ABSTRACT

A uniformly aligned multilayer of membranes containing peptides has one-dimensional structural order in which the bilayers are the unit cells and preserves the orientational order of peptides relative to the plane of membrane. Our goal is to develop methods to extract these structural information, and use such methods to study the structural bases of the voltage-gating mechanisms in model channels. In the past year, we have developed the method of oriented circular dichroism, by which we can indeed extract the orientational information of helical peptides in membrane. We have also found that our multilayer samples produce high resolution diffraction data, from which we can obtain the one-dimensional electron density profiles of peptides in bilayer membranes, in particular the position of heavy atomic ions. This report describes the application of these methods to study the voltage-gating mechanism of the alamethicin channel and the location of ion binding sites of the gramicidin channel.
ANNUAL REPORT ON GRANT N00014-90-J-1020

PRINCIPAL INVESTIGATOR: Huey W. Huang
GRANTEE: Rice University
GRANT TITLE: Investigating the Structural Bases of Voltage-gated Model Channels by Using Perfectly Aligned Multilayer Samples

INTRODUCTION

It is clear that membrane proteins need to be studied with all available probes. In this project, we choose to study channel-forming peptides in uniformly aligned multilayer membranes. This system has one-dimensional structural order in which the bilayers are the unit cells and contains the orientational order of peptides relative to the plane of membrane. Our goal is to develop methods to extract these structural information, and use such methods to study the structural bases of the voltage-gating mechanisms in model channels.

In the past year, we have developed the method of oriented circular dichroism (Wu, Huang & Olah, 1990), by which we can indeed extract the orientational information of helical peptides in membrane. We have also found that our multilayer samples produce high resolution diffraction data, from which we can obtain the one-dimensional electron density profiles of peptides in bilayer membranes, in particular the position of heavy atomic ions. We have applied these methods to study alamethicin and gramicidin.

VOLTAGE-GATING MECHANISM OF ALAMETHICIN

Although the voltage-dependent alamethicin channel is one of the best characterized ion channels, so far no agreement has been reached about which model best describes all the experimental data. While the barrel-stave configuration is accepted by most investigators as a good description of the conducting state of alamethicin, there are conflicting reports on its nonconducting state—in the absence of an applied field, some found alamethicin molecules on the membrane surface, but others found them incorporated in the hydrophobic core of the membrane. This problem is now resolved by the discovery of a phase transition of alamethicin in membrane. We have discovered that, as a function of lipid/peptide ratio L/P and the chemical potential of water μ, alamethicin molecules are either all bind parallel to the membrane surface or all insert perpendicularly into the membrane. The state of alamethicin was monitored by the method of oriented circular dichroism, using aligned multilayer samples in the liquid crystalline Lα phase (Fig.1). If L/P exceeds a critical value, all peptide molecules are on the membrane surface. If L/P is below the critical value, all peptide molecules are incorporated in the membrane when μ is high; when μ is low, alamethicin is again on the membrane surface (Fig.2). In a typical conduction experiment, alamethicin molecules are partitioned between the aqueous phase and the lipid phase;
in the lipid phase, the lipid/peptide ratio is such that all alamethicin molecules are on the membrane surface in the absence of a field. When an electric field is applied, it is those surface peptide molecules (rather than those in the aqueous phase) which will probabilistically turn into the membrane to form channels. The phase transition is a manifestation of membrane-mediated intermolecular interactions between peptide molecules. It can be qualitatively explained in terms of a model (Huang and Wu, 1990).

LOCATION OF ION BINDING SITES IN THE GRAMICIDIN CHANNEL

This is the first x-ray diffraction on gramicidin in its membrane-active form. High-resolution Bragg reflections of uniformly aligned multilayer samples of membranes containing gramicidin and ions (Tl+, K+, Ba++, Mg++ or without ions) are obtained. From the difference electron density profiles (Figs. 3-6), we found a pair of symmetrically located ion binding sites for Tl+ at 9.6±0.3Å and for Ba++ at 13.0±0.2Å from the midpoint of the gramicidin channel. The location of Ba++ binding sites is near the ends of the channel, consistent with the experimental observation that divalent cations do not permeate but block the channel. The location of Tl+ binding sites is somewhat a surprise. It was generally thought that monovalent cations bind to the first turn of the helix from the mouth of the channel. (It is now generally accepted that the gramicidin channel is a cylindrical pore formed by two monomers, each a single-stranded β6.3 helix and hydrogen-bonded head-to-head at their N-termini.) But our experiment shows that the Tl+ binding site is either near the bottom of or below the first turn of the helix. (Olah, Huang, Liu, and Wu, 1990)

FIGURE LEGENDS

Fig. 1 Oriented circular dichroism (OCD) of an aligned multilayer sample of DPhPC/alamethicin molar ratio 50/1 when the sample is in equilibrium with 100% RH (spectra I) and with 50% RH (spectra S). CD was measured with light incident at an angle α relative to the normal to the planes of bilayers. The α-dependence of spectra I indicates that the helical parts of alamethicin molecules are perpendicular to the plane of bilayer, whereas the α-dependence of spectra S indicates that the helices are parallel to the plane of bilayer. The solid lines for the α=0° spectra are the least-squares fits; the solid lines for the spectra of oblique angles are theoretical constructions from the α=0° spectra (Wu, Huang and Olah, 1990).

Fig. 2 The phase diagram for alamethicin in DPhPC on the plane of relative humidity (RH) versus the lipid/peptide molar ratio (L/P). A multilayer sample of a certain L/P was in turn equilibrated in humidity chambers of various RH; in each equilibrium state, its OCD was measured. If the OCD are spectra I (Fig. 1), indicating that alamethicin is in the inserted state, an open circle is shown at the corresponding L/P and RH. If the OCD are spectra S,
indicating that alamethicin is in the surface state, a black circle is shown. A gray circle implies that the OCD are linear superpositions of spectra I and spectra S, indicating that the state of alamethicin is a coexistent state. The shaded area for L/P=10/1 indicates that the sample at RH below 89% turned into the gel phase. In all other data points, the samples were in the L-α phase. We define a critical value of L/P, L/P*. For L/P greater than L/P*, the alamethicin is always in the surface state; for L/P small than L/P*, the alamethicin is always in the inserted state if the sample is in equilibrium at 100% RH. (Huang and Wu, 1990)

Fig. 3 Normalized electron density profiles of gramicidin/DLPC bilayers with Tl+ (dotted line), with K+ (dashed line) and without salt (solid line), all at the lamellar spacing 43.4 Å. (Olah, Huang, Liu and Wu, 1990)

Fig. 4 Difference electron density profiles. The top two are ρ(thallium sample)-ρ(salt free sample). The bottom two are ρ(thallium sample)-ρ(potassium sample). Solid lines are obtained from the profiles of lamellar spacings 43.4 Å; dotted lines from lamellar spacing 42.4 Å. (Olah, Huang, Liu, and Wu, 1990)

Fig. 5 Normalized electron density profiles of gramicidin/DLPC bilayers with Ba++ (dotted line) and with Mg++ (solid line), at lamellar spacing 42.8 Å. (Olah, Huang, Liu, and Wu, 1990)

Fig. 6 Difference electron density profiles ρ(barium sample)-ρ(magnesium sample) at lamellar spacing 42.8 Å and 44.4 Å. (Olah, Huang, Liu, and Wu, 1990)

PUBLICATIONS AND REPORTS:

Figure 1

$[\theta] \cdot 10^{-3}$ deg.cm2.decimol$^{-1}$

$\alpha=0^\circ$

$\alpha=27^\circ$

$\alpha=40^\circ$

$\alpha=40^\circ$

$\alpha=27^\circ$

$\alpha=0^\circ$

wavelength (nm)
Figure 2
Figure 3
Figure 4

\[\Delta p (\text{electrons/Å}^3) \] vs. distance (Å)
Figure 5
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Guenter Albrecht-Buehler</td>
<td>Dept. of Cell Biology, Northwestern Univ. Medical School, 303 E. Chicago Avenue, Chicago, IL 60611</td>
</tr>
<tr>
<td>Dr. Max Berkowitz</td>
<td>Dept. of Chemistry, Univ. of North Carolina, Chapel Hill, NC 27599-3290</td>
</tr>
<tr>
<td>Dr. Martin Blank</td>
<td>Dept. of Physiology, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032</td>
</tr>
<tr>
<td>Dr. William E. Brownell</td>
<td>Dept. of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205</td>
</tr>
<tr>
<td>Dr. Marco Colombini</td>
<td>Department of Zoology, University of Maryland College Park, MD 20742</td>
</tr>
<tr>
<td>Dr. Michael A. Cusanovich</td>
<td>Department of Biochemistry, University of Arizona, Tuscon, AZ 85721</td>
</tr>
<tr>
<td>Dr. D. W. Deamer</td>
<td>Department of Zoology, University of California, Davis, CA 95616</td>
</tr>
<tr>
<td>Dr. Edward A. Dratz</td>
<td>Department of Chemistry, Montana State University, Bozeman, MT 59717</td>
</tr>
<tr>
<td>Dr. Harvey M. Fishman</td>
<td>Dept. of Physiology & Biophysics, Univ. of Texas Medical Branch, Galveston, TX 77550</td>
</tr>
<tr>
<td>Dr. Sol M. Gruner</td>
<td>Dept. of Physics, Jadwin Hall, Princeton University, P. O. Box 708, Princeton, NJ 08544</td>
</tr>
<tr>
<td>Dr. M. Gutman</td>
<td>Tel Aviv University, Dept. of Biochemistry Laser Lab. for Fast Reactions in Biology, Ramat Aviv, 69978 Tel Aviv, Israel</td>
</tr>
<tr>
<td>Dr. Huey W. Huang</td>
<td>Department of Physics, Rice University, Houston, TX 77251</td>
</tr>
<tr>
<td>Dr. Israel R. Miller</td>
<td>Dept. of Membrane Res. Weizmann Inst. of Science, Rehovot 76100, Israel</td>
</tr>
<tr>
<td>Dr. Mauricio S. Montal</td>
<td>Dept. of Physics, B-019, Univ. of California, San Diego, La Jolla, CA 92093</td>
</tr>
<tr>
<td>Dr. V. Adrian Parsegian</td>
<td>Lab. of Chemical Biology, NIH, Room 9N-307, Building 10, Bethesda, MD 20892</td>
</tr>
<tr>
<td>Dr. David S. Perlin</td>
<td>Dept. of Biochemistry Public Health Res. Inst. 455 First Avenue, New York, NY 10016</td>
</tr>
<tr>
<td>Dr. H. Gilbert Smith</td>
<td>EG & G Mason Res. Inst. 57 Union Street, Worcester, MA 01608</td>
</tr>
<tr>
<td>Dr. Michael E. Starzak</td>
<td>Dept. of Chemistry State Univ. of New York, Binghamton, NY 13901</td>
</tr>
</tbody>
</table>
MEMBRANE ELECTROCHEMISTRY PROGRAM

Dr. Tian Y. Tsong
Department of Biochemistry
1479 Gortner Avenue
St. Paul, MN 55108

Dr. Peter Vanysek
Department of Chemistry
Northern Illinois University
De Kalb, IL 60115

Dr. Howard Wachtel
Dept. of Electrical & Computer Engineering
University of Colorado
Campus Box 425
Boulder, CO 80309

Dr. James C. Weaver
Div. Health Sciences & Technology
Room 20A-128
Massachusetts Institute of Technology
Cambridge, MA 02742

Dr. Michael J. Wilcox
Dept. of Anatomy
Univ. of New Mexico
School of Medicine
Basic Med. Sci. Building
North Campus
Albuquerque, NM 87131
Annual Final and Technical Reports

ADMINISTRATORS

Dr. Igor Vodyanoy, Code 1141SB (2 copies)
Scientific Officer, Biophysics
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Robert J. Nowak, Code 1113ES
Scientific Officer, Electrochemical
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Administrator (2 copies) (Enclose DTIC Form 50)
Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

Program Manager
Biological/Human Factors Division
Code 125
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Mr. Martial W. Davoust
Contract Administrator
Office of Naval Research
582 Federal Building
Austin, TX 78701

or

Program Manager Defense Technical
Support Technology Directorate
Office of Naval Technology, Code 223
800 N. Quincy Street
Arlington, VA 22217-5000

Annual and Final Reports Only (one copy each)

DoD ACTIVITIES

Commander
Chemical and Biological Sciences Division
Research Army Research Office, P. O. Box 1221
Research Triangle Park, NC 27709

Directorate of Life Sciences
Air Force Office of Scientific
Boiling Air Force Base Research
Washington, DC 20332

Head
Biomolecular Engineering Branch
Code 6190
Naval Research Laboratory
Washington, DC 20375