volumes of ethanol (10 mg/0.1 ml ethanol). Small aliquotes of these stock solutions were added to pyrogen free saline (PFS) (0.01-70.5 ml/1.0 ml PFS) in preparation for injection into animals. Twenty five µl of these solutions were injected ICV over a 1 min period beginning at 0830 hr under sterile conditions. For control studies, vehicle containing equal amounts of ethanol were used as injectants on different days. The small amount of ethanol used in this study did not affect sleep compared to using PFS alone (data not shown). After ICV injections, animals were connected to the electronic swivels then recorded from for the
next six hours. Estimated range of time between the end of injection and the beginning of recording was 5-15 min. In one case, when 0.25 nmol of PGD$_2$ was used, 75 µl of solution was infused slowly over a 45 min period into a lateral ventricle; this slower method of administration was used to replicate the methods used in a previous preliminary study (100). The percentages (duration) of NREMS and REMS were calculated for 12 min periods during the first postinjection hour and for 1 and 6 hr periods. Differences between results obtained on experimental days and control days were evaluated across the 6-h recording periods by the Friedman's nonparametric two-way analysis of variance and within discrete time blocks by use of the Wilcoxon matched-pairs signed-ranks test. The Kruskal-Wallis one way analysis of variance by ranks was used to determine dose related effects. All analyses were performed by the SPSS* international analysis system and an alpha level of p ≤ 0.05 was accepted as indicating significant departure from control.

Experiment No. 4: Somnogenic effects of CCK in rabbits.

On the experimental days, the rabbits were injected intraperitoneal (ip) or ICV with saline (control) or CCK-octapeptide sulphate ester (Bachem Inc., Torrance, CA) dissolved in isotonic saline. The injections were done between 0845 and 0915 h. The volume of the ip injection was 2 ml/kg. Each ICV injection (25 µl/rabbit) lasted for 1 min and an additional min was allowed before removing the injection cannula. After the treatments the sleep-wake activity and Tbr were recorded for 6 h. Three doses were tested ICV: 0.05 µg/rabbit, 0.5 µg/rabbit, 2 µg/rabbit, three different doses were injected IP: 2.5 µg/kg, 10 µg/kg, 40 µg/kg. The experimental protocol followed a self-control design,
, i.e., each rabbit received saline treatment (control day) and 1-3 treatments of the various CCK doses. The differences between the effects of CCK and the saline injection were calculated. The experiments were separated by at least 2 days.

The durations of vigilance states were calculated hourly, and were expressed as average percent of time (± SE). These hourly values after CCK and saline injections were compared across 6 h by two-way ANOVA followed by an hour-by-hour comparison by paired Student's t-test. The maximal delta amplitudes during NREMS were compared after CCK and saline treatment in the first postinjection h by paired Student's t-test. The temperature data were averaged in 10 min intervals (± SE). Comparisons were made between the effects of saline and CCK injections for the first 3 postinjection h by two-way ANOVA. A p value < 0.05 was taken to indicate significant difference.

Experiment No. 5: Modulation of human leukocyte antigen DR expression in glioblastoma cells by putative sleep factors.

Reagents. Recombinant human IFNγ (rhIFNγ) was purchased from Boehringer Mannheim Biochemicals (Indianapolis, IN) with activity > 2 x 10^7 units (U)/mg in an EMC virus/WISH cell assay. Human IFNα was purchased from Chemicon (Temecula, CA) with activity of 10^6 U/mg. The following cytokines and antibodies were purchased from R&D Systems (Minneapolis, MN) and their activities were determined by R&D Systems as indicated; a) recombinant human TNFα (rhTNFα), activity > = 2 x 10^6 U/mg measured by its cytolytic effect on L929 cells; b) recombinant human IL-1β (rhIL-1β), activity > = 5 x 10^8 U/mg in a Lymphocyte Activation Factor assay; c) porcine transforming growth factor (TGF)β1 and β2, ED50
for the inhibition of 3H-thymidine incorporation in mink lung epithelial cells was 0.05 ng/ml; d) the neutralizing doses 50 (ND50) of antibodies against porcine (TGFβ) raised in chicken were 2-3 mg/ml for blocking the effect of TGFβ1 at a dose of 0.5 ng/ml; ND50 of antibodies against TGFβ2 raised in rabbit was 1-2 mg/ml for blocking the effect of TGFβ2 at a dose of 0.25 ng/ml; the ND50 of antibodies against rhTNFα was 0.2 mg/ml for blocking the effect of rhTNFα at a dose of 0.25 ng/ml. Serotonin (5-HT), PGE2, PGD2, and hydrocortisone were purchased from Sigma Chemical Co. (St. Louis, MO). Vasoactive intestinal peptide (VIP) was obtained from Bachem, Inc. (Torrance, CA). Delta sleep-inducing peptide (DSIP) was purchased from Peninsula Laboratories, Inc. (Belmont, CA). Muramyl dipeptide (MDP) was a gift from Dr. L. Chedid.

Cell Culture

Cell growth. Three human glioblastoma cell lines, HTB14, HTB16 and HTB17, and a human neuroblastoma cell line HTB11 were purchased from American Type Culture Collection (Rockville, MD). Cells were grown in 100 x 15 mm tissue culture dishes in modified Eagle's minimum essential medium (MEM) (Flow Laboratories, Inc., McLean, VA) supplemented with 5% fetal bovine serum (FBS) (Biocell, Carson, CA), and 100 IU/ml penicillin G and 100 mg/ml streptomycin (Sigma Chemical Co.) at 37°C in an atmosphere with 5% CO2 in air. Cells in confluent culture were incubated with 0.25% trypsin solution for 1-2 min, resuspended in fresh culture medium, and about 2.5 x 10^3 cells/well were transferred to 96-well plates. Cell number in each of 6 wells was counted every day for up to 11 days, and cells in parallel wells were digested with 30 ml of 0.6N.
NaOH overnight and then the protein amount in each well was determined using BCA protein assay kit (Pierce, Rockford, IL).

Immunofluorescence staining for glial fibrillary acidic protein (GFAP) and neurofilament.

Glioblastoma cells were stained for GFAP, a unique intracellular interfilament for astrocytes. Confluent cell cultures in 100 x 15 mm dish were trypsinized and 4 x 10^4 cells were transferred to 12-well plates with a round glass coverslip in each well, and incubated at 37°C, with 5% CO2 in air for 2 days. As previously described (122), cells were rinsed twice with medium and fixed with 3.8% formaldehyde at room temperature for 5 min following 6 brief (about 1/2 sec.) immersions in acetone at -20°C. Then cells were incubated 4 hours at room temperature with 500 µl of polyclonal rabbit anti-human GFAP (Sigma Chemical Co.) diluted 1:200 in culture medium as the primary antibody. After washing 5 times with PBS containing 0.1% bovine serum albumin (BSA), cells were incubated in the dark for one hour with goat anti-rabbit IgG-conjugated to fluorescien isothiocyanate (FITC) (HyClone Laboratories, Inc., Logan, UT) diluted 1:100 in 1% BSA-PBS as the secondary antibody. Finally, coverslips were mounted on slides with 1:1 PBS:glycerol before microscopic examination. The procedures for staining neurofilament was the same as to that for GFAP except that the primary antibody was monoclonal mouse anti-human neurofilament (Dakopatts, Carpinteria, CA) and the secondary antibody was goat anti-mouse IgG-conjugated to FITC (Sigma Chemical Co.).
Experimental Design

Experiment A: Expression and induction of HLA\(\Delta R\) by rhIFN\(\gamma\) on glioblastoma and neuroblastoma cells

HLA\(\Delta R\) expression and the effects of rhIFN\(\gamma\) on HLA\(\Delta R\) expression were determined in all three glioblastoma cell lines HTB14, HTB16 and HTB17, and the neuroblastoma cell line HTB11. To obtain confluent cultures within 1-2 days, cell suspensions containing 2-3 x 10\(^4\) cells were added into 96-well culture plates. At the beginning of an experiment, the original medium was aspirated off, and either 200 \(\mu\)l of fresh medium or media containing various concentrations of rhIFN\(\gamma\) (10\(^{-1}\), 1, 10, 10\(^2\), 10\(^3\), 5 x 10\(^3\), and 10\(^4\) U/ml) were added to individual wells. Each treatment for each dose of rhIFN\(\gamma\) was performed in 6 replicate wells. Culture plates were incubated at 37\(^\circ\)C with 5% CO\(_2\) for 4 days. HLA\(\Delta R\) expression on the cell surface was determined using an enzyme linked immunosorbent assay (ELISA) method on the whole cells as described below. To determine the effects of IFN\(\gamma\) on HLA\(\Delta R\) expression over time, HTB16 cells were treated with 1000 U/\(\mu\)l of rhIFN\(\gamma\). The culture media with rhIFN\(\gamma\) was removed on the fifth day and replaced with 200 \(\mu\)l of fresh culture medium. HLA\(\Delta R\) expression was assessed every day in triplicate samples from day 0 to day 9.

Experiment B: Effects of cytokines TNF\(\alpha\), TGF\(\beta\)1 and \(\beta\)2, IL-1\(\beta\) on HLA\(\Delta R\) expression in HTB16 cells.

Cell culture preparation was the same as that for experiment A; each treatment was performed in 6 wells.
I. rhTNFα

HTB16 cells were treated with 0.1, 1, 10, 50, and 250 ng/ml of rhTNFα diluted in fresh medium or in the media containing a fixed dose of rhIFNγ (100 U/ml or 500 U/ml) for 4 days to determine effects of TNFα doses on IFNγ-induced HLA-DR expression. To determine the effects of TNFα on IFNγ-induced HLA-DR over time, cells were incubated with 10 ng/ml of rhTNFα combined with 100 U/ml of rhIFNγ for 8 days; HLA-DR expression was quantitated every day. Cells were also treated with neutralizing antibody against rhTNFα at concentrations of 10, 20, and 40 μg/ml in combination with 10 ng/ml of rhTNFα and 100 U/ml of rhIFNγ for 4 days in order to verify that the effects of TNFα were specific.

II. TGFβ1 and β2

HTB16 cells were treated with 0.01, 0.1, 1, and 10 ng/ml of TGFβ1 and β2 diluted in fresh medium and in the media containing 100, 500, and 1000 U/ml of rhIFNγ respectively for 6 days to determine the effects of TGFβ1 and β2 doses on IFNγ-induced HLA-DR expression. The effects of TGFβ1 and β2 on IFNγ-induced HLA-DR over time were carried out over 8 days; cells were incubated with 10 ng/ml of either TGFβ1 or β2 in combination with 100 U/ml of rhIFNγ and HLA-DR expression was quantitated every day. To block the inhibitory effect of exogenous TGFβ1, cells were treated with neutralizing antibody against TGFβ at concentrations of 1, 5, 10, and 25 μg/ml in combination with 10 ng/ml of TGFβ1 and 100 U/ml of rhIFNγ for 6 days. A similar experiment was carried out for TGFβ2 using the same doses of neutralizing antibody against TGFβ2 but combined with three different treatments of TGFβ2 and rhIFNγ: a) 1
ng/ml of TGFβ2 plus 100 U/ml of rhIFN; b) 1 ng/ml of TGFβ2 plus 500 U/ml of rhIFNγ; and c) 10 ng/ml of TGFβ2 plus 500 U/ml of rhIFNγ.

III. IL-1β

To examine the effects of interleukin-1β (IL-1β) on HLADR expression and on IFNγ-induced HLADR expression, HTB16 cells were treated with rhIL-1β using concentrations of 0.5, 2, 10, 50, and 250 pg/ml in the absence or presence of 500 U/ml of rhIFNγ for 4 days before HLADR expression was assessed.

Experiment C: Effects of PGE2, PGD2, IFNα, VIP, DSIP, 5-HT, hydrocortisone, and MDP, on HLADR expression in HTB16 cells.

HTB16 cells were treated with the following: PGE2, PGD2, IFNα, VIP, DSIP, 5-HT, and hydrocortisone. All agents were incubated with cells in the absence or presence of 500 U/ml of IFNγ for 4 days before HLADR expression was assessed. The doses for these substances used were PGE2 and PGD2, 10^{-9}, 10^{-8}, 10^{-7}, 10^{-6}, and 10^{-5} M; IFNα, 1, 10, 10^2, and 10^3 U/ml; VIP, DSIP, and 5-HT, 10^{-8}, 10^{-7}, 10^{-6}, and 10^{-5} M; and hydrocortisone, 10^{-5}, 10^{-4}, and 10^{-3} M. MDP was tested using doses of 0.02, 0.2, 2, and 20 mM in the absence and presence of 500 U/ml of IFNγ; incubations were 7 days. Each treatment was performed in 6 independent wells.

Quantitative analysis of cell surface HLADR expression using ELISA

After the experimental treatments described above, media were aspirated off and cells were fixed with 100 μl of 3.8% formaldehyde at room temperature for 5-7 min. After rinsing with culture medium twice,
100 μl of monoclonal mouse antihuman HLA-DR antibody (Dakopatts) diluted 1:200 in culture medium was applied into designated wells and the plate was incubated at 4°C overnight. The plate was then washed gently with 300 μl of 0.1% BSA-PBS three times. The next incubation with 200 μl of secondary antibody, goat anti-mouse IgG-conjugated to horseradish peroxidase (Pierce) diluted 1:4000 in 1% BSA-PBS, was carried out at room temperature for 2 hours. Following three washes with 0.1% BSA-PBS, 100 μl of peroxidase substrate solution containing 2,2'-azino-di[3-ethyl-benzthiazoline sulfonate] (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) was placed into each well. After 40 to 50 min, the optical density (OD) was read at 405 nm by a Microplate Autoreader (Bio-Tek Instruments, Inc., Winooski, VT). Finally, the cells in each well were digested with 30 μl of 0.6N NaOH overnight, and the amount of protein in each well was determined using BCA assay reagents (Pierce). The HLA-DR expression is presented as OD/mg protein.

RESULTS

Experiment No. 1:

I. TNFα

TNFα elicited a dose-dependent increase in NREMS and Tbr. The threshold dose for both the hypnogenic and pyrogenic effects was 0.05 μg. This dose of TNFα induced a significant increase in NREMS across the 6 h experimental period (Table 1). Most of the TNFα-induced excess NREMS occurred during postinjection hours 2-4 (Fig. 1) although sleep tended to be elevated for the next two hours as well. Injection of 0.5
μg and 5 μg TNFα promoted NREMS for a more prolonged period extending to the sixth postinjection hour elicited an overall increase in NREMS across the 6 h recording period (Table 1). However, neither the 0.005 nor 0.05 μg dose of TNFα altered REMS. The effects of TNFα on REMS were not dose-related. REMS was significantly reduced after the injection of the two higher doses. TNFα-induced changes in Tbr paralleled the TNFα-induced NREMS effects; there was a significant correlation between the pyrogenic effects and hypnogenic effects of TNFα. Monophasic fever induced by 0.05 μg TNFα peaked at 60 min postinjection and the Tbr stayed elevated thereafter throughout the entire recording period. The pyrogenic effects of the two highest doses were biphasic; an initial peak occurred at about 60 min postinjection and was followed by a second rise in Tbr that persisted until the end of the recording period.

II. TNFβ

TNFβ also elicited dose-dependent increases in Tbr and NREMS. The three lowest doses tested induced slight increases in NREMS (Table 1) though only the increase in NREMS after the lowest dose was significant. The highest dose of TNFβ (0.2 μg) elicited a relatively robust increase in NREMS of about 15% across the 6 h experimental period. Only the highest dose affected REMS; TNFβ induced a slight but significant decrease in REMS across the 6 h. Although there were statistically significant correlations found between the hyperthermic and hypnogenic effects of TNFβ, the changes in NREMS in response to TNFβ did not parallel the febrile effects as clear as in the case of TNFα. Though the lowest dose of TNFβ (0.0005 μg) enhanced NREMS, it did not increase Tbr.
The highest dose of TNFB (0.2 μg) elicited a biphasic fever comparable to the effects of 0.5 μg TNFa.

III. TNFa fragments

TNFa fragments 44-68, 46-65, 69-100, 101-135 and 140-157 failed to alter NREMS. One of these (TNFa44-68) did induce a reduction in REMS and caused a slight fever (Table 1). Another fragment TNFa69-100 also induced fevers but failed to alter the sleep parameters measured; this fragments elicited a dose-dependent increases in Tbr. It is noteworthy that unlike the whole TNFa molecule, the effect of the fragment on the Tbr was monophasic with a latency of 100-120 min (Fig. 4).

Two fragments with overlapping sequences (TNFa10-36 and TNFa31-68) were both pyrogenic and somnogenic. These fragments were virtually equipotent; the 5 μg dose did not show any significant effect on Tbr or sleep, but 25 μg of both fragments elicited a monophasic fever with a maximum amplitude of about 1-1.2 °C paralleled with a significantly increased NREMS across the 6 h recording period. A statistically significant correlation was found between the thermoregulatory and NREMS responses to these fragments. The pyrogenic effects of these fragments resembled the second phase of the TNFa-induced fever although the amplitudes of changes were much lower even after the injection of doses as high as 25 μg. The fragment TNFa31-45 increased NREMS but failed to significantly affect Tbr. The fragment TNFa10-69 also increased NREMS and reduced REMS after the injection of 10 and 5 μg doses, respectively.
One facet of TNFα activity is its chemotactic activity for neutrophils and monocytes. Previously, it was suggested that this activity could be due to contaminating amounts of N-formylated methionyl peptides. Therefore, we determined whether FMLP was somnogenic. After doses of 10 pmol or 100 pmol were given ICV, sleep and T_br remained close to normal values.

Experiment No. 2

The injection of 1-2 mg pseudomurein per rabbit did not result in significant effects on SWS, REMS, or EEG delta wave voltages (Table 2) nor did it affect T_br or colonic temperature (T_co) (data not shown). The injection of 4 mg pseudomurein per rabbit increased SWS significantly over the six hour recording period (Table 2). The differences in SWS occurred during the first 4 hours of the experiment; no differences were observed in hours five and six (Fig. 1 A). A similar time course in enhanced EEG δ wave voltage was observed (Fig. 1) and these increases were significant across the 6 hour recording period (Table 2). REMS was not affected by this dose of pseudomurein (Table 2, Fig. 1 B). While T_co's measured at the end of the six hour recording period were not effected by injection of pseudomurein, T_br's recorded at 10 min intervals revealed that a transient increase in T_br occurred, peaking during the second postinjection hour (Fig. 1, D).

To evaluate the possibility that endotoxin contamination might have contributed to the observed sleep effects, the LAL test was used to estimate, and polymyxin B sulfate was used to inactivate, any possible endotoxin contamination: A suspension of 1 mg/ml pseudomurein in PFS
contained a LAL reactivity of between 1.25 ng/ml and 12.5 ng/ml CSE. A concentration of 0.01 mg/ml Polymyxin B sulfate was sufficient to inactivate 10 ng/ml of CSE in the LAL assay. Interestingly, 1 mg/ml of Polymyxin B sulfate was needed to inactivate the LAL activity of 1 mg/ml pseudomurein. Since a much higher dose of Polymyxin B was need to inactivate the pseudomurein LAL activity than needed to activate CSE activity, this suggests that the pseudomurein itself had LAL activity.

When pseudomurein was preincubated with 1 mg/ml Polymyxin B sulfate prior to injection (4 animals with 2 mg, 4 animals with 4.5 mg pseudomurein), the observed effects were similar, although less pronounced, to those obtained after injection of pseudomurein not pretreated with Polymyxin B. SWS and δ-wave voltages were significantly increased and a slight nonsignificant enhancement of REMS was observed (Table 2). Tco's measured at the end of the recording period were not affected (data not shown). A transient increase in Tbr occurred during the second postinjection hour and was of equal magnitude, shape, and timing as the increase observed after injection of pseudomurein that was not pretreated with polymyxin B (data not shown).

To investigate whether the observed pseudomurein effects on sleep parameters and Tbr were due to the particulate or to the chemical nature of the sample, polystyrene microspheres were injected via the same route and in comparable concentration. (5x10⁹ sacculi are contained in 4.5 mg of a cell wall preparation of *Staphylococcus aureus* that was prepared in the same way as the pseudomurein [79]). The injection of 5x10⁹ microspheres in 1 ml PFS had no effects on sleep parameters (Table 2), or on Tco or Tbr (data not shown).
Experiment No. 3

PGE2 induced dose-dependent increases in Tbr (Fig. 2) thereby confirming previous observations (44, 131). The increase in Tbr began within minutes of the ICV injections and then peaked about one hour later. The lowest dose of PGE2, (0.25 nmol), induced about a 0.5° rise in Tbr. The response after this dose lasted about one hour. The highest dose of PGE2, 10 nmol, induced a maximum increase of about a 1.5° increase in Tbr and the duration of the hyperthermic response lasted about 2.5 hour. Within three hours of injection, Tbrs were close to control values.

The effects of PGE2 on sleep/wake cycles were not as obvious as its effects on Tbr. None of the doses of PGE2 tested altered duration of either NREMS or REMS across the six hour recording period (Table 3). However, if the analyses were confined to the first hour after injection, PGE2 induced significant dose-dependent biphasic effects on NREMS (Fig. 3). During the first twenty four min after injection, NREMS was decreased relative to corresponding control values. In contrast, during the last 24 min of the first postinjection hour, duration of NREMS was significantly elevated above control values. PGE2 also altered REMS. After injection of the 2.5 or 10 nmol PGE2 dose, but not after the 0.25 or 5 nmol dose, REMS was inhibited during the last 36 min of the first postinjection hour. However, the control REMS values of the rabbits used for assaying the 5 nmol dose were very low, thus rendering it difficult to distinguish an inhibitory response to this dose of PGE2. After the first postinjection hour, there were no significant effects of PGE2 on sleep. Although PGE2-induced behavioral effects were not sys-
tematically quantified, at the doses tested PGE$_2$ did not induce any gross behavioral abnormalities.

PGD$_2$ failed to induce significant changes in T$_{br}$ after ICV injection of the six lowest doses tested. However, after the highest dose of PGD$_2$, 500 nmol, there was an increase in T$_{br}$ of about 0.5° which began about forty min after injection then persisted for about two hours (data not shown). PGD$_2$ also failed to affect either NREMS or REMS across the six hour recording period (Table 4). In addition, if the analyses were confined to the first postinjection hour as done for PGE$_2$, no dose of PGD$_2$ tested significantly altered either NREMS or REMS (e.g., Fig. 4). As described above for PGE$_2$, PGD$_2$ did not appear to induce abnormal behavior at the doses tested although this was not systematically documented.

Experiment No. 4
a) Effects of ip injections of CCK

Ten μg/kg CCK IP significantly decreased W and 40 μg/kg CCK significantly increased NREMS in the first postinjection h (Figure 5), the time period within which CCK affects rat sleep (87). The sleep-wake activity returned to the baseline level by the second postinjection h, and there were not significant changes found in the sleep-wake activity across the 6-h period (ANOVA, p>0.05). After the injection of 2.5 μg/kg CCK there was a nonsignificant increase in sleep in the first postinjection h. Thereafter, NREMS was suppressed in the remainder of the experimental period (Figure 5) (2.5 μg/kg CCK, ip: ANOVA for NREMS: drug effect: F(1,6)=4.2 p<0.05, time effect: F(5,6)=1.5, interaction: F(5,6)=1.5; ANOVA for REMS: drug effect: F(1,6)=0.3, time effect:
F(5,6)=0.1, interaction F(5,6)=0.3; ANOVA for W: drug effect: F(1,6)=4.6 p<0.05, time effect: F(5,6)=2.2, interaction: F(5,6)=1.5]. None of the tested doses of CCK affected the maximal EEG delta wave amplitudes during NREMS in the first postinjection h (Table 5).

The somnogenic effects of CCK were accompanied by dose-dependent decreases in Tbr. While 2.5 µg/kg CCK did not affect Tbr, 10 µg/kg CCK slightly decreased Tbr for about two h, and 40 µg/kg CCK elicited a significant hypothermia for about three h. (Figure 5) [ANOVA for 40 µg/kg CCK: drug effect: F(1,18)=15.8 p<0.05, time effect: F(17,18)=0.2, interaction: F(17,18)=0.2].

b) Effects of ICV injections of CCK

In contrast to the effects of IP injections, ICV injections of CCK did not cause any significant increase in NREMS. Rather, 0.05 µg CCK reduced REMS across 6 h [ANOVA, drug effect: F(1,6)=4.2 p<0.05, time effect: F(5,6)=1.6, interaction: F(5,6)=0.2] and 0.5 µg CCK slightly, but statistically significantly decreased NREMS during the first postinjection h (Figure 6). The highest dose of CCK (2 µg ICV) did not cause significant changes in any of the measured sleep parameters. The maximal EEG delta wave amplitudes were not affected by any doses of CCK (Table 5).

Injections of 0.05 µg and 2 µg, but not 0.5 µg CCK, elicited statistically significant decreases in Tbr for about one h, although the amplitudes of these changes were minor (Figure 6) [ANOVA for 0.05 µg CCK: drug effect: F(1,18)=7.1 p<0.05, time effect: F(17,18)=0.2, interaction: F(17,18)=0.2; and for 2 µg CCK: drug effect: F(1,18)=4.7 p<0.05, time effect: F(17,18)=1.6, interaction: F(17,18)=0.7)].
Experiment No. 6
Cell culture and immunofluorescence staining

All cell lines grew well after subculture; the three glioblastoma cell lines stained positive for GFAP, and neuroblastoma cells stained positive for neurofilament. Neuroblastoma cells reach confluence as determined by cell number at 7 days (data not shown). Growth curves of each glioblastoma cell line were also developed (Fig. 7); all cell cultures reached confluence in 5-7 days in the 96-well plates. There also was a correlation between the number of cells per cm2 and mg protein in wells (Fig. 7)

IFN-γ-induction of HLA-DR antigen

Of the three glioblastoma cell lines, HTB14 moderately expressed HLA-DR antigen prior to rhIFNγ treatment (Fig. 8), thus confirming a previous result (73) that some glioblastoma cell lines spontaneously express HLA-DR. Glioblastoma cell lines HTB16 and HTB17, and neuroblastoma cell line HTB11 were all HLA-DR negative before treated with rhIFNγ (Fig. 8). The effect of rhIFN was dose dependent from the dose 10 to 5 x 103 U/ml for all three glioblastoma cell lines, and reached a plateau at a dose of 100 U/ml for HTB14, and 1000 U/ml for HTB16 and HTB17 (Fig. 8). IFNγ failed to induce HLA-DR in the neuroblastoma cell line. The effect of IFNγ on HLA-DR over time was determined in HTB16 cells. After the treatment with 1000 U/ml of rhIFNγ for 48 hrs, HLA-DR antigen was detectable on HTB16 cells. This inducing effect reached a peak on the fifth day (Fig. 9). On day 5, IFNγ was removed from the culture medium and HLA-DR expression was still detectable two days later.
Effects of TNFa, TGFβ1 and TGFβ2 on IFNγ-induced HLA_{DR} expression

Consistent with other reports (9, 120), rhTNFa alone was unable to induce HLA_{DR} expression on HTB16 cells. However, when simultaneously added with rhIFNγ (100 U/ml or 500 U/ml), hrTNFa amplified the induction of HLA_{DR} by rhIFNγ in a dose-dependent manner. Enhanced HLA_{DR} expression was detectable at the lowest concentration of rhTNFa (0.1 ng/ml) used in the experiments; optimal effects were obtained by incubating cells with rhTNFa at 50 ng/ml and rhIFNγ at 100 U/ml for 4 days (Fig. 10A). The specificity of this synergistic effect of TNFa was confirmed using neutralizing antibodies against TNFa. The antibody at the concentration of 10 μg/ml almost completely blocked the effect of TNFa (Fig. 10B).

The potentiation of IFNγ-induced HLA_{DR} expression by TNFa in HTB16 cell line was evident only 24 hours after incubation began (Fig. 11A). Thus, rhTNFa not only amplified the effect of rhIFNγ, but also induced a more rapid HLA_{DR} expression. This synergistic effect of TNFa reached its peak on the fourth day and then persisted to the eighth day of the study (Fig. 11A).

TGFβ1 and β2 both reduced IFNγ-induced HLA_{DR} expression. The lowest concentrations of both types of TGFβ used (0.01 ng/ml) were sufficient to produce a marked inhibitory effect; TGFβ1 at 1 ng/ml and TGFβ2 at 10 ng/ml generated maximal effects (Figs. 12A & 13A). If a higher concentration of rhIFNγ (1000 U/ml) was used, the inhibitory effects of both TGFβ1 and β2 were not observed (data not shown). The inhibitory effects of TGFβ1 and β2 on IFNγ-induced HLA_{DR}-expression was reversed if neutralizing antibodies against TGFβ1 or β2 were added to the culture medium (Figs. 12B & 13B). It was important to combine rhIFNγ, TGFβ2,
and respective antibodies at appropriate concentrations to obtain ideal blocking effects of antibodies. For example, the effects of anti-TGFβ2 antibodies were dose-dependent at concentrations ranging from 1-25 μg/ml when the dose of rhIFNγ was 100 U/ml or 500 U/ml and the dose of TGFβ2 was 1 ng/ml (Fig. 13B). Using a higher dose of TGFβ2 (10 ng/ml), only the highest dose (25 μg/ml) of the anti-TGFβ2 antibody could block the effect of TGFβ2 (Fig. 13B).

The effects of TGFβ1 and β2 on IFNγ-induced HLA_{DR} expression over time were also determined. The inhibitory effects of TGFβ1 and β2 on IFNγ-induced HLA_{DR} expression were first observed on day 5 of incubation. The maximal effects were observed after 7 days of treatment (Fig. 13B).

IL-1β and PGE₂ impaired IFNγ-induced HLA_{DR} expression

In agreement with data obtained using brain endothelial cells (120), hrIL-1β induced a dose-dependent decrease of IFNγ-induced HLA_{DR} in HTB16 cells (Fig. 14A). The effect of IL-1β resembled, but was not as potent as, that of TGFβ. Since IL-1 and PGE₂ reciprocally affect each others production in some cell types (109), and PGE₂ inhibits I_a expression on macrophages (166), the effect of PGE₂ on HLA_{DR} expression was also examined. A dose-dependent suppression of IFNγ-induced HLA_{DR} expression by PGE₂ was observed after 4 days of incubation (Fig. 14B).

Experiment 3 - Failure of IFNγ, 5-HT, PGD₂, VIP, DSIP, MDP and hydrocortisone to regulate HLA_{DR} expression

Several additional substances were tested alone and in combination with IFNγ to determine their effects on HLA_{DR} expression. These sub-
stances (IFNa, 5-HT, VIP, DSIP, MDP and hydrocortisone) failed to affect HLADR expression or IFNy-induced HLADR expression in HTBl6 cells (Table 6).

DISCUSSION

Experiment No. 1

During infectious disease NREMS is enhanced (174, 175). This central nervous system response to infection seems to be mediated via the ability of specific bacterial (99, 101, 105) or viral (119) products to enhance cytokine production (reviewed 105, 106). Previously, studies of the somnogenic actions of cytokines were focused on IL1; both IL1α and IL1β, as well as a fragment of IL1β, IL1β208-240, enhance NREMS (106, 139) (see June 1, 1990 annual report). IL1s are part of a larger complex cytokine network which includes TNFα (also called cachectin) and TNFβ (also called lymphotoxin). There are many regulatory relationships between IL1s and TNFs, as well as other cytokines, but these relationships in brain are very poorly understood. For example, TNF induces IL1 and TNF production but whether this occurs in brain is not known. Nevertheless, TNFα mRNA is in brain, glia produce TNF (43), and there are neurons that contain TNFα-like immunoreactivity (13). Systemic production of TNF is enhanced during and after sleep deprivation whereas, other forms of stress are less effective in altering TNF production (192). Previously, the somnogenic activities of TNFα were described (164). Both TNFα and TNFβ interact with the same receptors and though they are distinct molecules, they often have similar biological activi-
ties (3). However, if TNF receptors are solubilized, TNFα but not TNFβ binds to them. Furthermore, in some instances TNFα and β have distinct biological activities. For example, TNFα and β have opposite effects on the sympathetic nervous system (67). We thought it important, therefore, to investigate more thoroughly the somnogenic properties of TNF and to determine if TNF somnogenic activity could be localized to part of the TNF molecule. Both TNFα and β are somnogenic and that several TNFα fragments in the region of amino acid residues 10-69 are somnogenic. Other TNFα fragments, though possessing other TNF activities, were not somnogenic.

Experiment No. 2

The pseudomurein preparation used in this study increased the time animals spent in SWS, EEG δ-wave voltage, and caused a transient increase in Tbr though REMS was not affected. These effects of pseudomurein on rabbit sleep and Tbr are to our knowledge the first observations of CNS effects of this substance. Although only limited information is available on biological effects of pseudomurein, it was demonstrated earlier that in a rat arthritis model, pseudomurein-polysaccharide fragments purified from Methanobacterium formicum were without effects after intraperitoneal injection; only intraarticular injection of high doses caused an acute inflammation (170). Also, pseudomurein was shown to be antigenic in animals and humans (22).

Previously, we have shown that cell wall preparations of Staphylococcus aureus or Neisseria gonorrhoeae injected IV in rabbits increased SWS, EEG δ-wave voltages, Tco, and Tbr, and reduced REMS (79). About 4-5 times more pseudomurein was needed to obtain significant
effects as compared to staphylococcal cell wall preparations used earlier. In contrast to the staphylococcal and gonococcal cell wall preparations, pseudomurein did not decrease REMS and the onset of the increases in SWS and EEG δ-wave voltage were not delayed by one hour. After pseudomurein treatment, the increases in SWS and EEG δ-wave voltage were limited to the first 4 postinjection hours, this was similar to results obtained after injections the gonococcal peptidoglycan preparation. In contrast, after injection of staphylococcal cell walls, these effects persisted until the end of the 6 hour recording period. The increase in T_br, after pseudomurein injection, was rather transient while this effect was longer lasting after injection of eubacterial cell walls.

When staphylococci are phagocytized by murine bone marrow-derived macrophages, their cell walls can be partially digested (186), most probably by lysozyme. In the process of digestion, the macrophages produce and release into their medium low molecular weight cell wall fragments including muramyl peptides. Some of these fragments have somnogenic activity in rabbits (78). Also, the somnogenic actions of muramyl peptides are well known and several chemical structure - somnogenic activity relationships have been established (80, 99, 105). Importantly, if the muramic acid moiety of muramyl peptides contain an internal 1-6 anhydro structure, the substances are more potent than the corresponding hydrated compounds (102). When energy calculations are performed on the glycan strand of pseudomurein with talosaminuronic acid in 1C conformation, which represents the normal glucose chair conformation as it exists in muramic acid of murein, the resulting 3-dimensional structure of the sugar strand is dissimilar to that of the sugar strand
of murein (115) and, indeed, makes it very difficult to construct a net-like structure for pseudomurein. Instead, it was deducted from energy calculations that the lC conformation of talosaminuronic acid, the reversed chair conformation, results in a 3-dimensional structure of the glycan strand which resembles that of murein (116). Interestingly, this lC conformation is the one that must be assumed for the 1,6-anhydromuramic acid.

It seems inadequate at this time to propose degradation pathways by which pseudomurein exerts its somnogenic and pyrogenic effects: Pseudomurein is resistant to lysozyme (84), the key enzyme for the degradation of eubacterial peptidoglycan in macrophages. Also, the accumulation of unusual \(\epsilon \)- and \(\gamma \)-bonds in pseudomurein may protect it against attack by proteases (84). However, some enzymatic degradation processes for pseudomurein have been described recently: An extracellular enzyme produced by a streptomycete from cow manure has the capability to lyse a pseudomurein-containing methanogen (14). Also, a peptidase, hydrolyzing the \(\epsilon \)-ala-lys bond of pseudomurein, was purified from \textit{Methanobacterium wolfei} (91). Whether such processes are involved in the biological response of pseudomurein remains undetermined.

Despite the similarities in the somnogenic and pyrogenic responses of rabbits to pseudomurein or eubacterial peptidoglycan, there are also differences. Most notably the failure of pseudomurein to decrease REMS. This suggests that IL-1 is not the mediator of the pseudomurein-induced sleep and temperature responses, as has been proposed for muramyl peptides, since IL-1 decreases REMS when injected IV in rabbits (164).

Although endotoxin is not a constitutional component of archaeabacteria, the pseudomurein sample used in the current experiments contained
some LAL assay reactivity. However, to inactivate this LAL reactivity a hundred-fold more Polymyxin B sulfate was needed than for the control standard endotoxin. This would point to contamination with an endotoxin that is very LAL reactive or very inaccessible to inactivation by polymyxin B or, more likely, that pseudomurein by itself has some LAL reactivity. It has been shown that the LAL assay is not specific for endotoxin and that eubacterial peptidoglycan contains LAL reactivity 3 to 5 orders of magnitude less potent than endotoxin (5, 187). Thus, the effects of pseudomurein in the LAL test might be considered a further aspect of biological activity of this substance, possibly due to the structural similarity to eubacterial peptidoglycan. Also, the sleep effects of endotoxin observed after IV administration are characterized by suppression of REMS and can be completely abolished by polymyxin B pre-treatment (104), unlike those observed here for pseudomurein.

The effects on sleep and temperature could be due to activation of macrophages or other mammalian cells which then release effector molecules like cytokines or digest pseudomurein into smaller components which might act similar to sleep inducing muramyl peptides, which can be tailored from eubacteria (78). Polystyrene microspheres of 1 mm diameter are phagocytized by macrophages in vitro (86). Also, microspheres of 3 mm diameter injected IV in beagle dogs are found consistently within phagocytizing cells; they eventually relocated in the liver and spleen where they remained indefinitely (85). The failure of a suspension of polystyrene microspheres of similar size and concentration to elicit any sleep and temperature effects in the assay systems used here excludes the possibility that any suspension of particles similarly
sized as bacteria is capable of eliciting the observed effects by activation of macrophages.

Experiment No. 3

The pyrogenic actions of PGE$_2$ reported here are consistent with those of previous studies. Thus, the time course of the fever responses and the doses of PGE$_2$ needed to elicit those responses are similar to those previously reported (e.g., 44, 131). The effects of PGE$_2$ on sleep are also similar to those reported by Ueno, et al. (179). In rats the bolus injection of PGE$_2$ into the preoptic anterior hypothalamus induced a transient biphasic sleep response similar to the results reported here. These relatively short PGE$_2$-induced sleep responses stand in contrast to the prolonged inhibition of rat sleep if PGE$_2$ is continuously infused into the third ventricle (126). Such differences may be due to PGE$_2$ instability in vivo, thus with continuous infusion of PGE$_2$, the initial inhibitory effects observed with bolus injections of PGE$_2$ may persist. However, it is noted that other putative sleep factors also have short half lives, e.g., IL-1 in blood has a half life of about 10 min, yet are capable of eliciting prolonged changes in sleep (98). The inhibitory actions of PGE$_2$ on sleep are consistent with the report that an antagonist of PGE$_2$ (AH6809) (126) enhances sleep. However, it is more difficult to interpret the reports suggesting that inhibitors of PG synthesis (e.g. indomethacin and diclofenac) inhibit sleep (71, 133). Finally, while PGE$_2$ seems to increase wakefulness in both rats and rabbits, PGE$_2$ decreases vigilance and motor activity in cats (72), indicating species differences in its effects.
The results reported herein using PGD$_2$ are also consistent with the literature to the extent that the high dose of PGD$_2$ induced a hyperthermia (51, 52). However, the almost complete lack of effects of PGD$_2$ on rabbit sleep seem to differ from the somnogenic actions of PGD$_2$ previously reported for cats (112), rats (178) and monkeys (140). In fact, in rabbits, the highest dose of PGD$_2$ used inhibited sleep for about one hour instead of promoting sleep. The reasons for these differences are unknown though there are some plausible explanations. Similarly, as for PGE$_2$, there are likely species differences in responses to PGD$_2$. Alternatively, the lack of a somnogenic action of PGD$_2$ may be due to the time of day it was injected. Inoué and colleagues (76) reported that in rats, PGD$_2$ and other putative sleep factors had little effect on sleep if given during daylight hours when rats normally sleep near maximum values. However, circadian variations in sleep duration are small in the rabbit, and a great variety of sleep promoting substances have been found effective when injected during the light cycle (163).

The current results obtained using PGD$_2$ fail, in part, to replicate a previous preliminary report by one of us (100). However, in that study, only one somnogenic dose was found and only four animals were tested. Further, at the time of that work, we were unaware of the sleep-promoting actions of endotoxin (101), which is a common contaminant of many reagents. The sample tested was a gift and was not shown to contain immune-reactive PGD$_2$ as was done for the current study nor was an assessment of endotoxin contamination made. Regardless of those preliminary studies, current results indicate that over a very wide dose range, PGD$_2$ lacks somnogenic activity in rabbits.
The clearest difference between the present study and those of Hayaishi and colleagues is methodological in that the latter group usually used a continuous infusion of PGs into the third cerebral ventricle, whereas in the current study, PGs were injected as a bolus into a lateral ventricle. This difference could lead to the differences in results obtained, particularly, as mentioned above, for the duration of the waking actions of PGE$_2$. This suggests that if PGs are involved in sleep-wake regulation then their production (and effects) are probably dependent upon the continuous stimulation of arachidonic acid metabolism by another substance (sleep factor). Indeed, several putative sleep factors have the capacity to enhance PG production (e.g., IL-1 [35, 98], IFNα_2 [103], and growth hormone releasing hormone [44, 138]). However, whether the sleep-inducing actions of these substances are dependent upon enhanced PG production is unknown, although the somnogenic actions of muramyl dipeptide persist in rabbits treated with the cyclooxygenase inhibitor acetaminophen (96). It is also noted that other substances that enhance PG production, e.g., interleukin-6, and induce fever, do not affect sleep (142).

Experiment No. 4

The effects of CCK on sleep-wake activity of rats are well documented (30, 87, 121, 151). Although preliminary attempts to demonstrate somnogenic activity of CCK have been done in cats (42), our present work represents the first systematic description of the effects of exogenously administered CCK on normal sleep in a second species.

We report here that 10 μg/kg CCK decreases W, and 40 μg/kg CCK selectively increases NREMS and elicits hypothermia in rabbits. In con-
In contrast, ICV injections of CCK or IP injection of 2.5 μg/kg CCK did not induce NREMS in rabbits, in fact, after 0.05 μg ICV and 2.5 μg/kg IP CCK NREMS was decreased and after 0.05 μg CCK REMS was reduced, although these effects were very small. The results are similar to those obtained in rats where increases in NREMS (87) and decreases in temperature (87, 88, 193) were also found after IP administration of CCK, furthermore ICV bolus injection (155) or chronic ICV infusion of CCK (29) failed to promote sleep. The dose-range for the hypnogenic effects of CCK is similar in both species. A threshold dose of 10 μg/kg CCK in rats was reported (87), others also observed sleep increases after 10 μg/kg CCK (151), and in a third study 16, but not 8, μg/kg CCK promoted NREMS (30). IP injection of 4 μg/kg (87) or 2 μg/kg (155) CCK were ineffective on sleep of rats.

The enhanced sleep after CCK treatment was not accompanied with changes in EEG delta wave amplitudes. In contrast, recovery sleep following sleep deprivation (146), the sleep that accompanies acute infections (174, 175) and the sleep elicited by several sleep-promoting substances such as IL-1 (98), MDP (96) or growth hormone-releasing hormone (138) are characterized by increased EEG delta wave amplitudes during NREMS. This suggests that the underlying mechanisms of CCK-induced sleep and sleep induced by the above mentioned interventions may be partially independent.

The dose-dependent hypothermic effects of systemically injected CCK are similar to those reported in rats (87, 88). These thermoregulatory effects parallel the hypnogenic effects of CCK. ICV administration of 0.05 and 2 μg CCK also elicited a statistically significant decline in Tbr. The magnitude of these changes, however, were so minor that the
physiological significance of these responses seems questionable. Similarly, Lipton and Glyn reported that ICV injection of 5 μg CCK does not alter the body temperature in rabbits (117).

The mechanisms mediating the effects of exogenous CCK on sleep-wake activity are not known. Since the peripheral-circulating and the central-neuronal CCK pools are separated by the blood-brain barrier, which is practically impermeable to CCK (147), we assume that systemic injection of CCK mainly mimics the effects of the endogenous, peripherally circulating hormone, whereas ICV administration of CCK mimics the effects of the neurotransmitter/neuromodulator CCK. Since no somnogenic effects were observed after central injection of CCK it seems that the site of hypnogenic action of CCK is peripheral. It is known that sensory inputs conveyed by the n. vagus contribute to the regulation of sleep-wake activity (153). It has also been reported that several effects of CCK are mediated by the n. vagus (23, 47, 165, 182). It is possible, therefore, that the somnogenic effects of CCK are also mediated by n. vagus. Another possibility is that CCK causes the release of other sleep-promoting substance(s) from the periphery. The role of insulin seemed likely, since insulin elicits sleep in rats (26, 158), and CCK is a potent stimulator of insulin release (e.g., 149, 180). Experiments in rats indicate, however, that insulin plays little if any role in the hypnogenic effects of CCK (Kapás et al, submitted).

It is possible that the somnogenic doses of CCK are not physiological although it is difficult to know since the concentration of CCK at the hypnogenic site, when its secretion is physiologically stimulated (e.g., after eating), is unknown. It is likely that when CCK is released within the small intestine it reaches high concentrations in circum-
scribed areas. To achieve such high concentrations experimentally, systemic injections of relatively large amounts of the peptide are needed. Regardless of the specific mechanism by which CCK affects sleep and thermoregulation, current results clearly show that the hypnogenic effects of CCK are not species specific. Furthermore, CCK enhances sleep in a species, in which it also suppresses food intake. It supports the idea that the sleep-promoting and food intake reducing effects are closely associated, presumably different manifestations of satiety. Finally, the experience of postprandial sleepiness, when the secretion of CCK is physiologically stimulated, further suggests that one of the primary actions of peripherally released CCK may be sleep promotion.

Experiment No. 5

Regulation of Class II MHC expression on astrocytes was investigated because of its association with CNS pathogenesis of autoimmune diseases, such as narcolepsy, and its importance in the initiation of immune responses during infection within the CNS. Transformed human CNS cell lines were used as a model in vitro system to examine the ability of some substances to alter HLADR expression (150, 195). Our results confirmed those of others in that IFNγ stimulated glial cells to express HLADR in vitro. The CNS was previously thought to be an immune privileged site because of the blood-brain barrier and its lack of lymphatic drainage. It is now recognized that, similar to peripheral systems, the immune response in the CNS requires the presence of several cytokines, antigen-presenting cells, and lymphocytes. Furthermore, activated T lymphocytes enter into the rat brain without major histocompatibility complex (MHC) restriction and antigen specificity, supporting the con-
cept that the CNS is actively involved in immune reactions (66). These T lymphocytes could serve as a source of IFNγ. However, Traugott and Lebon (176) report HLA DR antigen and IFNγ are both present on astrocytes at the edge of active multiple sclerosis lesions and in the adjacent area, suggesting astrocytes may also have the ability to synthesize IFNγ, which could be responsible for local induction of Ia antigen expression.

In our preliminary study, HLA DR expression in glioblastoma cells (HTB14) was also examined using immunofluorescence staining techniques. Visibly, the intensity of the staining seemed stronger, and a greater number of cells were positively stained if cultures contained IFNγ. However, this method for determining HLA DR expression was not sufficiently quantitative for our purposes. Therefore, we then established an ELISA to quantify HLA DR expression on the cell surface. Furthermore, the amount of protein in each cell was quantified, thus allowing HLA DR to be expressed as absorbance per mg protein. This is important because the hyperplastic and/or hypertrophic actions of cytokines in vitro are relatively uninvestigated. Thus, using the ELISA and protein assay, OD values are adjusted without the necessity of determining the reason for the increase or decrease of HLA DR expression (due to stronger or weaker expression of HLA DR per cell or changes in the number of cells expressing HLA DR). Another advantage of using a protein assay is that determining protein amount is more rapid and accurate than counting cell numbers.

There are conflicting reports on the effects of TNFα on MHCII (also called Ia in mouse and rat) expression in systemic cells. TNFα was reported to induce Ia antigen and potentiate IFNγ-induced Ia antigen in
a murine macrophage cell line (17), and pancreatic cells (189), but it suppressed IFN\(\gamma\)-induced Ia expression on murine peritoneal macrophages (128). In human umbilical endothelial cell cultures the effects of TNF\(\alpha\) on IFN\(\gamma\)-induced MHCII expression were dependent upon the order that cells were exposed to TNF\(\alpha\) and IFN\(\gamma\) (113). TNF\(\alpha\) enhanced IFN\(\gamma\)-induced MHCII expression when added twenty-four hours after IFN\(\gamma\) treatment, whereas TNF\(\alpha\) inhibits IFN\(\gamma\)-induced MHCII expression when added simultaneously with, or before, IFN\(\gamma\). Data presented here suggest that TNF\(\alpha\) alone does not directly alter HLA\(D_R\) expression, but markedly elevates the rate and extent of IFN\(\gamma\)-induced HLA\(D_R\) expression in human glial cells. This synergistic effect of TNF\(\alpha\) also occurs in rat astrocytes and brain endothelial cells (9, 120). TNF\(\alpha\) is produced in vitro by astrocytes and microglia cells, (21, 159) and is secreted by fetal mouse brain cells (191), thus suggesting that this cytokine is present in the brain. The mechanism for the TNF\(\alpha\)-IFN\(\gamma\) synergistic effect on MHCII expression is not known; however, one possible mechanism may involve IFN\(\gamma\) up-regulation of TNF\(\alpha\) receptor expression (9).

The effects of TGF\(\beta_1\) and TGF\(\beta_2\) are equivalent in most in vitro biological assay systems (20). Both TGF\(\beta_1\) and \(\beta_2\) antagonize Ia expression in astrocytes (160, 195). In agreement with these results, our evidence indicates that TGF\(\beta_1\) and \(\beta_2\) decrease IFN\(\gamma\)-induced HLA\(D_R\) in the human glioblastoma cell line HTB16. We also used neutralizing anti-TGF\(\beta_2\) antibody to examine whether endogenous TGF\(\beta_2\) was present in our culture system. The antibody inhibited the effect of porcine TGF\(\beta_2\) but did not influence HLA\(D_R\) expression when cells were incubated with the antibody alone or with the antibody and IFN\(\gamma\) (data not shown here). We demonstrated that the antibody was effective with exogenous porcine TGF\(\beta_2\) but
did not determine if it was able to cross react with human glioblastoma-derived TGFβ2 probably present in supernatants of HTB16 cell cultures. However, there is evidence that TGFβ2 is (immunologically) identical to glioblastoma-derived T cell suppressor factor. Therefore, TGFβ2 activity may not exist in our HTB16 glioblastoma cell line cultures. In contrast to the effects of TNFα, which enhanced IFNγ-induced MHCII within 24 hours, TGFβ required more than 5 days of incubation before its effect became manifest. These different time courses of effects may be important in the regulation of the immune response in vivo. Thus, the sequences of the actions of cytokines and/or cytokine-cytokine interactions on the expression of MHCII might be crucial in the initiation and development and termination of the immune response in brain.

Previous studies dealing with the relationships between IL-1 and Ia expression were focused on the association of positive Ia expression with the production of IL-1 (48, 56, 184), because the activation of T cells requires the following signals from APC: antigen, Ia molecules, IL-1, and recently noticed, intercellular adhesion molecules (ICAM) (54). Although the effects of IL-1 on Ia expression have not been addressed adequately, IL-1α and β inhibit IFNγ-induced Ia expression in rat synovial fibroblasts and brain endothelia (81, 120). In current studies, the inhibitory effects of IL-1β on HLA-DP expression in glioblastoma cells were not as potent as these of TGFβ or PGE2, suggesting IL-1β may play a moderate, but not a key, role in regulating class II MHC expression in glial cells.

The importance of PGE2 in mediating inflammation and immune responses has been extensively studied (108, 168). PGE2 inhibits IFNγ-induced Ia expression in macrophages (166), and is involved in a feed-
back loop mediating the inflammatory response. PGE$_2$ causes a dose-
dependent decrease of IL-1 production by lipopolysaccharide-stimulated
macrophages, and addition of IL-1 to macrophage cultures results in an
increase of PGE$_2$ level in supernatant (109). In the CNS, almost all
cell types produce PGs, though the patterns of PG release of different
cell types may vary (90) and PGs have many biological actions in the
brain. Current findings suggest the possibility that locally present
PGE$_2$ inhibits HLADR/Ia expression on glial cells and thus may play an
important role in immune reaction within the CNS.

Unlike PGE$_2$, PGD$_2$ does not affect HLADR expression in glioblastoma
cells indicating it is not involved in MHCII regulation. The other sub-
stances tested in this study also failed to modulate HLADR expression
either alone or in combination with IFN$_\gamma$. Although IFNα inhibits MHCII
expression in systemic cells and in cells of the CNS, we could not
replicate those results. The biological activity of our TNFα was veri-
fied in an anti-virus assay. Our data obtained with VIP, another recog-
nized immunomodulator within the CNS (136), also are not in agreement
with earlier results (53) which indicates that VIP could attenuate IFNγ-
induced Ia expression on astrocytes derived from newborn rats. Besides
the possible species specificity, there may be differences between cells
of adults and newborns. There may also be differences in responsiveness
of malignant cell lines from that of primary cells cultures to VIP.
DSIP is another neuropeptide included in this study because it is found
both within the brain and in immune cells (60). It also failed to
affect HLADR expression in HTB16 cells.

Within the concentrations ranges used in this study (10^{-8} to 10^{-5}
M), 5-HT failed to suppress IFNγ-induced HLADR expression in glioblas-
toma cells. In contrast, 5-HT was reported to alter Ia expression in murine macrophages (169). This may indicate the possibility that 5-HT is not involved in counteracting the stimulatory effect of IFNγ on MHCII expression in astrocytes, or the cell line we used lacks receptors for 5-HT.

It is well known that glucocorticoids have profound immunosuppressive effects and they are used clinically in many inflammatory and autoimmune diseases, although the precise mechanisms of their actions are still unclear. There is no consensus in the literature on the effect of glucocorticoids on MHCII expression (55, 185). It was, therefore, not surprising that hydrocortisone did not affect HLAβ expression in the glial cell lines used in this study.

Massa and ter Meulen (124) suggested the bacterial cell wall component MDP as a possible candidate for MHCII induction in the CNS. However, we were unable to replicate in our human glioblastoma cells their result on MDP-induced Ia expression in rat astrocytes. It is noted here that MDP also failed to induce Ia expression in rat macrophages (124). The reasons for these failures of MDP to induce HLAβ are unknown.

Regardless of whether bacterial products or certain neuropeptides alter MHCII expression, it is currently clear that many substances known to be brain products, i.e., IFNα, TGFβ, IL-1β, TNFα, and PGE2, do modulate MHCII expression. It is thus likely that MHCII expression is regulated by locally present endogenous products within the CNS and that positive and negative feedback loops for this regulation exist. Our results further strengthen the concept that MHCII antigen plays a crucial role in initiating the immune response in the CNS. IFNγ and TNFα
may serve a major role in the development of immune response in the CNS, while TGFβ, PGE2 and IL-1β may be involved in local immunosuppression.

GENERAL DISCUSSION

Criteria for Sleep Factors

Four fundamental experimental paradigms have been used to identify SFs. The first two are based on the hypothesis that some substances (SFs) are increased in concentrations during prolonged wakefulness or during infectious disease (reviewed, 12). As already mentioned, Legendre and Pieron (114) were the first to experimentally address this hypothesis using sleep deprivation. Several SFs have been identified using such paradigms; the list includes oxidized glutathione (GSSG), muramyl peptides and IL-1. A third approach was to isolate substances that are released during sleep. These substances might be responsible for the mediation of at least certain aspects of physiological sleep. This approach has resulted in the discovery of DSIP. A fourth method used to identify SFs was to assay substances for sleep-promoting activity known to be involved in the biological regulation of another substance known to be linked to sleep/wake cycles. Perhaps the best known SF identified in this manner is growth hormone releasing hormone (GRF); it was investigated because NREMS onset is associated with growth hormone (GH) release. To date, a variety of substances have been shown to alter sleep (Table 7); the list includes about 30 substances, many of which are well known for their other biological activities. Regardless of the experimental paradigm under which a SF was isolated or of its
other biological activities, it is generally agreed that in order for a substance to be classified as a SF it should induce physiological sleep. However, in practice, this criterion is not possible to test directly because animal models are used in which either excess sleep is induced or in which sleep is restored after some manipulation reduces it. Despite these experimental limitations, physiological-like sleep can often be recognized (Table 8) and several SFs appear to induce/enhance normal sleep. Several additional criteria for SFs have been proposed (reviewed, 11, 83) though often these are based on preconceived ideas of sleep rather than our knowledge of sleep regulation (106). Nevertheless, there are a few obvious criteria for SFs (Table 9). There are several putative SFs that meet these requirements; these include cytokines, the GRF/GH/somatostatin (SRIF), and the vasoactive intestinal peptide/peptide histidine isoleucine/prolactin (VIP/PHI/PRL) systems.

An Integrative Model for SFs

Historically, it has been a postulate within sleep research that the "true" SF would have biological actions specific to sleep and would act on the CNS executive sleep centers, which were also assumed to be primarily concerned with sleep regulation. However, there is much evidence strongly implicating at least three sets of compounds, cytokines, the GRF/GH/SRIF system and the VIP/PHI/PRL system, each of which have other biological actions, in physiological sleep regulation. Furthermore, a single center in brain necessary for sleep has not been demonstrated. It is possible, however, that multiple SFs, which are not specific for sleep, can elicit a specific sleep response if they operate in concert with each other (106). The SFs shown in Fig. 15 have been
shown in a variety of *in vivo* and *in vitro* systems to interact; they may enhance or inhibit the production or actions of one another. In this model, SFs are regulated through cascades of biochemical events though several of the pathways can also work in relative independence. Further, many feedback loops are involved; several of these are illustrated in Fig. 15 although additional aspects of regulation, e.g., the role of endogenous receptor antagonists are not illustrated. At present, we do not know the relative contributions of the individual substances to physiological regulation. However, it is emphasized that we think that the evidence for the central involvement of some of these compounds in sleep regulation, *i.e.*, IL1, GRF, and VIP, is far greater than that for the other substances mentioned. Finally, the biochemical interactions shown were derived from experiments in which sleep was not monitored, thus the role that these interactions in sleep regulation needs to be evaluated.

The multiplicity of SFs, the numerous sleep-promoting pathways, which often act in parallel, and the many feedback loops provide a high degree of stability to sleep. Thus, changes in a single SF are not likely to alter sleep greatly, though the degree of change is likely to be dependent upon the relative importance to sleep of the specific SF. For example, blocking IL1 actions with the IL1 receptor antagonist (144, 145) or GRF actions with an anti-GRF antibody (Obál, et. al., unpublished) each reduce NREMS by about 25% thus indicating their importance. In contrast, cyclooxygenase inhibitors, which inhibit prostaglandin production, have little net effect on sleep. All the experimental conditions that reliably produce increases in sleep, *i.e.*, prolonged sleep deprivation, infectious disease, excessive exercise, and
prolonged starvation, are pathologic. In these cases, multiple sites of actions and SFs are likely to be involved. For example, almost all of the substances mentioned in Fig. 15 are altered by infection. After less aggressive sleep-promoting experimental paradigms (e.g., increase in ambient temperature) the occurrence of sleep is statistical rather than an obligate phenomenon.

The putative SFs mentioned in Table 7 have biological activities in addition to altering sleep; some of these are not associated with normal sleep. For example, IL1 and certain PGs are pyrogenic, whereas entry into NREMS is usually associated with a decrease in Tbr. The scheme in Fig. 16 illustrates how it is conceptually possible for substances that are not specific to sleep in their actions to elicit a specific sleep response. In this model, it is envisioned that a single SF will interact with more than one neuronal set. Each neuronal set will be involved in the regulation of two or more physiological parameters. Finally, some neuronal sets may not always be involved in sleep generation. By differentially driving the various neuronal sets shown in Fig. 16 by SFs, responses specific to sleep can be generated. (See ref. 106 for a numerical illustration of this concept). In contrast, most scenarios for driving the neuronal sets would involve the linkage of sleep to other physiological functions, which, in fact, is the usual case. In reference to the effects of SFs on sleep, the following points which are consistent with experimental findings can easily be envisioned from the model:

1) Some neuronal sets are more important than others for sleep propensity (have larger hypothetical output values (e.g., x>y>z). As a
consequence, some SFs are more important than others (e.g., B has a greater potential to enhance sleep than C).

2) If the output of two neuronal sets are held constant, stimulation of a third set could permit the sleep threshold to be reached; thus the exogenous administration of a SF could induce excess sleep.

3) In contrast, if neuronal sets x and y were at some minimal output level for sleep propensity, SF-D, which only interacts with neural set z, would not initiate sleep. Thus under certain experimental conditions, a SF may not initiate sleep while under others it would.

4) If one neuronal set was lesioned, total sleep propensity would be reduced. However, sleep would occur if the remaining sets were driven to a greater degree. This would also predict that after a lesion, the relative importance of various SF should shift. Further, an inherent feature of this model is that no individual neuronal set causes sleep, but all contribute to overall sleep propensity.

If the models in Figs. 15 and 16 are considered further within the context of dynamic properties of neurons (reviewed, 107), a more striking hypothesis is reached. It is: that sleep can, at different times, be caused by different neuronal sets (i.e., the elusive executive sleep center may be so because it is mobile). Many physiological systems affect sleep and, in some cases, the sensory neurons involved in those systems are altered by SFs. For example, sleep is closely linked to temperature regulation. IL1 can induce changes in firing rates of hypothalamic neurons (162). More importantly, some neurons that initially are insensitive to temperature changes become sensitive to heat after exposure to IL1 (41). This suggests that the intrinsic properties of these neurons are dynamic and subject to SF influence. Thus IL1
could change the sensory response characteristics of populations of neurons (this is one reason why there is a range of hypothetical outputs of the neuronal sets in Fig. 16). Furthermore, a single neuron can be a part of more than one sensory network (69) thus indicating that extrinsic properties are also dynamic. If a SF e.g., IL1, alters the responsiveness of neurons (left side of Fig. 16), such neuromodulatory actions could create dynamic neuronal networks that regulate sleep via constantly changing individual neural components (right side of Fig. 16).

Depending upon the specific physiological function driving sleep (e.g., temperature, appetite, circadian rhythms, etc.) the specific neuronal sets involved would vary. Under homeostatic conditions, variations in sleep-relevant sites would be minimal, thereby, leading to apparent sleep centers. However, under pathological conditions, sleep would occur but the specific neurons responsible for it could be different (e.g., sleep recovery after brain lesion). Furthermore, SFs that affect various aspects of physiology could alter sleep under some conditions (i.e., when neurons sensitive to them participate in the sleep network) but not under other conditions. Dynamic changes of electrical intrinsic properties of neurons have previously been recognized as possible mechanisms leading to cyclic variations of vigilance states (118). These dynamic electrical properties, though very important, are but one of many end products of chemical influences on the neuron.

It is thus proposed that animals experience sleep as a result of the activities of different neurons under different conditions. A vast number of lesion experiments support this view to the extent that if the animal lives, a recognizable form of sleep eventually occurs regardless of which neurons were lesioned.
Regardless of the specific mechanisms by which the brain is organized to produce sleep, the relatively recent explosive growth in information about SFs has led to new concepts about sleep regulation, some of which directly challenge long-held beliefs about sleep. The work on SFs has also emphasized that sleep must be considered within the context of other physiological processes. Finally, it is currently clear that several endogenous SFs are capable of enhancing sleep, that they do so by their direct (or indirect) effects on neurons and that their interactions are biochemically linked to each other. The regulation of these substances, therefore, has become an important facet of sleep regulation. It is also important since it will likely lead to the development of new safe somnogenic agents that induce natural sleep.
REFERENCES

33. Desiraju, T. Effect of intraventricular administered prostaglandin E1 on the electrical activity of cerebral cortex and

87. Kapás, L., F. Obál, Jr, P. Alföldi, G. Rubicsek, B. Penkeand and F. Obál. Effects of nocturnal intraperitoneal administration of cholecystokinin in rats: simultaneous increase in sleep, increase in EEG slow-wave activity, reduction of motor activity, suppres-

167. Steiniger, B., P. Falk and P.H. Van der Meide. Interferon gamma in vivo. Induction and loss of class II MHC antigens and immature

191. Yamasu, K., H. Onoe, G. Soma, H. Oshima and D. Mizuno. Secretion of tumor necrosis factor during fetal and neonatal development of

TABLE 1: Effects of TNFα, TNFβ, TNFα fragments and F-MLP peptide on rabbit sleep-wake activity and brain temperatures.

<table>
<thead>
<tr>
<th>dose (ug)</th>
<th>n</th>
<th>NREMS⁺</th>
<th>REMS</th>
<th>Tbr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cont.</td>
<td>Exp.</td>
<td></td>
</tr>
<tr>
<td>Cont.</td>
<td></td>
<td>5.6±1.2</td>
<td>5.1±0.7</td>
<td>0.12±0.14</td>
</tr>
<tr>
<td>Exp.</td>
<td></td>
<td>4.3±0.8</td>
<td>4.0±0.5</td>
<td>0.55±0.10*</td>
</tr>
<tr>
<td>TNFα</td>
<td>0.005</td>
<td>5</td>
<td>41.3±1.6</td>
<td>41.0±1.3</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>8</td>
<td>39.1±2.4</td>
<td>46.3±2.2*</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>8</td>
<td>44.3±1.6</td>
<td>57.0±3.3*</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>4</td>
<td>44.3±1.1</td>
<td>68.7±4.2*</td>
</tr>
<tr>
<td>TNFβ</td>
<td>0.0005</td>
<td>7</td>
<td>43.2±1.6</td>
<td>47.5±1.4*</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>6</td>
<td>41.5±1.6</td>
<td>44.9±2.8</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>7</td>
<td>42.5±1.5</td>
<td>44.8±2.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>6</td>
<td>41.1±1.5</td>
<td>56.3±3.7*</td>
</tr>
<tr>
<td>TNFα₁₀₋₃₆</td>
<td>5</td>
<td>40.1±1.7</td>
<td>42.4±1.7*</td>
<td>0.96±0.14*</td>
</tr>
<tr>
<td>TNFα₃₁₋₄₅</td>
<td>25</td>
<td>46.5±2.2</td>
<td>55.5±1.7*</td>
<td>0.52±0.12*</td>
</tr>
<tr>
<td>TNFα₄₆₋₆₅</td>
<td>25</td>
<td>40.7±1.8</td>
<td>45.8±2.2*</td>
<td>0.19±0.18</td>
</tr>
<tr>
<td>TNFα₅₁₋₆₈</td>
<td>25</td>
<td>44.7±1.8</td>
<td>47.8±2.4</td>
<td>0.59±0.13*</td>
</tr>
<tr>
<td>TNFα₁₀₋₆₉</td>
<td>5</td>
<td>43.9±1.4</td>
<td>44.1±1.1</td>
<td>0.76±0.11*</td>
</tr>
<tr>
<td>TNFα₄₄₋₆₈</td>
<td>25</td>
<td>47.1±1.3</td>
<td>52.3±2.3</td>
<td>0.06±0.10</td>
</tr>
<tr>
<td>TNFα₆₉₋₁₀₀</td>
<td>1</td>
<td>44.9±1.6</td>
<td>47.4±2.4</td>
<td>n/a</td>
</tr>
<tr>
<td>TNFα₁₀₁₋₁₃₅</td>
<td>25</td>
<td>45.2±1.8</td>
<td>45.1±1.9</td>
<td>n/a</td>
</tr>
<tr>
<td>TNFα₁₄₀₋₁₅₇</td>
<td>10</td>
<td>49.4±1.1</td>
<td>54.1±2.0</td>
<td>n/a</td>
</tr>
<tr>
<td>F-MLP</td>
<td>10 pmol</td>
<td>4</td>
<td>47.1±1.8</td>
<td>49.2±1.9</td>
</tr>
<tr>
<td></td>
<td>100 pmol</td>
<td>8</td>
<td>45.7±2.4</td>
<td>47.3±1.0</td>
</tr>
</tbody>
</table>
The values indicate percent time spent in NREMS and REMS during the entire 6 h experimental period ± SE. The effects on Tbr are expressed as the maximum 1 h average temperature changes in response to peptides. Asterisks indicate significant drug effects (p < 0.05).
Table 2: Effects of intravenous injection of pseudomurein or microspheres on rabbit SWS, REMS, EEG δ voltage, and T_{co}

<table>
<thead>
<tr>
<th>dose</th>
<th>n</th>
<th>SWS Contr</th>
<th>Exper</th>
<th>REMS Contr</th>
<th>Exper</th>
<th>EEG δ Voltage Contr</th>
<th>Exper</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>4</td>
<td>44 ± 2</td>
<td>51 ± 3</td>
<td>3.0 ± 0.4</td>
<td>4.2 ± 0.8</td>
<td>83 ± 2</td>
<td>93 ± 6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>47 ± 2</td>
<td>56 ± 2 ***</td>
<td>6.5 ± 0.8</td>
<td>5.8 ± 0.6</td>
<td>68 ± 9</td>
<td>81 ± 9***</td>
</tr>
</tbody>
</table>

Polymyxin B pre-treatment

<table>
<thead>
<tr>
<th>dose</th>
<th>n</th>
<th>SWS Contr</th>
<th>Exper</th>
<th>REMS Contr</th>
<th>Exper</th>
<th>EEG δ Voltage Contr</th>
<th>Exper</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4.5</td>
<td>8</td>
<td>46 ± 1</td>
<td>51 ± 2*</td>
<td>3.7 ± 0.4</td>
<td>4.8 ± 0.4*</td>
<td>71 ± 9</td>
<td>76 ± 11*</td>
</tr>
</tbody>
</table>

injection of 5x10⁹ microspheres

<table>
<thead>
<tr>
<th>dose</th>
<th>n</th>
<th>SWS Contr</th>
<th>Exper</th>
<th>REMS Contr</th>
<th>Exper</th>
<th>EEG δ Voltage Contr</th>
<th>Exper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>47 ± 2</td>
<td>50 ± 1</td>
<td>6.5 ± 0.8</td>
<td>4.3 ± 0.1</td>
<td>68 ± 9</td>
<td>67 ± 9</td>
</tr>
</tbody>
</table>

Values are means ± SEM. Sleep values are 6-h post-injection averages; n, no. of rabbits; SWS, slow-wave sleep; REMS, rapid-eye-movement sleep; EEG δ voltage, electroencephalographic δ-wave voltage [μV]; T_{co}, colonic temperature 6-h post-injection; * P < 0.05, *** P < 0.01 Wilcoxon matched-pairs signed-ranks test.
TABLE 3: Effects of PGE₂ on Rabbit Sleep

<table>
<thead>
<tr>
<th>dose (nmol)</th>
<th>N</th>
<th>Cont</th>
<th>Expt</th>
<th>Cont</th>
<th>Expt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>7</td>
<td>51.6 ± 1.9</td>
<td>54.0 ± 1.1</td>
<td>9.2 ± 0.7</td>
<td>7.5 ± 0.8</td>
</tr>
<tr>
<td>2.5</td>
<td>5</td>
<td>50.6 ± 3.1</td>
<td>50.8 ± 1.5</td>
<td>6.8 ± 1.0</td>
<td>5.6 ± 0.9</td>
</tr>
<tr>
<td>5.0</td>
<td>5</td>
<td>52.7 ± 3.8</td>
<td>48.6 ± 3.1</td>
<td>7.2 ± 0.8</td>
<td>6.5 ± 0.4</td>
</tr>
<tr>
<td>10.0</td>
<td>15</td>
<td>48.1 ± 1.4</td>
<td>48.5 ± 1.2</td>
<td>9.5 ± 0.7</td>
<td>7.3 ± 0.7</td>
</tr>
</tbody>
</table>

* Average values of the 6-hr recording periods ± SE.
TABLE 4: Effects of PGD\textsubscript{2} on Rabbit Sleep

<table>
<thead>
<tr>
<th>dose (nmol)</th>
<th>N</th>
<th>% NREMSa</th>
<th>% REMSa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cont</td>
<td>Expt</td>
</tr>
<tr>
<td>0.25bc</td>
<td>4</td>
<td>44.7 ± 2.0</td>
<td>45.3 ± 2.9</td>
</tr>
<tr>
<td>0.5c</td>
<td>8</td>
<td>41.7 ± 2.4</td>
<td>43.8 ± 1.4</td>
</tr>
<tr>
<td>5.0d</td>
<td>7</td>
<td>43.5 ± 1.7</td>
<td>44.2 ± 1.8</td>
</tr>
<tr>
<td>10.0cd</td>
<td>7</td>
<td>43.5 ± 1.7</td>
<td>42.2 ± 1.8</td>
</tr>
<tr>
<td>20.0d</td>
<td>6</td>
<td>43.3 ± 1.9</td>
<td>46.0 ± 3.7</td>
</tr>
<tr>
<td>50.0c</td>
<td>6</td>
<td>43.4 ± 2.8</td>
<td>48.2 ± 3.4</td>
</tr>
<tr>
<td>500.0c</td>
<td>7</td>
<td>43.4 ± 2.5</td>
<td>45.1 ± 1.3</td>
</tr>
</tbody>
</table>

a Average values of the six hour recording periods ± SE.

b This dose was infused over a 45 min period prior to time 0; other doses were injected ICV over a 1 min period.

cd PGD\textsubscript{2} used from Sigmad and two different lots c from Cayman.
TABLE 5. The effects of saline and CCK injections on the maximal EEG delta wave amplitudes during NREMS in the first postinjection hour

<table>
<thead>
<tr>
<th>dose</th>
<th>route</th>
<th>n</th>
<th>saline</th>
<th>CCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 µg</td>
<td>icv</td>
<td>7</td>
<td>306.9 ± 22.2</td>
<td>303.6 ± 27.2</td>
</tr>
<tr>
<td>0.5 µg</td>
<td>icv</td>
<td>9</td>
<td>306.3 ± 27.3</td>
<td>232.7 ± 18.3</td>
</tr>
<tr>
<td>2 µg</td>
<td>icv</td>
<td>5</td>
<td>259.5 ± 26.0</td>
<td>284.8 ± 33.1</td>
</tr>
<tr>
<td>2.5 µg/kg</td>
<td>ip</td>
<td>11</td>
<td>300.1 ± 13.3</td>
<td>287.2 ± 17.5</td>
</tr>
<tr>
<td>10 µg/kg</td>
<td>ip</td>
<td>4</td>
<td>316.1 ± 5.5</td>
<td>280.8 ± 18.6</td>
</tr>
<tr>
<td>40 µg/kg</td>
<td>ip</td>
<td>7</td>
<td>266.2 ± 22.4</td>
<td>259.9 ± 19.4</td>
</tr>
</tbody>
</table>

+ The values represent average maximal delta wave amplitudes in µV ± SE
Table 6

Summary of effects of substances tested on HLA_{DR} expression

<table>
<thead>
<tr>
<th>Agents</th>
<th>Dose range</th>
<th>Incubation</th>
<th>Cell lines used</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhIFN<sub>γ</sub></td>
<td>0.1-5 (10^3) U/ml</td>
<td>4 days</td>
<td>HTB14</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>0.1-5 (10^3) U/ml</td>
<td>4 days</td>
<td>HTB16</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>0.1-10<sup>4</sup> U/ml</td>
<td>4 days</td>
<td>HTB17</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>0.1-10<sup>2</sup> U/ml</td>
<td>4 days</td>
<td>HTB11</td>
<td>—</td>
</tr>
<tr>
<td>rhTNFα</td>
<td>0.1-250 ng/ml</td>
<td>4 days</td>
<td>HTB16</td>
<td>—</td>
</tr>
<tr>
<td>+rhTNFα</td>
<td>+rhIFN<sub>γ</sub>++</td>
<td>0.1-250 ng/ml</td>
<td>4 days</td>
<td>HTB16</td>
</tr>
<tr>
<td></td>
<td>(100 U/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhTNF</td>
<td>+rhIFN<sub>γ</sub></td>
<td>0.1-250 ng/ml</td>
<td>4 days</td>
<td>HTB16</td>
</tr>
<tr>
<td></td>
<td>(500 U/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFβ1</td>
<td>0.01-10 ng/ml</td>
<td>6 days</td>
<td>HTB16</td>
<td>—</td>
</tr>
<tr>
<td>TGFβ1</td>
<td>+rhIFN<sub>γ</sub></td>
<td>0.01-10 ng/ml</td>
<td>6 days</td>
<td>HTB16</td>
</tr>
<tr>
<td></td>
<td>(100 U/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFβ1</td>
<td>+rhIFN<sub>γ</sub></td>
<td>0.01-10 ng/ml</td>
<td>6 days</td>
<td>HTB16</td>
</tr>
<tr>
<td></td>
<td>(500 U/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFβ2</td>
<td>0.01-10 ng/ml</td>
<td>6 days</td>
<td>HTB16</td>
<td>—</td>
</tr>
<tr>
<td>TGFβ2</td>
<td>+rhIFN<sub>γ</sub></td>
<td>0.01-10 ng/ml</td>
<td>6 days</td>
<td>HTB16</td>
</tr>
<tr>
<td></td>
<td>(100 U/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGFβ2</td>
<td>+rhIFN<sub>γ</sub></td>
<td>0.01-10 ng/ml</td>
<td>6 days</td>
<td>HTB16</td>
</tr>
<tr>
<td>Substance</td>
<td>Concentration</td>
<td>Duration</td>
<td>Condition</td>
<td>Response</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>rhIL1β</td>
<td>0.5-250 pg/ml</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rhIL1β</td>
<td>0.5-250 pg/ml</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGE2</td>
<td>10^{-9}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGE2</td>
<td>10^{-9}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGD2</td>
<td>10^{-9}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGD2</td>
<td>10^{-9}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNα</td>
<td>1-10^3 U/ml</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNα</td>
<td>1-10^3 U/ml</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIP</td>
<td>10^{-8}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIP</td>
<td>10^{-8}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSIP</td>
<td>10^{-8}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSIP</td>
<td>10^{-8}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-HT</td>
<td>10^{-8}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-HT</td>
<td>10^{-8}-10^{-5} M</td>
<td>4 days</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6 (cont.)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration</th>
<th>Duration</th>
<th>Cell Line</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocortisone</td>
<td>10^{-5}-10^{-3} M</td>
<td>4 days</td>
<td>HTB16</td>
<td>—</td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>10^{-5}-10^{-3} M</td>
<td>4 days</td>
<td>HTB16</td>
<td>—</td>
</tr>
<tr>
<td>+rhIFNγ (500 U/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDP</td>
<td>0.01-10 μg/ml</td>
<td>7 days</td>
<td>HTB16</td>
<td>—</td>
</tr>
<tr>
<td>MDP +rhIFNγ (500 U/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ ↑ indicate increase, — no effect, and ↓ decrease in HLA_{DR} expression. ++When a substance was used in combination with IFNγ, direction of effects are relative to those observed with IFNγ alone.
TABLE 7. List of putative sleep factors (NREMS factors, REMS sleep factors, or both) and putative waking factors.

<table>
<thead>
<tr>
<th>Sleep Factors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Identified</td>
<td>Schoenenberger, 1984; Graf and Kastin, 1984</td>
</tr>
<tr>
<td>Delta sleep-inducing factor (DSIP)</td>
<td>Pavel, 1979</td>
</tr>
<tr>
<td>Vasoactive intestinal peptide (VIP)</td>
<td>Obál, 1986; Ehlers, et. al., 1986</td>
</tr>
<tr>
<td>Growth hormone-releasing factor/peptide (GRF)</td>
<td>Danguir, 1986</td>
</tr>
<tr>
<td>Somatostatin (SRIF)</td>
<td>Drucker-Colin, et. al., 1975</td>
</tr>
<tr>
<td>Cholecystokinin (CCK)</td>
<td>Danguir and Nicolaidis, 1984</td>
</tr>
<tr>
<td>Insulin</td>
<td>Chastrette and Cespuiglio, 1985</td>
</tr>
<tr>
<td>Desacetyl-alpha-melanocyte-stimulating hormone (desacetyl-alpha-MSH)</td>
<td>Chastrette and Cespuiglio, 1985</td>
</tr>
<tr>
<td>Corticotropin-like intermediate lobe peptide (CLIP)</td>
<td>Chastrette and Cespuiglio, 1985</td>
</tr>
<tr>
<td>Neuropeptide Y</td>
<td>Zini, et. al., 1984</td>
</tr>
<tr>
<td>Interleukin-1 (IL1)</td>
<td>Krueger, et. al., 1984</td>
</tr>
<tr>
<td>Interferon alpha-2 (IFNα2)</td>
<td>Krueger, et. al., 1987</td>
</tr>
<tr>
<td>Tumor necrosis factor (TNF)</td>
<td>Shoham, et. al., 1987</td>
</tr>
<tr>
<td>Muramyl peptides (MPs)</td>
<td>Krueger, et. al., 1982</td>
</tr>
<tr>
<td>Lipid A</td>
<td>Cady, et. al., 1989</td>
</tr>
<tr>
<td>Prostaglandin D2</td>
<td>Hayaishi, 1988</td>
</tr>
<tr>
<td>Steroid hormones and metabolites</td>
<td>Heuser, et. al., 1967</td>
</tr>
<tr>
<td>Serotonin (5-HT)</td>
<td>Jouvet, 1984; Koella, 1984</td>
</tr>
<tr>
<td>Melatonin</td>
<td>Datta and King, 1980</td>
</tr>
<tr>
<td>Adenosine</td>
<td>Radulovacki and Virus, 1985</td>
</tr>
<tr>
<td>Oxidized Glutathione (GSSG)</td>
<td>Honda, et. al., 1990</td>
</tr>
<tr>
<td>II. Unidentified</td>
<td></td>
</tr>
<tr>
<td>Motor activity-reducing factor</td>
<td></td>
</tr>
<tr>
<td>REM sleep factor</td>
<td></td>
</tr>
<tr>
<td>PS (paradoxical sleep)-inducing factor</td>
<td></td>
</tr>
<tr>
<td>Peptide-like urinary sleep factor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waking Factors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Identified</td>
<td>Opp, et. al., 1988</td>
</tr>
<tr>
<td>Corticotropin-releasing factor/adrenocorticotropic hormone (CRF/ACTH)</td>
<td>Takahashi, et. al., 1985</td>
</tr>
<tr>
<td>Thyrotropin-releasing hormone (TRH)</td>
<td>Dzoljic et. al., 1985</td>
</tr>
<tr>
<td>Endogenous opioids</td>
<td>Hayaishi, 1988</td>
</tr>
<tr>
<td>Prostaglandin E2</td>
<td>Opp and Krueger, in press</td>
</tr>
<tr>
<td>Interleukin-1 receptor antagonist (IL1ra)</td>
<td></td>
</tr>
<tr>
<td>II. Unidentified</td>
<td>Fencl, et. al., 1971</td>
</tr>
<tr>
<td>Factor E</td>
<td>Sachs, et. al., 1976</td>
</tr>
<tr>
<td>Motor activity-enhancing factor</td>
<td></td>
</tr>
</tbody>
</table>

Updated reviews are cited where possible.
TABLE 8. Criteria for NREMS Factors with Regard to Physiological Sleep

1. A NREM-SF should induce increased incidence and/or duration of NREMS.
2. A NREM-SF should reduce the latency to NREMS during periods of maximum effects.
3. A SF should have different quantitative effects at different times of the circadian day.
4. A NREM-SF should enhance EEG slow wave amplitudes.
5. Sleep structure should be maintained, although altered duration of NREMS and/or REM sleep may occur; i.e., it should still cycle through stages of W, NREMS, and REM.
6. The enhanced NREMS induced by a SF should be readily reversible by appropriate stimuli.
7. Behavior following appropriate doses of SF should be normal.
8. Autonomic changes, e.g., brain temperature changes, that are tightly coupled to sleep states, should persist after SF treatment.

TABLE 9. Criteria for Sleep Factors

A. Testable criteria:
 1. The SF should induce and/or maintain physiological sleep (see Table 8).
 2. The SF should be present in the animal.
 3. The concentration and/or turnover of the SF and/or the concentration and/or turnover of its receptor and/or its receptor regulators should vary with the state of vigilance.
 4. The SF should be chemically defined.
 5. A dose-effect relationship for the SF should prevail within a certain dosage range.
 6. The range of biological activities should be similar across species.

B. Criteria that should apply as our knowledge of sleep is expanded:
 1. A SF should act directly on those brain mechanisms responsible for sleep.
 2. Inactivation of SFs (at the production or receptor level) should result in insomnia.
Fig. 1. Effects of intravenous injection of 4 mg pseudomurein in 1 ml PFS (filled circles) or vehicle (1 ml PFS into same rabbits on different days; open circles) on rabbit slow-wave sleep (SWS) (A), rapid-eye-movement sleep (REMS) (B), δ-wave amplitudes (C), and brain temperatures (D). A, B, C. hourly averages for indicated hour. D: differences from control recording (ΔTbr). n = 4. Data points are means ± SEM. SWS and EEG δ voltage were increased during post-injection hours 1 through 4. REMS was not affected. Tbr was transiently increased with a peak 1.5 hours post-injection.
Fig. 2. Effects of intracerebroventricular injection of PGE$_2$ on brain temperature of rabbits. Values are the hourly means (±SEM) for the following PGE$_2$ doses: 0.25 nmol (circles; N = 5); 2.5 nmol (squares; N = 5); 5.0 nmol (triangles; N = 5), 10.0 nmol (diamonds; N = 7). PGE$_2$ induced dose-related increase in brain temperature that were confined to the first two hours postinjection.
Fig. 3. Effects of intracerebroventricular injection of PGE2 on NREMS and REMS duration in the first postinjection hour. Each data point represents the mean (±SEM) of 5-15 rabbits after control vehicle injections (open circles) or after PGE2 (closed circles). * denote significant departure from control (Wilcoxin; p < 0.05).
Fig. 4. Effects of intracerebroventricular injection of PGD₂ on duration of NREMS and REMS during the first postinjection hour. Each data point is the mean (±SEM) of 6-8 rabbits expressed as percent recording time after control vehicle (open circles) or after PGD₂ (closed circles). There were no significant changes in NREMS or REMS duration after injection of PGD₂.
Figure 5. The effects of ip injection of various doses of cholecystokinin (CCK, filled symbols) and saline (open symbols) on sleep-wake activity and brain temperature. The injections were done at time "0". Error bars indicate SE, asterisks indicate significant differences between the effects of CCK and saline (paired Student's t-test, p<0.05). The highest dose of CCK induced an enhancement of NREMS for about 1 h.
Figure 6. The effects of icv injection of various doses of CCK and saline on sleep-wake activity and Tbr. See legend to Fig. 5 for details. Unlike high doses of CCK injected ip, icv CCK failed to enhance sleep.
Figure 7. Growth curves of glioblastoma cell lines HTB14 (top panel), HTB16 (middle panel) and HTB17 (bottom panel), and the correlation between cell number and protein amount. Cells were seeded in 96-well plates; cell number and protein amount were determined every day for 11 days. Each point shows the mean and standard deviations from 6 replicate wells. (●) indicates cell number/cm²; (○) indicates protein amount determined from wells parallel to the wells giving cell number.
Figure 8. rhIFNγ-induced HLADR expression in glioblastoma and neuroblastoma cell lines after incubation with various concentrations of rhIFNγ for 4 days. HLADR expression is presented as OD/mg protein. Data are shown as mean ± standard deviations from 6 replicate wells. An * indicates significant difference from the control value of HLADR expression obtained from the cells incubated with culture medium.
Figure 9. Time course response of rhIFNγ-induced HLA
er expression in glioblastoma cell line HTB16. (•) indicates cells were incubated with culture medium. (○) indicates cells were incubated with 1000 U/ml of rhIFNγ. Media containing rhIFNγ were removed on day 5, and replaced with fresh culture medium, and HLA expression was assessed every day. HLA expression is presented as OD/mg protein. rhIFNγ-induced HLA expression is noticed on day 3, reaches peak on day 5, and still detectable two days after the removal of rhIFNγ from culture media. Data are obtained from triplicate wells.
Figure 10. Effects of rhTNFα and anti-TNFα on rhIFNγ-induced HLA DR expression in HTB16 cells. HLA DR expression is presented as OD/mg protein; data are shown as means + SD from 6 replicate wells. Upper panels; cells were incubated with various concentrations of rhTNFα combined with 100 (solid bars) or 500 U/ml (open bars) of rhIFNγ for 4 days. An * indicates significant difference from the control values obtained in the presence of either 100 or 500 U/ml of rhIFNγ. Lower panel; anti-TNFα blocked synergistic effect of rhTNFα on rhIFNγ-induced HLA DR expression. Cells were incubated with 100 U/ml of rhIFNγ only (first column), combined with 10 ng/ml of rhTNFα (second column), and 100 U/ml of rhIFNγ combined with 10 ng/ml of rhTNFα plus various concentrations of anti-TNFα for 4 days. Anti-TNFα at a dose of 10 mg/ml was sufficient to completely block the effects of rhTNFα. An * indicates significant difference from the value obtained from wells incubated with 100 U/ml of rhIFNγ + 10 ng/ml of rhTNFα.
Figure 11. Time course response of the effects of rhTNFa and TGFβ1 and β2 on rhIFNy-induced HLA_{DR} expression in HTB16 cells. HLA_{DR} expression is presented as OD/mg protein; data are shown as means ± SD from 6 replicate wells. Upper panel; cells were incubated with culture medium (open bars), 100 U/ml of rhIFNy (solid bars), and 100 U/ml of rhIFNy combined with 10 ng/ml of rhTNFa (crosshatched bars) for 8 days. The effects of TNFa were noticed after 24 hour incubation, reached peak on day 4, and still detectable on day 8. An * indicates significant difference from the values obtained in the presence of 100 U/ml of rhIFNg on the same day. Time course response of inhibitory effect of porcine TGFβ1 and β2 on rhIFNy-induced HLA_{DR} expression (lower panel). Lower panel; cells were incubated with culture medium (open bars), 100 U/ml of rhIFNy (solid bars), and 100 U/ml of rhIFNy combined with 10 ng/ml of either TGFβ1 (crosshatched bars) or TGFβ2 (hatched bars). The effects of TGFβ1 and β2 were detectable on day 5 of incubation, reached maximal level on day 7, and remained on day 8. An * indicates significant difference from the values obtained in the presence of 100 U/ml of rhIFNg only on the same day.
Figure 12. Effects of TGFβ1 and anti-TGFβ on rhIFNγ-induced HLA-DR expression in HTB16 cells. Upper panel, cells were incubated with various concentrations of TGFβ1 in the presence of 100 U/ml (solid bars) or 500 U/ml (open bars) of rhIFNγ for 6 days. An * indicates significant difference from the values obtained in the presence of either 100 or 500 U/ml of rhIFNγ. Lower panel, anti-TGFβ blocked the inhibitory effects of TGFβ1 on IFNγ-induced HLA-DR expression. Cells were incubated with 100 U/ml of rhIFNγ only (first column), 100 U/ml of rhIFNγ combined with 10 ng/ml of TGFβ1, and 100 U/ml of rhIFNγ combined with 10 ng/ml of TGFβ1 plus various concentrations of anti-TGFβ for 6 days. An * indicates significant difference from the value obtained in the presence of 100 U/ml of rhIFNγ and 10 ng/ml of TGFβ1.
Figure 13. Effects of TGFβ2 and anti-TGFβ2 on rhIFNγ-induced HLA_{DR} expression in HTB16 cells. HLA_{DR} expression is presented as OD/mg protein; data are shown as means ± SD. Upper panel, cells were incubated with various concentrations of TGFβ2 in the presence of 100 (solid bars) or 500 U/ml (open bars) of rhIFNγ for 6 days. An * indicates significant difference from the values obtained in the presence of either 100 or 500 U/ml of rhIFNγ. Lower panel, anti-TGFβ2 blocked the inhibitory effects of TGFβ2 on IFNγ-induced HLA_{DR} expression. Cells were incubated with rhIFNγ (100 U/ml, solid bar in first column; 500 U/ml, open and crosshatched bars in first column), rhIFNγ (100 U/ml) combined with 1 ng/ml of TGFβ2 and various concentrations of anti-TGFβ2 (solid bars), and rhIFNγ (500 U/ml) combined with 1 ng/ml of TGFβ2 plus various concentrations of anti-TGFβ2 (open bars) or 10 ng/ml of TGFβ2 plus various concentrations of anti-TGFβ2 (crosshatched bars) for 6 days. An * indicates significant difference from the values obtained in the presence of either 100 or 500 U/ml of rhIFNγ, combined with either 1 or 10 ng/ml of TGFβ2 (second column).
Figure 14. Effects of rhIL-1β and PGE2 on rhIFNγ-induced HLADR expression in HTB16 cells. HLADR expression is presented as OD/mg protein; data are shown as means ± SD. Upper panel, cells were incubated with various concentrations of rhIL-1β in the presence of 500 U/ml of rhIFNγ for 4 days. An * indicates significant difference from the basal value obtained in the presence of 500 U/ml of rhIFNγ. Lower panel, PGE2 inhibited rhIFNγ-induced HLADR expression. Cells were incubated with various concentrations of PGE2 in the presence of 500 U/ml of rhIFNγ for 4 days. An * indicates significant difference from the value obtained in the presence of 500 U/ml of rhIFNγ.
Figure 15: Activational system for sleep indicating possible interactions between putative SFs (left side) and the effects of those SFs on sleep (right side). Some of the interactions shown have been tested using sleep as the assay end point. For example, the CRF/ACTH, αMSH/glucocorticoid inhibiting actions on sleep may be related to their inhibitory effects on IL1 production or activity. Similarly, during infection when the supplies of muramyl peptides, endotoxin or viral dsRNA are enhanced, it is likely that sleep is enhanced via the ability of the microbial-derived substances to enhance cytokine production. See Table 7 for abbreviations used. Left lines; → indicates stimulation and indicates inhibition. Arrows on right indicate sleep effects; ↑ increases, ↓ decrease and — no effect on sleep.
Figure 16: Sleep factors with multiple activities may selectively alter sleep by differentially interacting with various neuronal sets. The interactions may involve changes in intrinsic properties of the neurons involved. Each neuronal set has its own dynamic range of outputs affecting specific physiological systems. The involvement of any one set of neurons in sleep at any specific time is dependent upon which physiological system (SFs) are driving sleep.

<table>
<thead>
<tr>
<th>SLEEP FACTORS</th>
<th>NEURONAL SETS</th>
<th>NREMS PROPENSITY</th>
<th>BODY TEMPERATURE</th>
<th>BLOOD GLUCOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 - 6</td>
<td>1 - 3</td>
<td>1 - 2</td>
</tr>
<tr>
<td>W</td>
<td>A</td>
<td>1 - 6</td>
<td>1 - 2</td>
<td>1 - 5</td>
</tr>
<tr>
<td>X</td>
<td>B</td>
<td>1 - 6</td>
<td>1 - 8</td>
<td>1 - 5</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>C</td>
<td>1 - 2</td>
<td>1 - 8</td>
<td>1 - 5</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

5 copies
Director
Walter Reed Army Institute of Research
Walter Reed Army Medical Center
ATTN: SGRD-UWZ-C
Washington, DC 20307-5100

1 copy
Commander
U.S. Army Medical Research and Development Command
ATTN: SGRD-RMI-S
Fort Detrick, Frederick, MD 21702-5012

2 copies
Defense Technical Information Center (DTIC)
ATTN: DTIC-FDAC
Cameron Station
Alexandria, VA 22304-6145

1 copy
Dean
School of Medicine
Uniformed Services University of the Health Sciences
4310 Jones Bridge Road
Bethesda, MD 20814-4799

1 copy
Commandant
Academy of Health Sciences, U.S. Army
ATTN: AHS-CDM
Fort Sam Houston, TX 78234-6100