CATHODIC STRIPPING VOLTAMMETRY OF THIOAMIDES ON A ROTATING SILVER DISK EL. (U) STATE UNIV OF NEW YORK AT BUFFALO DEPT OF CHEMISTRY M IWAMOTO ET AL. JAN 84

UNCLASSIFIED

SUNYBUF/DC/TR-17 N00014-79-C-0682

F/G 7/4
Title: Cathodic Stripping Voltammetry of Thioamides on a Rotating Silver Disk Electrode

Authors: Mizuho Iwamoto and R.A. Osteryoung

Abstract:
Cathodic stripping voltammetry at a rotating silver disc electrode has been applied for the determination of five thioamides; thioacetamide (TAA), thiourea (TU), thionicotinamide (TNA), ethionamide (ETNA), and thiosemicarbazide (TSC). Well defined oxidation waves limited by convective diffusion were found at -0.29, -0.12, -0.27, -0.15 and -0.105 V vs SCE for the five amides in a pH
9.2 borate buffer. Stripping peaks appeared at ~ -0.76 V vs SCE, approximately identical to that for S^{2-}, which, however, produces an oxidation wave at -0.66 V vs SCE. It is suggested that the insoluble compounds formed in the electrode surface are converted to Ag_2S. Linear cathodic stripping peak currents were found over a concentration range of $\sim 10^{-7}$ M to 10^{-5} M.
CATHODIC STRIPPING VOLTAMMETRY OF THIOAMIDES
ON A ROTATING SILVER DISK ELECTRODE
by
Mizuho Iwamoto and R.A. Osteryoung

Prepared for Publication in
Journal Electroanalytical Chemistry And Interfacial Electrochemistry

Department of Chemistry
State University of New York at Buffalo
Buffalo, New York 14214

January, 1984

Reproduction in whole or in part is permitted for any purpose of the
United States Government

Approved for Public Release: Distribution Unlimited
Cathodic stripping voltammetry at a rotating silver disc electrode has been applied for the determination of five thioamides; thioacetamide (TAA), thiourea (TU), thionicotinamide (TNA), ethionamide (ETNA), and thiosemicarbazide (TSC). Well defined oxidation waves limited by convective diffusion were found at -0.29, -0.12, -0.27, -0.15 and -0.105 V vs SCE for the five amides in a pH 9.7 borate buffer. Stripping peaks appeared at -0.76 V vs SCE, approximately identical to that for S²⁻, which, however, produces an oxidation wave at -0.66 V vs SCE. It is suggested that the insoluble compounds formed in the electrode surface are converted to Ag₂S. Linear cathodic stripping peak currents were found over a concentration range of 10⁻⁷ M to 10⁻⁵ M.
Introduction

Cathodic stripping voltammetry (CSV) has been employed for analysis of inorganic anions and organic materials which form sparingly soluble compounds with the electrode. Species which have been determined by CSV include halides, sulfide, etc. (1) and oxalate, succinate, dithizonate, diethyldithiophosphate, cysteine, ruheanic acid, thioanilide, dimercaptothiodiazide (7), thiourea (3) 2-mercaptohenzothiazole (4) diethyldithiocarbamate (5) and 2-mercaptothiazine N-oxide (6). Recently the CSV behavior of a wide range of organic sulphur compounds, flavins and porphyri.s were surveyed by Florence (7). Several extensive reviews covering CSV for the determination of biological compounds have appeared (8,9).

Most applications reported have been carried out at hanging mercury drop or mercury pool electrodes. Stripping voltammetry at solid electrodes has been performed on platinum (10), gold (11) and graphite or carbon (12).

Silver electrodes have been applied for the determination of trace amounts of halides (13) and thiocyanide (14). We have used a silver rotating disk electrode (AgRDE) for the determination of sulfide (15), with detection limits exceeding those of ion selective electrodes. Recently, the CSV of thiouracil on a AgRDE accompanied by complicated adsorption processes has been studied (16). The use of a AgRNF in CSV has the following advantages; 1) sparingly soluble compounds (similar to those on Hg) might be formed during anodic oxidation of solutes at silver electrodes; 2) rotating disk electrodes provide increased mass transport to the electrode surface and well defined hydrodynamic conditions compared
to a stationary electrode in a stirred solution (17,18); 3) solid electrodes for CSV are advantageous when compared to Hg which has both handling and toxicity problems.

The polarographic and voltammetric behavior of several thioamides on Hg, e.g. thiourea (3,19), thioacetamide (20), ethionamide (21) and other thioamides of pharmaceutical importance (22), have been studied, and some of these studies have involved CSV (3,21,22).

The purpose of the present work is to ascertain if CSV at a AgRnF can be utilized for compounds of biological importance. Five thioamides, thioacetamide (TAA), thiourea (TU), thionicotinamide (TNA), ethionamide (ETNA) and thiosemicarbazide (TSC), were investigated:

- Thioacetamide (TAA) $R = -CH_3$
- Thiourea (TU) $R = -NH_2$
- Thionicotinamide (TNA) $R = \text{structure}$
- Ethionamide (ETNA) $R = \text{structure}$
- Thiosemicarbazide (TSC) $R = -NHNH_2$
Experimental

Reagents

Thioacetamide (TAA), thionicotinamide (TNA), ethionamide (ETNA), and thiosemicarbazide (TSC) were obtained from Sigma Chemical Co., and thiourea (TU) from Fisher Scientific. Stock solutions of 1 x 10^{-2} M TAA, TSC and TU and 1 x 10^{-3} M TNA and ETNA were prepared with deionized water and were stored in a refrigerator. Possible changes in concentration from hydrolysis of the thioamides were monitored by measuring the UV spectra. Analytical grade Na_{2}B_{4}O_{7} was obtained from Fisher Scientific. 0.05 M buffer solutions were prepared and adjusted to be at least 100 times greater in concentration than the thioamides. The solution pH, adjusted to 9.2, was measured before and after each experiment.

Apparatus

A Pine Instrument's rotating silver disk electrode was mounted on a Pine Model ASR rotator. The geometrical surface area of the rotating disk was 0.442 cm^{2}. The electrode surface was polished prior to immersion in the electrolyte solution with 0.3 μm and 0.05 μm alumina (Dry Power, Type A, Fisher Scientific Co.) for at least 15 minutes on a Minimet Polisher (Ruehler Ltd.). The surface condition and preparation of the silver electrode were extremely important to the cathodic stripping peaks of the thioamides. The silver surface was polished with 45 μm, 15 μm and 6 μm diamond, and 1 μm, 0.3 μm and 0.05 μm alumina to remove scratches. This surface was examined through a microscope to ascertain if scratches were still noticeable. A satisfactory electrode surface was taken as one where the background current was about 10 μA/cm^{2} at approximately -1 V. If the background current had a value greater than 25 μA/cm^{2} and gave a hydrogen
evolution current which increased steeply at potentials more negative than -1.2 V, the possibility of electrode leakage at the disc was suspected. A small leak affects CSV of the thioamides for concentrations less than 10^-6 M.

An EG&G PARC Model 173 potentiostat/galvanostat equipped with a Model 179 digital coulometer and Model 175 universal programmer was used for voltammetric measurements. An Omnigraph Model 2000 X-Y recorder (Houston Instrument Co.) was used for recording voltammograms. All potentials were measured against a saturated calomel electrode (SCE). A large platinum counter-electrode was used.

Procedure

Ruffer solution poured into a 250 cm^3 pyrex glass electrolytic cell was deaerated by bubbling with argon for 30 minutes at a constant potential of -1.0V until a current less than 10 μA was obtained. After background voltammograms were obtained, the thioamide solution was added to the background solution with an Eppendorff pipet. The potential was then stepped to the deposition potential; the electrode was rotated during the deposition of thioamide. During deposition and stripping processes the solution was covered by an argon purge. The temperature was 25 ± 0.5°C.

The deposited film was cathodically stripped by means of a linear potential scan. The charge passed during deposition was measured by the coulometer and the charge passed during stripping was determined by integrating the recorder chart paper by cutting out the stripping current-potential (time) curve and weighing.
Results and Discussion

Cyclic Voltammograms at AgRDE

Cyclic voltammograms at a AgRDE for TAA, TU, TNA, ETNA and TSC at
~10^{-4} \text{ M in pH 9.2 borate buffers are shown in Figs. 1-5.} The thioamides
give anodic currents (process 1 in Fig. 1-5) corresponding to the formation
of sparingly soluble silver compounds (see below) at half-wave potentials
(E_{1/2}) of: TAA)-0.29 \text{ V; TU} -0.12 \text{ V; TMA})-0.27 \text{ V; ETNA) } -0.15 \text{ V and TSC}
-0.105 \text{ V vs. SCE, respectively. Limiting currents plotted against the
square root of rotation rate (} \omega^{1/2} \text{) showed linear behavior (Fig. 6),
passing through the origin, and were proportional to concentration,
indicating control by convective diffusion of the thioamides from the bulk
solution. Figure 7 shows anodic current at less than limiting current
values plotted vs } \omega^{1/2} \text{ for TAA for various potentials. The convex
curves indicate chemical and/or electrochemical complications but were not
investigated further.

Thiourea produces a second wave at potentials more positive than
+0.15V (process 2 in Fig 2), which is due to oxidation of TU to the
disulfide (19). In the cases of ETNA and TNA, a spike "peak" appears prior
to the limiting current, which may correspond to nucleation of the Ag
compound on the electrode surface. The E_{1/2} of ETNA on anodic scan is
more positive than that on the reverse, cathodic scan, indicating that the
formation of a Ag-ETNA compound is inhibited by a strong adsorption of ETNA
on the Ag surface. TSC gives less-defined anodic waves with hysteresis,
suggesting more complicated electrode reactions.

All the thioamides studied show clear cathodic stripping peaks
suitable for determination of each thioamide (process 3 in Figs. 1-5) with
peak potentials (E_p) of -0.70 to -0.80 V. ETNA and TNA show a reduction current at about -1.0 V which is independent of the anodic deposition (process 4 in Fig. 3 and 4). The limiting reduction current of ETNA is proportional to its concentrations. These reduction currents may result from catalytic hydrogen evolution of the primary thioamide (22).

A comparison of the anodic charge (Q_a) passed during the deposition to cathodic charge (Q_c) consumed during stripping is shown in Table I. Q_c for TAA, TU, TNA and FTNA are almost the same as Q_a in 10^{-4} M solutions. The results indicate that at a high concentration of these four thioamides anodically deposited silver-thioamide compounds at a silver electrode do not dissolve chemically and are not removed mechanically during deposition; deposits are completely stripped during the cathodic scan. Contrary to this, Q_c of TSC is $1/3$ of Q_a even in 10^{-4} M solution. Hence, the Ag species deposited initially on the electrode, probably a Ag-TSC compound, appears soluble in the bulk solution.

Voltammograms of sulfide at the AgRDE were compared to those of thioamides (Fig. 8). Although anodic current corresponding to formation of Ag$_2$S appears at much more negative potential ($E_{1/2} = -0.66$ V) than those of the thioamides, its stripping peak potential is very close to that of the thioamides. For deposits of the same amount of silver-thioamide compounds, the stripping peak potentials are the same as for sulfide; for example, E_{pC} for Q_c of 4×10^{-3} C is about -0.84 - 0.86 V for the thioamides and sulfide. This suggests the cathodic stripping process for these thioamides is similar to that of sulfide.

These preliminary studies indicate the possibility of cathodic stripping voltammetric analysis using deposition of these thioamides at
potentials more positive than -0.25 V for TAA, TNA and ETNA and -0.10 V for TII and TSC respectively.

Cathodic Stripping Voltammetry

As the pH decreases, the potential of Ag compound formation shifts to positive potentials close to that of silver oxide formation. TAA, TII and TNA gave sharp stripping peaks, in pH 4.6 acetate buffer, but the sensitivity decreased because of a decrease in the recovery of Q_c and of the positive shift of the anodic waves. In very alkaline solutions, thioamides are unstable and tend to hydrolyze. Thus, a pH 9.2 borate buffer was chosen as the electrolyte for detailed study.

Fig. 9 shows the effect of the deposition potential (E_d) on the stripping peak current (I_p) in the range of 10^{-7} M TAA, TII, TNA, ETNA and 10^{-6} M TSC. At deposition potentials more positive than +0.1 V a decrease in the stripping peak current occurs as a result of overlapping oxide deposition. The optimum deposition potential (E_d) is -0.05 V for TAA, TNA and ETNA, and NV for TII and TSC. The plots of I_p against time (t_d) for TII and TAA in the 10^{-6} - 10^{-7} M range are shown in Fig. 10. At concentrations of $\sim 10^{-7}$ M, TAA and TII show an induction period; other thioamides behave in a similar manner. At greater than 5×10^{-6} M, the plots pass through the origin. Although the cathodic stripping charge (Q_c) is smaller than the anodic deposition charge (Q_a) calculated theoretically from the Levich equation at a concentration showing an induction period, Q_c is almost the same as Q_a at higher concentrations which display no induction period. This induction period may depend on the solubility and formation constant of the Ag compound and/or adsorption of thioamides. Thus, deposition times (t_d) greater than 600 s were employed
for CSV of the thioamides in concentration ranges less than 10^{-7} M.

I_p is proportional to scan rate and to the square root of the rotation rate during deposition. In this work, scan rates of 50 mV/s and rotation rates of 2500 or 3000 rpm were employed.

Stripping peaks for the same amount of deposited silver-thioamide compounds are independent of electrode rotation during stripping, indicating that the cathodic stripping process of the Ag compounds is not controlled by diffusion of thioamides from the electrode surface and that the overall process for the stripping is irreversible.

Typical cathodic stripping voltammograms of TAA in the range of $10^{-7} - 10^{-6}$ M are shown in Figs 11. The stripping peaks for all the thioamides are very similar and reproducible. Plots of I_p against concentration for TAA, TII, TIA and TNA are shown in Fig. 12. However, these calibration curves do not pass through the origin presumably because of the solubility of the Ag-thioamide compound, kinetics of film formation and other complicated anodic processes of thioamides on Ag electrodes. The analytical data for determination of TAA, TII, TNA, ETIA and TSC is listed in Table II. I_p is proportional to n_C at coverages corresponding to less than 5.5×10^{-3} μC/cm², and the linearity in the plots of I_p vs. C is maintained to 5.0×10^{-5} M at various deposition times. Thus, the application of the silver RPF for CSV permits thioamides to be determined in the range $5 \times 10^{-5} - 10^{-5}$ M.

An important interfering ion for the determination of sulphur containing organic molecules is chloride. Concentrations of Cl⁻ in the range of $10^{-5} - 10^{-4}$ M have no effect on the stripping peaks of 1×10^{-6} M solutions of TAA and TII. The potential at which Cl⁻ forms AgCl
at the Ag electrode at pH 9.2 is +0.7 V, which is more positive than the deposition potential for the thioamides.

Suggested Mechanism for Anodic Deposition of Thioamides on Ag Electrode.

The mechanism for deposition of these thioamides appears different from that of thiol-type sulfur compounds like thiouracil. \(E_p \) values for the CSV of thiobarbituric acid and thinuracil (5) are about -0.25 V in pH 9.2 and -0.35 V at pH 8.3 in 10\(^{-5}\) M solutions, respectively, which are more positive than \(E_p \) for thioamides. The previous work (20-24) on anodic processes of the primary thioamides (thiourea, thioacetamide, thiosemicarbazide and ethionamide) on Hg concluded that HgS is produced in the anodic polarographic process of such compounds along with nitrile. \(E_p \) values for CSV of thioamides on Ag are very close to that of sulfide at both pH 9.2 and 4.6 (Table II). Solutions of the five thinamides and S\(^2-\) gave only one stripping peak at a given deposition time, but at deposition time shorter than 60 s the stripping peak split in two. It is suggested that Ag compounds formed initially on anodic deposition turn to AgS with increasing deposition time.

Some chemical reactions of five thioamides were examined and gave the following results: 1) at pH 9.2 the addition of thioamide solution to silver nitrate solution gave a dark gray-brown precipitate similar to that in sulfide solution for all thioamides, TAA, THI, TNA, ETNA and TSC; 2) the same treatment in neutral medium led to the same precipitate as pH 9.2 for TAA, TNA and ETNA but a white precipitate for TSC. As for THI, a white precipitate formed initially but turned black within several seconds. After the measurement of CSV for 10\(^{-4}\) M thioamide solutions, a dark gray
precipitate remained on the electrode surface.

TU and TSC form sparingly soluble 2:3 complexes in acidic solutions (26,27) and then the complexes decompose, more or less readily to silver sulphide with increasing silver ion concentration. The decomposition usually begins as the molar ratio of silver(I) to ligand approaches 1:1 with increasing silver ion concentration. An excess of ligand leads to the complex species \([\text{Ag(SR)}_n]^{3+}\) which are soluble in aqueous solution (27). Thus, it is assumed that at a Ag electrode the anodic reactions of the thioamides proceed to a final product of Ag$_2$S through silver-thioamide compound formation, i.e.

\[
\begin{align*}
2 \text{Ag}^+ & \rightarrow 2 \text{Ag}^+ + 2e^- \\
\text{RCNH}_{2} + \text{R-NC} = \text{NH} + \text{Ag}^+ \rightarrow \text{R-CN} = \text{NH} + \hat{\text{A}} \\
\text{Ag}^+ & \rightarrow \text{Ag}_2\text{S} + \text{RCN} + \hat{\text{H}}^+ \\
\text{or} \\
3\text{RCNH}_2 + 2 \text{Ag}^{2+} & \rightarrow \text{Ag}_2(\text{RCNH}_2)_3^{2+} \\
\text{S}^-\text{Ag}^+ & \rightarrow \text{S} \\
2 \text{R-C}=\text{NH} + \text{RCNH}_2 & \rightarrow 2\hat{\text{H}}^+ \\
\text{Ag}_2\text{S} & \rightarrow \text{RCN} + \text{RCNH}_2
\end{align*}
\]
The values of the diffusion coefficients (D) for TAA, TU, TNA and ETNA were calculated by using the anodic limiting currents (Table I) and the Levich equation, assuming n = 2 for the anodic reaction (Table III). The value of D for TU, 1.31×10^{-5} cm2 s$^{-1}$ is in good agreement with the published value of 1.33×10^{-5} cm2 s$^{-1}$ (28) and the values for other thioamides are quite reasonable considering the differences in molecular structure.

The reaction rate leading to Ag$_2$S formation appears to depend on the concentration of thioamide, the applied potential and deposition time. More work is needed to completely characterize the behavior of the anodic deposition of thioamides on Ag electrodes.
This work was supported in part by the Office of Naval Research.
References

Table I. Comparison of anodic charge (Q_a) and cathodic charge (Q_c).

$\omega = 2500$ rpm, scan rate = 50 mV/s

<table>
<thead>
<tr>
<th></th>
<th>[C]/10^{-4} M</th>
<th>$I_d/10^{-4}$ A</th>
<th>I_d/C AM^{-1}</th>
<th>$Q_a/10^{-3}$ C</th>
<th>$Q_c/10^{-3}$ C</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAA</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>3.43</td>
<td>4.00</td>
</tr>
<tr>
<td>$E_d = -0.15$ V</td>
<td>2.00</td>
<td>1.95</td>
<td>0.975</td>
<td>6.46</td>
<td>6.31</td>
</tr>
<tr>
<td>$t_d = 30$ s</td>
<td>2.99</td>
<td>2.98</td>
<td>0.997</td>
<td>10.3</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>3.98</td>
<td>3.95</td>
<td>0.992</td>
<td>13.5</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>4.98</td>
<td>5.00</td>
<td>1.01</td>
<td>17.3</td>
<td>16.5</td>
</tr>
<tr>
<td>TU</td>
<td>1.00</td>
<td>1.06</td>
<td>1.01</td>
<td>4.22</td>
<td>4.17</td>
</tr>
<tr>
<td>$E_d = +0.050$ V</td>
<td>2.00</td>
<td>2.02</td>
<td>1.01</td>
<td>7.91</td>
<td>7.89</td>
</tr>
<tr>
<td>$t_d = 30$ s</td>
<td>2.99</td>
<td>3.08</td>
<td>1.03</td>
<td>11.8</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>3.98</td>
<td>4.11</td>
<td>1.03</td>
<td>15.8</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>4.98</td>
<td>5.11</td>
<td>1.02</td>
<td>19.8</td>
<td>19.1</td>
</tr>
<tr>
<td>TNA</td>
<td>0.594</td>
<td>0.480</td>
<td>0.808</td>
<td>1.50</td>
<td>1.59</td>
</tr>
<tr>
<td>$E_d = -0.15$ V</td>
<td>0.990</td>
<td>0.760</td>
<td>0.797</td>
<td>2.42</td>
<td>2.40</td>
</tr>
<tr>
<td>$t_d = 30$ s</td>
<td>1.40</td>
<td>1.10</td>
<td>0.786</td>
<td>3.55</td>
<td>3.45</td>
</tr>
<tr>
<td></td>
<td>1.90</td>
<td>1.51</td>
<td>0.795</td>
<td>5.55</td>
<td>5.62</td>
</tr>
<tr>
<td></td>
<td>2.68</td>
<td>2.10</td>
<td>0.784</td>
<td>6.82</td>
<td>6.75</td>
</tr>
<tr>
<td>ETNA</td>
<td>0.690</td>
<td>0.510</td>
<td>0.739</td>
<td>2.03</td>
<td>2.40</td>
</tr>
<tr>
<td>$E_d = 0$ V</td>
<td>1.35</td>
<td>1.00</td>
<td>0.741</td>
<td>3.70</td>
<td>3.83</td>
</tr>
<tr>
<td>$t_d = 30$ s</td>
<td>1.99</td>
<td>1.55</td>
<td>0.754</td>
<td>5.41</td>
<td>5.44</td>
</tr>
<tr>
<td></td>
<td>2.60</td>
<td>1.96</td>
<td>0.754</td>
<td>7.50</td>
<td>7.15</td>
</tr>
<tr>
<td></td>
<td>3.20</td>
<td>2.37</td>
<td>0.741</td>
<td>8.14</td>
<td>7.93</td>
</tr>
<tr>
<td>TSC</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>6.40</td>
<td>2.29</td>
</tr>
<tr>
<td>$E_d = -0.15$ V</td>
<td>2.00</td>
<td>3.80</td>
<td>1.90</td>
<td>11.1</td>
<td>4.14</td>
</tr>
<tr>
<td>$t_d = 30$ s</td>
<td>2.99</td>
<td>3.90</td>
<td>1.31</td>
<td>16.8</td>
<td>6.14</td>
</tr>
<tr>
<td>Na₂S</td>
<td>0.40</td>
<td>0.41</td>
<td>1.025</td>
<td>1.30</td>
<td>1.40</td>
</tr>
<tr>
<td>$E_d = -0.5$ V</td>
<td>0.80</td>
<td>0.79</td>
<td>0.988</td>
<td>2.70</td>
<td>3.00</td>
</tr>
<tr>
<td>$t_d = 30$ s</td>
<td>1.20</td>
<td>1.20</td>
<td>1.000</td>
<td>3.90</td>
<td>4.30</td>
</tr>
</tbody>
</table>
Table II. Cathodic Stripping Voltammetric Data for Determination of Thioamides

$t_d = 15 \text{s} \sim 900 \text{s}, \omega = 3600 \text{rpm}, \text{scan rate} = 50 \text{mV/s}$. Potentials are in V vs SCE.

<table>
<thead>
<tr>
<th>thioamide</th>
<th>$E_{1/2}^{a)}$ anodic waves</th>
<th>E_d</th>
<th>$E_p^{b)}$ stripping peak</th>
<th>linear range/M</th>
<th>$E_{1/2}^{a)}$</th>
<th>$E_p^{b)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAA</td>
<td>-0.29</td>
<td>-0.05</td>
<td>-0.76</td>
<td>$5.1 \times 10^{-8} - 6.0 \times 10^{-5}$</td>
<td>+0.02</td>
<td>-0.54</td>
</tr>
<tr>
<td>TU</td>
<td>-0.12</td>
<td>0</td>
<td>-0.78</td>
<td>$6.8 \times 10^{-8} - 6.0 \times 10^{-5}$</td>
<td>+0.1</td>
<td>-0.56</td>
</tr>
<tr>
<td>TNA</td>
<td>-0.27</td>
<td>-0.05</td>
<td>-0.76</td>
<td>$7.5 \times 10^{-8} - 6.0 \times 10^{-5}$</td>
<td>+0.03</td>
<td>-0.55</td>
</tr>
<tr>
<td>ETNA</td>
<td>-0.15 (-0.26)$^{c)}$</td>
<td>-0.05</td>
<td>-0.77</td>
<td>$9.0 \times 10^{-8} - 6.0 \times 10^{-5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC</td>
<td>-0.105</td>
<td>0</td>
<td>-0.78</td>
<td>$7.5 \times 10^{-7} - 1.0 \times 10^{-4}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S^{2-}
-0.66
-0.76
-0.63
-0.53

$a)$ in 10^{-4} M solution

$b)$ at cathodic charge (Q_c) of 450 μC/cm2

$c)$ on cathodic scan
Table III. Diffusion coefficients for thioamides in 0.05 M borate buffer.

<table>
<thead>
<tr>
<th>Thioamide</th>
<th>((I_d/C)/A) M(^{-1})</th>
<th>(D/10^{-5}) cm(^2) s(^{-1})</th>
<th>lit. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAA</td>
<td>0.995</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>TU</td>
<td>1.02</td>
<td>1.31</td>
<td>1.329 x 10(^{-5}) cm s(^{-1})</td>
</tr>
<tr>
<td>TNA</td>
<td>0.788</td>
<td>0.891</td>
<td></td>
</tr>
<tr>
<td>ETNA</td>
<td>0.746</td>
<td>0.813</td>
<td></td>
</tr>
</tbody>
</table>
Figure Captions

1. RDE voltammogram (solid line) of 2×10^{-4} M TAA; AgRDE; $\omega = 2500$ rpm; $\nu = 10$ mV s$^{-1}$; pH 9.2 borate buffer. Background in the absence of TAA (dashed line).

2. As Fig. 1; 2×10^{-4} M TU.

3. As Fig. 1; 1.4×10^{-4} TNA.

4. As Fig. 1; 1.35×10^{-4} M ETNA.

5. As Fig. 1; 1.4×10^{-4} M TSC.

6. $I_d - \omega^{1/2}$ plots of a) 4×10^{-4} M TAA; b) 2.8×10^{-4} M TNA; c) 1.99×10^{-4} M ETNA; d) 4×10^{-4} M TU and e) 1.0×10^{-4} M TSC. $\nu = 10$ mV s$^{-1}$.

7. Dependence of anodic current of 4.0×10^{-4} M TAA at various potentials vs square root of rotation rate. a) -0.1 V; b) -0.2 V; c) -0.25 V; d) -0.3 V; e) -0.35 V. $\omega = 2500$ rpm; $\nu = 10$ mV s$^{-1}$.

8. As Fig. 1; 1.24×10^{-4} M Na$_2$S.

9. Effect of deposition potential (E_d) on stripping peak current (I_p) for thioamides. (-0-) 8.8×10^{-7} M TAA; (-@-) 6.8×10^{-7} M TU; (-@-) 7.6×10^{-7} M TNA; (-@-) 7.3×10^{-7} M ETNA; (-@-) 3.6×10^{-6} M TSC. $t_d = 300$ s (180 s for TSC); $\omega = 3600$ rpm; $\nu = 50$ mV s$^{-1}$.

10. Plots of stripping peak currents (I_p) against deposition time (t_d) for: a) 5.4×10^{-7} M TU; b) 8.0×10^{-7} M TAA; c) 8.1×10^{-7} M TU; d) 2.0×10^{-6} M TAA; e) 3.0×10^{-6} M TU; f) 5.2×10^{-6} M TU; g) 6.1×10^{-6} M TAA. $E_d = -0.05$ V for TAA; 0 V for TU; $\omega = 3600$ rpm; $\nu = 50$ mV s$^{-1}$.
11. Cathodic stripping peaks at various concentrations of TAA.
 a) 1.27; b) 2.54; c) 3.80; d) 5.06; e) 6.36; f) 8.83×10^{-7} M.
 \[t_d = 600 \text{ s}; \quad E_d = 0 \text{ V}; \quad \omega = 3600 \text{ rpm}; \quad \nu = 50 \text{ mV s}^{-1}. \]

12. Concentration dependence of stripping peak current (I_p) for
 a) TAA; b) TU and c) TNA. \[t_d = 900 \text{ s}; \quad E_d = -0.05 \text{ V for TAA and TNA}; 0 \text{ V for TU}; \quad \omega = 3600 \text{ rpm}; \quad \nu = 50 \text{ mV s}^{-1}. \]
Figure 3
Figure 4
Figure 5
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Naval Ocean Systems Center</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Attn: Technical Library</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>San Diego, California 92152</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>ONR Pasadena Detachment</td>
<td>1</td>
<td>Attn: Dr. A. B. Amster</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td></td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dean William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Monterey, California 93940</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Superintendent</td>
<td>1</td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. Vincent Schaper</td>
<td>1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>DTNSRDC Code 2830</td>
<td></td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Annapolis, Maryland 21402</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td></td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td>1</td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. A. M. Anzalone</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
<td>Administrative Librarian</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
<td>PLASTEC/ARRADCOM</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
<td>Bldg 3401</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
<td>Dover, New Jersey 07801</td>
<td></td>
</tr>
</tbody>
</table>
Dr. M. B. Denton
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. J. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. B. R. Kowalski
Department of Chemistry
University of Washington
Seattle, Washington 98105

Dr. H. Freiser
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Dr. H. Chernoff
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. A. Zirino
Naval Undersea Center
San Diego, California 92132

Professor George H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Alan Bewick
Department of Chemistry
Southampton University
Southampton, Hampshire
ENGLAND 5095NA

Dr. S. P. Perone
Lawrence Livermore Laboratory L-370
P.O. Box 808
Livermore, California 94550

Dr. L. Jarvis
Code 6100
Naval Research Laboratory
Washington, D.C. 20375

Dr. G. M. Heftje
Department of Chemistry
Indiana University
Bloomington, Indiana 47401

Dr. Christie G. Enke
Department of Chemistry
Michigan State University
East Lansing, Michigan 48824

Dr. D. L. Venezky
Naval Research Laboratory
Code 6130
Washington, D.C. 20375

Walter G. Cox, Code 3632
Naval Underwater Systems Center
Building 148
Newport, Rhode Island 02840

Professor Isiah M. Warner
Department of Chemistry
Emory University
Atlanta, Georgia 30322

Dr. Kent Eisenbraut
Air Force Materials Laboratory
Wright-Patterson AFB, Ohio 45433

Dr. Adolph B. Amster
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Dr. B. E. Doula
Chemical Sciences Branch
Code 50 C
Naval Weapons Support Center
Crane, Indiana 47322

Dr. John Eyler
Department of Chemistry
University of Florida
Gainesville, Florida 32611
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor J. Janata</td>
<td>Department of Bioengineering</td>
</tr>
<tr>
<td></td>
<td>University of Utah</td>
</tr>
<tr>
<td></td>
<td>Salt Lake City, Utah 84112</td>
</tr>
<tr>
<td>Dr. J. DeCorpo</td>
<td>NAVSEA</td>
</tr>
<tr>
<td></td>
<td>Code 05R14</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20362</td>
</tr>
<tr>
<td>Dr. Charles Anderson</td>
<td>Analytical Chemistry Division</td>
</tr>
<tr>
<td></td>
<td>Athens Environmental Laboratory</td>
</tr>
<tr>
<td></td>
<td>College Station Road</td>
</tr>
<tr>
<td></td>
<td>Athens, Georgia 30613</td>
</tr>
<tr>
<td>Dr. Ron Flemming</td>
<td>B 108 Reactor</td>
</tr>
<tr>
<td></td>
<td>National Bureau of Standards</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20234</td>
</tr>
<tr>
<td>Dr. David M. Hercules</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td></td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>Dr. Frank Herr</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>Code 422CB</td>
</tr>
<tr>
<td></td>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217</td>
</tr>
<tr>
<td>Professor E. Keating</td>
<td>Department of Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>U.S. Naval Academy</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td>Dr. M. H. Miller</td>
<td>1133 Hampton Road</td>
</tr>
<tr>
<td></td>
<td>Route 4</td>
</tr>
<tr>
<td></td>
<td>U.S. Naval Academy</td>
</tr>
<tr>
<td></td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td>Dr. Clifford Spiegelman</td>
<td>National Bureau of Standards</td>
</tr>
<tr>
<td></td>
<td>Room A337 Bldg. 101</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20234</td>
</tr>
<tr>
<td>Dr. Denton Elliott</td>
<td>AFOSR/NC</td>
</tr>
<tr>
<td></td>
<td>Bolling AFB</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20362</td>
</tr>
<tr>
<td>Dr. B. E. Spielvogel</td>
<td>Inorganic and Analytical Branch</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Ms. Ann De Witt</td>
<td>Material Science Department</td>
</tr>
<tr>
<td></td>
<td>160 Fieldcrest Avenue</td>
</tr>
<tr>
<td></td>
<td>Raritan Center</td>
</tr>
<tr>
<td></td>
<td>Edison, New Jersey 08818</td>
</tr>
<tr>
<td>Dr. A. Harvey</td>
<td>Code 6110</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20375</td>
</tr>
<tr>
<td>Dr. John Hoffsommer</td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Building 30 Room 208</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, Maryland 20910</td>
</tr>
<tr>
<td>Mr. S. M. Hurley</td>
<td>Naval Facilities Engineering Command</td>
</tr>
<tr>
<td></td>
<td>Code 032P</td>
</tr>
<tr>
<td></td>
<td>200 Stovall Street</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22331</td>
</tr>
<tr>
<td>Ms. W. Parkhurst</td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Code R33</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, Maryland 20910</td>
</tr>
<tr>
<td>Dr. M. Robertson</td>
<td>Electrochemical Power Sources Division</td>
</tr>
<tr>
<td></td>
<td>Code 305</td>
</tr>
<tr>
<td></td>
<td>Naval Weapons Support Center</td>
</tr>
<tr>
<td></td>
<td>Crane, Indiana 47522</td>
</tr>
<tr>
<td>CDR Andrew T. Zander</td>
<td>ONR Boston</td>
</tr>
<tr>
<td></td>
<td>10 Country Club Lane</td>
</tr>
<tr>
<td></td>
<td>Plaistow, New Hampshire 03865</td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 051B

Dr. Robert W. Shaw
U.S. Army Research Office
Box 12211
Research Triangle Park, NC 27709

Dr. Marvin Wilkerson
Naval Weapons Support Center
Code 30511
Crane, Indiana 47522

Dr. J. Wyatt
Naval Research Laboratory
Code 6110
Washington, D.C. 20375

Dean William Tolles
Naval Post Graduate School
Spanaugel Hall
Monterey, California 93940

Dr. H. Wohltjen
Naval Research Laboratory
Code 6170
Washington, D.C. 20375
Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO9 5NH
United Kingdom

Dr. T. Katan
Lockheed Missiles and Space Co., Inc.
P.O. Box 504
Sunnyvale, California 94088

Dr. D. N. Bennion
Department of Chemical Engineering
Brighma Young University
Provo, Utah 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Mr. Joseph McCartney
Code 7121
Naval Ocean Systems Center
San Diego, California 92152

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. H. Richtol
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Lab.
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. G. Goodman
Johnson Controls
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201

Dr. B. Brummer
EIC Incorporated
111 Chapel Street
Newton, Massachusetts 02158

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute
of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
M.S. 68025 Forrestal Bldg.
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. William Ayers
ECD Inc.
P.O. Box 5357
North Branch, New Jersey 08876

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Corporation
111 Chapel Street
Newton, Massachusetts 02158

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SO9 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Denton Elliott
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6130
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555
TECHNICAL REPORT DISTRIBUTION LIST, 359

Dr. David Aikens
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. A. P. B. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, SO9 5NH ENGLAND

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Loco 6343, Bayside
San Diego, California 95152

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

M. L. Robertson
Manager, Electrochemical Energy & Environment Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. Elton Cairns
Allied Corporation
P.O. Box 3000R
Morristown, New Jersey 07960

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. D. Cipris
Department of Engineering & Applied Science
University of California
Berkeley, California 94720

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Río Piedras, Puerto Rico 00931

Dr. Donald Sandstrom
Department of Physics
Washington State University
Pullman, Washington 99164

Dr. Joseph Gordon, II
IBM Corporation
K33/281
5600 Cottle Road
San Jose, California 95193

Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201
<table>
<thead>
<tr>
<th>Name 1</th>
<th>Name 2</th>
<th>Institution 1</th>
<th>Institution 2</th>
<th>Address 1</th>
<th>Address 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Robert Somoano</td>
<td>Dr. Edward Fletcher</td>
<td>Jet Propulsion Laboratory</td>
<td>Department of Mechanical Engineering</td>
<td>California Institute of Technology</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pasadena, California 91103</td>
<td>Minneapolis, Minnesota 55455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Johann A. Joebstl</td>
<td>Dr. John Fontanella</td>
<td>USA Mobility Equipment R&D Command</td>
<td>Department of Physics</td>
<td>DRDME-EC</td>
<td>U.S. Naval Academy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fort Belvoir, Virginia 22060</td>
<td></td>
<td></td>
<td>Annapolis, Maryland 21402</td>
</tr>
<tr>
<td>Dr. Judith H. Ambrus</td>
<td>Dr. Martha Greenblatt</td>
<td>NASA Headquarters</td>
<td>Department of Chemistry</td>
<td>M.S. RTS-6</td>
<td>Rutgers University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20546</td>
<td></td>
<td></td>
<td>New Brunswick, New Jersey 08903</td>
</tr>
<tr>
<td>Dr. Albert R. Landgrebe</td>
<td>Dr. John Wasson</td>
<td>U.S. Department of Energy</td>
<td>Department of Physics</td>
<td>M.S. 68025 Forrestal Building</td>
<td>Rte 6 - Industrial Pike Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20595</td>
<td></td>
<td></td>
<td>Gastonia, North Carolina 28052</td>
</tr>
<tr>
<td>Dr. J. J. Brophy</td>
<td>Dr. Walter Roth</td>
<td>Department of Physics</td>
<td>Department of Physics</td>
<td>University of Utah</td>
<td>State University of New York</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salt Lake City, Utah 84112</td>
<td></td>
<td></td>
<td>Albany, New York 12222</td>
</tr>
<tr>
<td>Dr. Charles Martin</td>
<td>Dr. Anthony Sammells</td>
<td>Department of Chemistry</td>
<td>Department of Chemistry</td>
<td>Texas A&M University</td>
<td>Eltron Research Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>College Station, Texas 77843</td>
<td></td>
<td></td>
<td>710 E. Ogden Avenue #108</td>
</tr>
<tr>
<td>Dr. H. Tachikawa</td>
<td>Dr. W. M. Risen</td>
<td>Department of Chemistry</td>
<td>Department of Chemistry</td>
<td>Jackson State University</td>
<td>Brown University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jackson, Mississippi 39217</td>
<td></td>
<td></td>
<td>Providence, Rhode Island 02192</td>
</tr>
<tr>
<td>Dr. Theodore Beck</td>
<td>Dr. C. A. Angell</td>
<td>Electrochemical Technology Corp.</td>
<td>Department of Chemistry</td>
<td>3935 Leary Way N.W.</td>
<td>Purdue University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seattle, Washington 98107</td>
<td></td>
<td></td>
<td>West Lafayette, Indiana 47907</td>
</tr>
<tr>
<td>Dr. Farrell Lytle</td>
<td>Dr. Thomas Davis</td>
<td>Boeing Engineering and</td>
<td>Polymer Science and Standards</td>
<td>P.O. Box 3707</td>
<td>National Bureau of Standards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construction Engineers</td>
<td>Division</td>
<td>Seattle, Washington 98124</td>
<td>Washington, D.C. 20234</td>
</tr>
<tr>
<td>Dr. Robert Gotscholl</td>
<td></td>
<td>U.S. Department of Energy</td>
<td></td>
<td>MS 6-226</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, D.C. 20545</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>