1. RESTRICTIVE MARKINGS

2. DISTRIBUTION/AVAILABILITY OF REPORT

 Approved for public release; distribution unlimited.

3. MONITORING ORGANIZATION REPORT NUMBER(S)

 AFOSR-TR-89-1869

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. NAME OF MONITORING ORGANIZATION

 AFOSR

6. NAME OF PERFORMING ORGANIZATION

 West Virginia University

7. ADDRESS (City, State, and ZIP Code)

 Cun-Quan Zhang, Mathematics Dept.
 West Virginia University, Morgantown, WV
 26506

8. NAME OF FUNDING/SPONSORING ORGANIZATION

 Air Force Office of Scientific Research

9. PROGRAM ELEMENT NO.

 AFOSR-89-0069

10. PROJECT NO.

 2304

11. TASK NO.

 A8

12. SOURCE OF FUNDING NUMBERS

13. TITLE (Include Security Classification)

 Long Path Connectivity of Regular Graphs

14. PERSONAL AUTHOR(S)

 Cun-Quan Zhang and Yong-Jin Zhu

15. TYPE OF REPORT

 Final Technical

16. DATE OF REPORT (Year, Month, Day)

 89/10/15

17. PAGE COUNT

 17

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

 Long Path Connectivity of Regular Graphs

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

 Any pair of vertices in a 4-connected, non-bipartite, k-regular graph are joined by a
 Hamilton path or a path of length at least 3k-6.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

 □ UNCLASSIFIED/UNLIMITED □ SAME AS RPT □ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

 □ UNCLASSIFIED

22. NAME OF RESPONSIBLE INDIVIDUAL

 □ DTIC USERS

23. TELEPHONE (Include Area Code)

 (262) 767-3020

DD Form 1473, JUN 86

Previous editions are obsolete.
LONG PATH CONNECTIVITY OF REGULAR GRAPHS

Cun-Quan Zhang*
Department of Mathematics
West Virginia University
Morgantown, WV 26506

Yong-Jin Zhu
Institute of System Science
Academia Sinica
Beijing, China

ABSTRACT: Any pair of vertices in a 4-connected non-bipartite k-regular graph are joined by a Hamilton path or a path of length at least 3k-6.

*This research was partially supported by AFOSR under grant 89-0068
The topics about Hamilton cycles, circumferences and Hamiltonian connectivities of regular graphs have been interesting many mathematicians in recent years ([2],[1],[4],[7],[3],[6]).

In this paper, we will investigate the length of a longest path joining any pair of vertices of regular graphs and establish the following theorem.

THEOREM 1

Let \(G \) be a 4-connected non-bipartite \(k \)-regular graph. Then any pair of distinct vertices of \(G \) are joined by a Hamilton path or a path of length at least \(3k-6 \).

In a sense, this theorem is a generalization of the following results.

(i) (Bollobas and Hobbs [1]) Any 2-connected \(k \)-regular graph of order at most \(\frac{9}{4}k \) contains a Hamilton cycle.

(ii) (Jackson [4]) Any 2-connected \(k \)-regular graph of order at most \(3k \) contains a Hamilton cycle.

(iii) (Zhu, Liu and Yu [7]) Any 2-connected \(k \)-regular graph of order at most \(3k+3 \) contains a Hamilton cycle.

(iv) (Fan [3]) The length of a longest cycle in a 3-connected \(k \)-regular graph of order \(n \) is at least \(\min\{n,3k\} \).

(v) (Zhang and Zhu [6]) Any pair of vertices of a 3-connected non-bipartite \(k \)-regular graph of order at most \(3k-4 \) are joined by a Hamilton path.

The condition of 4-connectivity in the theorem cannot be reduced. A 3-connected \(k \)-regular graph of order \(3k+3 \) containing no path of length at least \(2k+3 \) joining a pair of vertices can be constructed as follows. Let \(k=3h \). Let \(G_1, \ldots, G_9 \) be nine disjoint copies of complete graph \(K_h \) and
v_1, v_2, v_3 be three distinct vertices. Join an edge between each pair of
vertices in G_{3i+1} for $i=0,1,2$, and join an edge between v_j and each vertex of G_{3i+j} for $i=0,1,2$ and $j=1,2,3$. The induced graph contains $9h+3$ vertices and is $3h$-regular 3-connected, in which v_i and v_j are not joined by any path of length longer than $6h+2$ for $i,j \in \{1,2,3\}$.

(See fig. 1).

Actually, we can establish a result stronger than Theorem 1.

THEOREM 2. Let G be a 4-connected graph and x,y be a pair of distinct vertices of G such that

(i) $d(v)=k$ for any vertex $v \in V(G) \setminus \{x,y\}$,

(ii) $d(x), d(y) < k$.

Then the length of a longest path joining x and y is at least

(i) $\min \{ |V(G)| - 1, 3k-6 \}$ if G is not a bipartite graph, or G is a bipartite graph and x, y belong to different parts of the bipartition of G;

(ii) $\min \{ |V(G)| - 2, 3k-6 \}$ if G is a bipartite graph and x,y belong to the same part of the bipartition of G.

Let $G=(V,E)$ be a graph with vertex set V and edge set E. Let $P=\mathcal{P}_0 \cdots \mathcal{P}_p$ be a path of G. For $0 \leq i, j \leq p$, the segment $\mathcal{P}_i \cdots \mathcal{P}_j$ of P is denoted by $\mathcal{P}_i \mathcal{P}_j$ if $i < j$ or $\mathcal{P}_i \mathcal{P}_j$ if $i \geq j$. The length of a path P is the number of edges in P and is denoted by $\ell(P)$. Let H be a subgraph of G. Let w,w' be two vertices of H. The length of a longest
path of H joining w,w' is denoted by $L_H(w,w')$. Let v be a vertex of G. The set of vertices of H adjacent to v is denoted by $N_H(v)$ and the number of vertices of $N_H(v)$ is denoted by $d_H(v)$. When $V(H)=V(G)$, we simply write $d(v)$ and $N(v)$ instead of $d_G(v)$ and $N_G(v)$. Let $P=u_0\cdots u_p$ be a path of G and X be a subset of $V(P)$. Denote
\[
X_+^1=\{u_{i+1}=u_i\in X\}
\]
and \[
X_-^1=\{u_{i-1}=u_i\in X\}.
\]

Let $E(H,H')$ be the set of all ordered pairs of vertices (x,y) such that $(x,y)\in E(G)$ and $x\in V(H)$, $y\in V(H')$. And let $|E(H,H')|=e(H,H')$. Note that if $V(H)\cap V(H')\neq\emptyset$, each edge (x,y) in the induced subgraph $G(V(H)\cap V(H'))$ will counted twice in $e(H,H')$ since the ordered pairs (x,y) and (y,x) are considered deferent in $E(H,H')$. Thus $d(v)=e(v,G)$ for any vertex v of G and \[
\sum_{v\in V(H)}d(v)=e(H,G)
\]
for subgraph H of G.

PROOF OF THEOREM 2

The theorem will be proved by contradiction. Suppose that the length of a longest path $P=v_0\cdots v_p$ joining $x=v_0$ and $y=v_p$ is less than $3k-6$ and $G\setminus V(P)$ is not empty.

PART ONE. In this part, we will show that $G\setminus V(P)$ is an independent set of G. The following lemmas will be applied in this part.

LEMMA 1.1. (Lemma 4, [3]) Let H be a 2-connected graph and $Q=u_0\cdots u_q$ be a longest path of H. Then
\[
L_H(x,y)\geq\min\{d(u_0),d(u_q)\}
\]
for any pair of distinct vertices x and y in H.

```
Let $C$ be a set and $\{A_1, \ldots, A_a\}, \{B_1, \ldots, B_h\}$ be partitions of $C$ such that $a \geq 2$ and $|A_u \cap B_j| \leq 1$ for any $u \in \{1, \ldots, a\}$ and any $j \in \{1, \ldots, h\}$. If $B_1 \cap A_1 \neq \emptyset$, $B_j \cap A_0 \neq \emptyset$ and $B_{i+1} = \cdots = B_{j-1} = \emptyset$

for some $u, \emptyset \in \{1, \ldots, a\}$ and $u \neq \emptyset$, then $\{i, \ldots, j\}$ is called a closed extendible interval of $\{B_1, \ldots, B_h\}$.

**Lemma 1.2** (Lemma 3.2, [6]) Let $C$ be a set, $\{A_1, \ldots, A_a\}$ and $\{B_1, \ldots, B_h\}$ be partitions of $C$ defined as above. If $s$ is an integer such that $a \geq s$ and $|A_u| \geq s$ for each $u \in \{1, \ldots, a\}$, then $\{B_1, \ldots, B_h\}$ has at least $s-1$ closed extendible intervals.

Suppose that $G \setminus V(P)$ is not an independent set and let $W_0$ be a component of $G \setminus V(P)$ which contains at least two vertices. Let $T_1, \ldots, T_t$ be all end-blocks of $W_0$. (An end-block of $W_0$ is a block of $W_0$ which contains at most one cut-vertex of $W_0$).

1. We claim that there exists a longest path $Q_i = x_i^1 \ldots x_i^q$ in each $T_i$ such that

\[(i) \ d_{W_0}(x_i^1) \leq d_{W_0}(x_i^q) \text{ and } x_i^1 \text{ is not a cut-vertex of } W_0, \text{ and} \]

\[(ii) \ d_{W_0}(x_i^q) \text{ is as big as possible.} \]

Let $R = y_1, \ldots, y_r$ be a longest path in $T_i$ such that $d_{W_0}(y_1) \leq d_{W_0}(y_r)$. 


(a) If \( y_1 \) is a cut-vertex of \( W_0 \) and \( d_{T_1}(y_1) \geq 2 \), then there is another longest path \( y_u \overrightarrow{R} y_{u+1} \overrightarrow{R} y_r \) or \( y_r \overrightarrow{R} y_{u+1} y_1 \overrightarrow{R} y_u \) satisfying (i) for any \( y_{u+1} \in N_R(y_1) \setminus \{y_2\} \). Of all longest paths in \( T_1 \) satisfying (i), let
\[
Q_1 = x^1_1 \cdots x^1_q \] be the one with the largest \( d_{W_0}(x^1_1) \).

(b) If \( y_1 \) is a cut-vertex of \( W_0 \) and \( d_{T_1}(y_1) = 1 \), then \( |T_1| = 2 \) and \( R = y_1 y_2 \) since \( T_1 \) is a block. Hence \( d_{W_0}(y_2) = 1 \) and \( d_{W_0}(y_1) > 1 \) because \( y_1 \) is a cut-vertex of \( W_0 \). It contradicts the assumption that \( d_{W_0}(y_1) \leq d_{W_0}(y_r) \).

II. Let \( d = \max\{d_{W_0}(x^1_i): i = 1, \ldots, t\} \). Without loss of generality, let
\[
d = d_{W_0}(x^1_1).\]

(i) When \( d \geq 2 \) and \( N^{-1}_{Q_1}(x^1_1) \cap \{\text{cut-vertices of } W_0\} = \emptyset \), let \( Z = N^{-1}_{Q_1}(x^1_1). \)

(ii) When \( d \geq 2 \) and \( x^1_0 \) is a vertex of \( N^{-1}_{Q_1}(x^1_1) \cap \{\text{cut-vertices of } W_0\} \).

Let \( Z = [N^{-1}_{Q_1}(x^1_1) \setminus \{x^1_0\}] \cup \{x^2_2\}. \)

In both cases (i) and (ii), we have that \( |Z| = |N^{-1}_{Q_1}(x^1_1)| - d_{W_0}(x^1_1) - d \), and by Lemma 1.1,
for each pair of distinct vertices, \( z, z' \in V(T_1) \). If \( z \in Z \cap V(T_1) \) and 
\( z' \in Z \setminus T_1 \) we have that \( z' = x_1^2 \) and 
\[
L_{W_0} (z, z') \geq L_{W_0} (z, x_1^1) + L_{W_0} (x_1^1, x_2^2)
\]
\[
\geq L_{T_1} (z, x_1^1)
\]
\[
\geq d
\]

By the choice of \( Q_1 \) and \( x_1^1 \), it follows that
\[
d = d_{W_0} (x_1^1) \geq d_{W_0} (z)
\]

for each \( z \in Z \).

(iii) When \( d = 1 \), \( T_1 \) is a single edge \((x_1^1, x_2^1)\). Hence, \( x_1^1 \) is a degree one vertex of \( W_0 \) and \( x_2^1 \) is either a cut-vertex of \( W_0 \) if \( W_0 \cap T_1 \), or a degree one vertex of \( W_0 \) if \( W_0 \cap T_1 \). If \( W_0 \cap T_1 \), then let \( Z = \{ x_1^1, x_2^1 \} \). If
by the choice of \( x_1^1 \), we must have that \( d_{W_0}(x_1^2) \leq d_{W_0}(x_1^1) \) and

\( x_1^2 \) is a degree one vertex of \( W_0 \). Then let

\[ Z = \{ x_1^1, x_1^2 \}. \]

Thus in either case, \( d_{W_0}(z) = 1 \) for any \( z \in Z \).

So we always have that

\[ |Z| = \max\{d, 2\}, \quad \cdots \cdots \quad (1) \]

\[ d_{W_0}(z, z') \geq d, \quad \cdots \cdots \quad (2) \]

\[ d_{W_0}(z) \leq d \text{ and } d_P(z) \geq k-d \quad \cdots \cdots \quad (3) \]

for each pair of distinct vertices \( z \) and \( z' \) of \( Z \). And

\[ |T_1| \geq d+1 \quad \cdots \cdots \quad (4) \]

since \( d = d_{W_0}(x_1^1) = d_{T_1}(x_1^1) \).

III. We claim that \( 1 \leq d \leq k-4 \).

Suppose that \( d \geq k-3 \). Since \( G \) is \( k \)-connected, there are four intermediately disjoint paths \( P_1 = v_{i_1} \cdots v_{i_\mu} \) joining \( T_1 \) and \( P \) for

\[ \mu = 1, \cdots, \mu \] where \( \{ v_{i_1}, v_{i_2}, v_{i_3}, v_{i_4} \} \) are distinct vertices of \( P \),

\[ 0 \leq i_1 < i_2 < i_3 < i_4 \leq p, \{ x_1, x_2, x_3, x_4 \} \text{ belong to } T_1 \text{ and} \]

\[ |\{ x_1, \cdots, x_4 \}| = \min\{ |T_1|, 4 \}. \]
Let $R_u$ be a path joining $x_u$ and $x_{u+1}$ in $T_1$ such that $R_u$ is of length at least $d$ if $x_u \neq x_{u+1}$ (by Lemma 1.1), or $R_u = x_u$ if $x_u = x_{u+1}$. Then

$$\ell(v_i P v_{i+1}) \geq \ell(v_i P R x u R x_{u+1} P + 1 v_i) \geq d + 2$$

if $x_u \neq x_{u+1}$, or

$$\ell(v_i P v_{i+1}) \geq \ell(v_i P x P + 1 v_i) \geq 2$$

if $x_u = x_{u+1}$ since $P$ is a longest path joining $v_0$ and $v_p$.

If $|T_1| \geq 4$, then $\{x_1, x_2, x_3, x_4\}$ are a set distinct vertices and

$$\ell(P) \geq \frac{3}{\mu = 1} \ell(v_i P v_{i+1})$$

$$\geq 3(d + 2)$$

$$\geq 3k - 3 \quad \text{(by $d \geq k - 3$).}$$

It contradicts the assumption that $\ell(P) < 3k - 6$. Therefore $|T_1| \leq 3$ and some $x_i$ and $x_j$ of $\{x_1, x_2, x_3, x_4\}$ are the same vertex. However,

$$3k - 7 \geq \ell(P) \geq \frac{3}{\mu = 1} \ell(v_i P v_{i+1})$$

$$\geq \sum_{\mu \neq u} \ell(v_i P v_{i+1}) + \sum_{\mu = u} \ell(v_i P v_{i+1})$$

$$\geq (d + 2)(|T_1| - 1) + 2(4 - |T_1|)$$

$$= d(|T_1| - 1) + 6$$

$$\geq d^2 + 6 \quad \text{(by (4))}$$

$$\geq k^2 - 6k + 15 \quad \text{(by $d \geq k - 3$).}$$
Thus $0 \geq k^2 - 9k + 22$. But the value of $k^2 - 9k + 22$ is always positive for any $k$. It leads to a contradiction and follows our claim.

IV. Now we wish to show the following inequality

$$l(P) \geq (k-d-1)(d+2)$$ \hspace{1cm} (5)

Let $z, z'$ be a pair of distinct vertices of $Z$. We have known that

$d_p(z), d_p(z') \geq k - d$ and $\ell_{w_0}(z, z') \geq d$ (by (2) and (3)). Let

$$N_p(z) \cap N_p(z') = \sigma(z, z')$. Since $P$ is a longest path joining $v_0$ and $v_p$, $N_p(z) \cup N_p(z')$ does not contain two consecutive vertices of $P$. Let

$$\{v_1, \cdots, v_r\} = N_p(z) \cup N_p(z')$. Then $[v_1, \cdots, v_r] \cap [N_p(z) \cup N_p(z')]$ contains $r - 1$ open segments. A segment $v_i P v_{i+1}$ is called extendible with respect to $\{v, z', v_{i+1}\}$ if either $v_i \in N(z)$ and $v_{i+1} \notin N(z)$ or $v_i \notin N(z)$ and $v_{i+1} \in N(z)$.

Otherwise, it is called unextendible. It is not very hard to see that $P$ has at least $\sigma(z, z') - 1$ extendible segments with respect to $[z, z']$. Since $P$ is a longest path joining $v_0$ and $v_p$ and $\ell_{w_0}(z, z') \geq d$, each extendible segment is of length at least $d + 2$ and each unextendible segment is of length at least two.

(i) If there is a pair of distinct vertices $\{z_1, z_2\}$ of $Z$ such that $P$ has $\sigma(z_1, z_2)$ or $\sigma(z, z') - 1$ extendible segments with respect to $\{z_1, z_2\}$ then one of $\{N_p(z_1), N_p(z_2)\}$ must be a subset of another one and
\( \chi(z_1, z_2) \leq \min \{ |N_p(z_1)|, |N_p(z_2)| \} \geq k-d. \)

So

\[
I(P) \geq \text{(total length of all extendible segments)} \\
\geq (d+2)(\sigma(z_1, z_2) - 1) \\
\geq (d+2)(k-d-1). \quad \text{(since } \sigma(z_1, z_2) \geq k-d) \]

Thus we have established the inequality (5) in this case, and therefore we will assume that \( P \) has at least \( \alpha(z, z') + 1 \) extendible segments with respect to any pair of distinct vertices \( \{z, z'\} \) of \( Z \).

(ii) Case 1. \( d \leq \frac{k}{2} \)

Let \( \sigma = \max \{ \sigma(z, z') \mid z, z' \text{ are a pair of distinct vertices of } Z \} \).
Choose a pair of distinct vertices \( z_1 \) and \( z_2 \) of \( Z \) such that \( \sigma(z_1, z_2) = \sigma \)
and let \( r = |N_p(z_1) \cup N_p(z_2)| \). It is clear that

\[
r + \sigma = |N_p(z_1)| + |N_p(z_2)| \geq 2(k-d) \quad \ldots \ldots \quad (6)
\
r = |N_p(z_1)| \geq k - d \quad \ldots \ldots \quad (7)

Since \( P \) has at least \( \sigma + 1 \) extendible segments with respect to \( \{z_1, z_2\} \), we have that

\[
I(P) \leq \text{(total length of all extendible segments with} \\
\text{respect to } \{z_1, z_2\} + \\
\text{(total length of all unextendible segments with} \\
\text{respect to } \{z_1, z_2\}) \\
\geq (d+2)(\sigma+1) + 2[(r-1)-(\sigma+1)] \\
= 2r + 2d + d - 2 \\
\geq 2[2(k-d)-\sigma] + 2d + d - 2 \quad \text{(since } r \geq 2(k-d) - \sigma \text{ by (6)})
\]
\[ \begin{align*}
&= 4k - 4d - 2a + ad + d - 2 \\
&= (4k - 2d) - 2d + (a + 1)(d - 2) \\
&\geq 3k - 2d + (a + 1)(d - 2) \\
&\quad \text{ (since } d \leq \frac{k}{2})
\end{align*} \]

Thus \[ 3k - 7 \geq l(P) \geq 3k - 2d + (a + 1)(d - 2) \] \hspace{1cm} (8)

if \( a \geq 1 \), by (8), we have that
\[ 3k - 7 \geq 3k - 2d + 2(d - 2) \]
\[ = 3k - 4. \]

It is a contradiction and hence we have that \( a = 0 \). If \( d \leq 4 \), by (8), we have that
\[ 3k - 7 \geq l(P) \geq 3k - 2d + (d - 2) \]
\[ \quad \text{ (since } a = 0) \]
\[ \geq 3k - 6 \]
\[ \quad \text{ (since } d \leq 4). \]

It is also a contradiction and therefore we must have that \( d \geq 5 \). Note that
\[ |Z| \geq d \geq 5 \]
let \( z, z', z'' \) be three distinct vertices of \( Z \). By the definition of \( a \) and \( a = 0 \), the subsets \( N_p(z) \), \( N_p(z') \) and \( N_p(z'') \) of \( V(P) \) are pairwise disjoint. Hence
\[ |N_p(z) \cup N_p(z') \cup N_p(z'')| \geq 3(k - d) \]
and \( P \) has at least \( 3(k - d) - 1 \) segments each of which is of length at least two. So
\[ l(P) \geq 2[3(k - d) - 1] \]
\[ = 6k - 6d - 2 \]
\[ \geq 3k - 2 \]
\[ \quad \text{ (since } d \leq \frac{k}{2}). \]

It contradicts that \( l(P) \leq 3k - 7 \).
(iii) Case 2. \( d \geq \frac{k}{2} \).

Let \( C=E(Z,P) \) be a set and

\[ \{ A_z = E(z,P) : \text{for each } z \in Z \} \]

and

\[ \{ B_i = E(Z,v_i) : \text{for each } v_i \in V(P) \} \]

be partitions of \( C \). Note that \( |A_z| = |Z| - d \geq k-d \) and \( |A_z| = dp(z) \geq k-d \) for any \( z \in Z \) (by (3)), \( |A_z \cap B_i| \leq 1 \) for any \( z \in Z \) and \( v_i \in V(P) \). We can apply Lemma 1.2 on \( C \) and these two partitions of \( C \). Thus \( P \) has at least \( k-d+1 \) extendible segments each of which is of length at least \( d+2 \) and therefore

\[ \ell(P) \geq (\text{total length of all extendible segments}) \]

\[ \geq (d+2)(k-d-1) \]

and the inequality (5) holds for all cases.

V. Since \( 1 \leq d \leq k-4 \), the minimum value of \( (d+2)(k-d-1) \) is \( 3k-6 \) it contradicts that \( \ell(P) < 3k-6 \) and therefore, \( C \setminus V(P) \) is an independent set.

Part two.

It has been shown in part one that \( W=C \setminus V(P) \) is an independent set. Let \( w \in W \). Following [5], put \( Y_0 = \emptyset \) and for \( i \geq 1 \), put

\[ X_i = N(Y_{i-1} \cup \{W\}) \]

and

\[ Y_i = \{ v_j \in V(P) : v_{j-1} \in X_i \text{ and } v_{j+1} \in X_i \} \].

Thus \( N(w) \subseteq X_1 \subseteq X_2 \cdots \) and \( \emptyset = Y_0 \subseteq Y_1 \subseteq Y_2 \cdots \).
Put $X = \bigcup_{i=1}^{\infty} X_i$ and $Y = \bigcup_{i=1}^{\infty} Y_i$. The follow lemma has been proved in [6] and will be applied in this part of the proof.

**LEMMA 2.1.**

(i) (direct conclusion of the definition) $Y \subseteq V(P) \setminus \{v_0, v_p\}$ and $Y = (X \cap P)^{-1} \cup (X \cap P)^{-1}$.

(ii) (Lemma 4.4. [6]) $X$ does not contain two consecutive vertices of $P$.

(iii) (Lemma 4.4. [6]) $X \cap Y = \emptyset$.

(iv) (Lemma 4.7. [6]) $Y \cup W$ is an independent set of $G$, $N(Y) \subseteq V(P)$ and $N(Y \cup \{w\}) = X \subseteq V(P)$.

(v) $e(X, Y \cup \{w\}) = k(|Y| + 1)$ and $e(V', Y \cup \{w\}) = 0$ for any subset $V'$ of $V(G) \setminus X$.

**Proof.** We only need to prove (v). By (i) $v_0, v_p \not\in Y \cup \{w\}$, it follows that $d(v_i) = k$ for any $v_i \in Y \cup \{w\}$. Since $X = N(Y \cup \{w\})$, $e(Y \cup \{w\}, X) = e(Y \cup \{w\}, G) = k |Y \cup \{w\}|$ and $N(Y \cup \{w\}) \cap V' = \emptyset$ for any subset $V'$ of $V(G) \setminus X$.

Put $|X| = x$ and $|Y| = y$. Then $P \setminus XVY$ is a union of at most $x^2y^2$ segments of $P$. Let $S_1, \ldots, S_{t-1}$ be the segments of $P \setminus XVY$ not containing $v_0$ and $v_p$. Let $S_0$ (or $S_t$) be the segment of $P \setminus XVY$ containing $v_0$ (or $v_p$, respectively) if $v_0$ (or $v_p$, respectively) does not belong to $X$.

Obviously, $S_0 = \emptyset$ (or $S_t = \emptyset$) if $v_0 \not\in X$ (or $v_p \not\in X$, respectively). It is easy
to see that $|S_i| \geq 2$ for $1 \leq i \leq t-1$ and $t=x-\psi$. Let $S = \bigcup_{i=0}^{t} S_i$. Here $V(P) = X \cup Y \cup S$, by (i) and (iv) of Lemma 2.1.

Here $V(P) = X \cup Y \cup S$, by (i) and (iv) of Lemma 2.1.

Case 1. $S \neq \emptyset$.

Let $Z_i = S_i \cap (X^t \cup X^{-t})$ and $Z = \bigcup_{i=0}^{t} Z_i$. We have that

**LEMMA 2.2** (Lemma 4.8, [6])

$$e(Z,S) \leq (t-\lambda)(|S| - t + 3)$$

where $\lambda = 0$ if $S_0 \cup S_t \neq \emptyset$ and $\lambda = 1$ if $S_0 \cup S_t = \emptyset$.

and

**LEMMA 2.3** ( Lemma 4.9, [6])

$$e(X,W \setminus \{w\}) \geq e(Z,W \setminus \{w\})$$

Now we can prove our theorem in this case. Since

$$kX \geq e(X,G) \geq e(X,Z) + e(X,Y \cup \{w\}) = e(X,W \setminus \{w\})$$

and

$$k |Z| = e(Z,G) = e(Z,X) + e(Z,Y \cup \{w\}) + e(Z,S) + e(Z,W \setminus \{w\}),$$

we have that

$$kX - e(X,Y \cup \{w\}) - e(X,W \setminus \{w\}) \geq e(X,Z)$$

$$= e(Z,X)$$

$$= k |Z| - e(Z,S) - e(Z,W \setminus \{w\}) - e(Z,Y \cup \{w\}).$$

Thus

$$kX - k(\psi + 1) - e(X,W \setminus \{w\})$$

$$\geq k |Z| - e(Z,S) - e(Z,W \setminus \{w\})$$

by (v) of Lemma 2.1. Note that $x-\psi = t$ and

$$e(X,W \setminus \{w\}) \geq e(Z,W \setminus \{w\})$$

(by Lemma 2.3), it follows that
\[ e(Z, S) \geq -kt+k+|Z|. \]

When \( S_0 \cup S_t \neq \emptyset, |Z| \geq 2t-1. \) By Lemma 2.2,

\[ t(|S|-t+3) \geq -kt+k+2k(t-1). \]

Simplifying the above inequality, we have that

\[ |S| \geq t-3+k. \]

When \( S_0 \cup S_t = \emptyset, |Z| = 2(t-1). \) By Lemma 2.2,

\[ (t-1)(|S|-t+3) \geq -kt+k+2k(t-1). \]

Simplifying the above inequality, we obtain the inequality (9) again. Since \( V(P) = S \cup X \cup Y, \) and \( t+4 = x \geq |N(w)| = k, \)

\[ \ell(P) + 1 = |V(P)| - |S| \cup X \cup Y | \]

\[ \geq (t-3+k) + x + \psi \]

\[ = k + 2x - 3 \]

\[ \geq 3k-3 \]

It contradicts that \( \ell(P) < 3k-6 \) and therefore the path joining \( v_0 \) and \( v_p \)

is of length at least \( 3k-6 \) in the case of \( S \neq \emptyset. \)

Case two. \( S = \emptyset. \) In this case, we must have \( p=\ell(P) \) is even and

\( X = \{ v_{2i} : i=0, \cdots, \frac{p}{2} \}, Y = \{ v_{2i-1} : i=1, \cdots, \frac{p}{2} \}. \) Thus \( |Yu[w]| = |X|. \) We claim

that \( X \) is also an independent set and \( N(X) \subseteq Yu[w]. \) By (v) of Lemma 2.1, we have that

\[ e(Yu[w], X) = k \mid Yu[w] \mid = k \mid X \mid. \]

Since the maximum degree of \( G \) is \( k, \) all neighbors of every vertex of \( X \)

are contained in \( Yu[w]. \)

Moreover, by (iv) of Lemma 2.1, both \( X \) and \( Yu[w] \) are independent sets and

\[ E(X,Yu[w]) = E(X,G) = E(G,Yu[w]). \]
The connectivity of $G$ implies that $V(G)=X\cup Y\cup \{w\}$. Thus $(X,Y \setminus \{w\})$ is a bipartition of $G$ and $v_0,v_p$ are joined by a path of length $|V(G)|-2$.

REFERENCES


[6]. Zhang, C. Q. and Zhu, Y. J., Hamiltonian connectivity and factorization.

fig. 1.