SOFTWARE CATALOG

SPARSE MATRIX SYMPOSIUM
1982

Fairfield Glade, Tennessee
October 24-27, 1982

SPONSORS
- U.S. Army Research Office
- U.S. Office of Naval Research
- Oak Ridge National Laboratory
 (Mathematics and Statistics Research Department)
SPARSE MATRIX
SOFTWARE CATALOG

Sparse Matrix Symposium 1982

Fairfield Glade, Tennessee

October 24-27, 1982

Michael T. Heath, Editor

SPONSORS

U.S. Army Research Office
U.S. Office of Naval Research
Oak Ridge National Laboratory
(Mathematics and Statistics Research Department)

Prepared by Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
Operated by Union Carbide Corporation - Nuclear Division for the U.S. Department of Energy
This software catalog was prepared in conjunction with the Sparse Matrix Symposium in Fairfield Glade, Tennessee, October 25-27, 1982. It is intended to provide information on computer software for sparse matrix problems which should be useful to software developers and consumers alike. The information provided includes the problem domain to which the software is applicable, the method of solution, language and portability details, references to documentation, and a contact for further information or acquiring the software. This information is reported by means of a form which was filled out by each contributor for each item of software.

Contributions to the software catalog were solicited as part of the general announcement and call for papers for the Symposium which appeared in the official newsletters and other publications of several professional societies in mathematics, computer science, and operations research. There was also a mass mailing of general Symposium announcements to about 375 persons (mostly numerical analysts, applied mathematicians and computer scientists, plus a few engineers), and an additional mailing to about 80 persons which specifically solicited software catalog contributions. These efforts resulted in the submission of about 120 software forms. All submissions were accepted for inclusion in the catalog.

Thus, the catalog is about as complete as voluntary contributions can make it. In addition to containing virtually all of the software already well known to the sparse matrix community, many lesser-known packages are brought to light in these pages. The main area of sparse matrix software which is seriously underrepresented in the catalog is software for specific applications, such as structural analysis, in which modules which might have much wider applicability are buried within a much larger, special purpose package. We regret such omissions, but to have reached the practitioners in each of the diverse applications areas would have enormously expanded the scope of our publicity campaign and mailing lists.

The software reporting form which was sent to potential contributors was accompanied by a cover letter (which is reproduced here as Appendix A) and instructions for completing the form (Appendix B). In addition, the contributor was asked to help in organizing the catalog by specifying the appropriate categories and key words as outlined in Appendix C. There is also an appendix describing the restrictions on use of codes from the Harwell Subroutine Library, which its authors felt did not fit conveniently within the small space allowed for that purpose on the reporting form. The catalog is organized by problem domain and methods of solution, so that closely related programs appear near each other. As an aid in locating software by name of package or author, alphabetical indices are provided at the back of the catalog.

Most of the software forms have been photographically reproduced, exactly as received from the contributor. A few have been retyped for improved legibility (generally, those forms which were filled out by hand in pencil or colored ink). The accuracy of the information provided is therefore totally dependent on the individual contributors. The organizers and sponsors of the Symposium make no guarantee as to the accuracy of the information contained herein or the usefulness or validity of the software reported. The inclusion of information on a given item of software is not to be construed as an endorsement of it. It should be emphasized that this catalog is in no sense a software distribution service: in order to obtain any of the software discussed, the individual distributors listed on the forms must be contacted.

It is hoped that this catalog will provide a valuable service to the research and development community in the sparse matrix field and will also prove helpful to potential users in locating appropriate sparse matrix software. Perhaps it will become the basis for future efforts at even more comprehensive cataloging of software in sparse matrices as well as other areas.
Contents

1. Operations on Sparse Matrices ... 1
 1.1 Multi-purpose packages ... 1
 1.2 Products and scaling ... 4
 1.3 Permutations and transposition .. 8
 1.4 Assignment and block triangular form ... 13
 1.5 Bandwidth and profile reduction ... 18
 1.6 Miscellaneous ... 19

2. Systems of Linear Equations ... 22
 2.1 Direct methods .. 22
 2.1.1 Nonsymmetric systems .. 22
 2.1.1.1 General sparse matrices .. 22
 2.1.1.2 Band or block forms ... 39
 2.1.2 Symmetric systems ... 46
 2.1.2.1 General sparse matrices ... 46
 2.1.2.2 Band or profile forms ... 53
 2.2 Iterative methods ... 58
 2.2.1 Multi-method package .. 58
 2.2.2 Gauss-Seidel and SOR .. 59
 2.2.3 Tchebychev ... 60
 2.2.4 Lanczos ... 61
 2.2.5 Preconditioned conjugate gradients ... 62
 2.2.6 Strongly implicit procedure ... 68

3. Least Squares Problems ... 73
 3.1 Direct methods .. 73
 3.2 Iterative methods .. 76

4. Eigenvalue Problems ... 79

5. Optimization Problems .. 88
 5.1 Linear programming .. 88
 5.2 Nonlinear optimization .. 94
 5.2.1 Nonlinear equations ... 94
 5.2.2 Unconstrained minimization ... 95
 5.2.3 Constrained minimization .. 97
 5.2.4 Jacobian and Hessian estimation ... 99
 5.3 Miscellaneous applications ... 102

6. Ordinary Differential Equations ... 106

7. Partial Differential Equations ... 112
Appendices ... 121
Author Index ... 125
Software Index ... 127
1. Name of program or package: ALGORITHM 408

2. Descriptive title: A Sparse Matrix Package (Part I)

3. Problem domain: (Elementary operations on general sparse matrices, e.g., addition, multiplication, transposition, extraction of rows.)

4. Method of solution:

5. Programming language: FORTRAN 66

6. Precision: Single

7. Portability: Good (IBM 360)

8. Other packages required:

9. Mode of use: Subroutines

10. Test or demonstration program available?

11. Length of code in lines: ~1500 Percentage comments: 30%

12. Special features:

 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: as per ACM TOMS rate

15. Restrictions on use:

16. Distributor: ACM TOMS

17. Original source of software:
 Developer: (See below)
 Institution:
 Sponsor:

18. For further information contact:
 Professor J. M. McNamee
 Atkinson College, York University
 4700 Keele Street
 Downsview, Ontario, CANADA M3J 2R7
1. Name of program or package: SPARSE

2. Descriptive title: Transformations and manipulations of sparse matrices
 Linear algebra, arithmetic operations including I/O, transformations full matrices + sparse matrices, transformations to NAG-routines Mark 5, 7

3. Problem domain: Transformations full matrices, sparse matrices, transformations to NAG-routines Mark 5, 7

4. Method of solution: Inversion of part of a matrix via SOR-iteration
 inversion of a lower triangular matrix

5. Programming language: FORTRAN IV (FORTRAN 66)
 FORTRAN V (FORTRAN 77)

6. Precision: Depending on the hardware of the machine

7. Portability: PFORT-tested, special I/O in special modules

8. Other packages required:

9. Mode of use: Subroutine calls

10. Test or demonstration program available? Yes

11. Length of code in lines: Percentage comments: 20%

12. Special features: If the user is not familiar with the sparse techniques
 he can give full vectors or matrices and they are transformed automatically.
 Automatic use of disks (I/O) when the fields for the target matrices of
 arithmetic operations are too small.

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 User guide at the moment only in German (70 pages)
 Base: J. M. McNamee’s Algorithm 408, Comm. ACM 14 (1971), 265-273

14. Approximate cost of obtaining software:
 Noncommercial use: tape fee
 Commercial use: contact developer

15. Restrictions on use: None

16. Distributor: RRZN, Regionales Rechenzentrum für Niedersachsen,
 Wunstorfer Strasse 14
 D-3000 Hannover 91, West Germany

17. Original source of software:
 Developer: J. McNamee, U. Harms
 Institution: RRZN
 Sponsor:

18. For further information contact:
 U. Harms
 RRZN
 Wunstorfer Strasse 14
 D-3000 Hannover 91
 West Germany
1. Name of program or package: RALAPACK

2. Descriptive title: Addition, multiplication, transposition, triangular factorization, backsubstitution, etc, with sparse matrices.

3. Problem domain: Real sparse matrices and vectors.

5. Programming language: FORTRAN IV.

8. Other packages required: None.

10. Test or demonstration program available? No.

11. Length of code in lines: 388. Percentage comments: ---

12. Special features: None.

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books: The operation manual is provided with the program (present version is in Spanish).

15. Restrictions on use: Only for research purposes.

17. Original source of software:
 Developer: Sergio Pissanetzky
 Institution: Comisión Nacional de Energía Atómica
 Sponsor: Comisión Nacional de Energía Atómica

18. For further information contact: ---
1. Name of program or package: SMULT

2. Descriptive title: Multiplies two sparse matrices together to form their sparse product

3. Problem domain: General sparse matrices

4. Method of solution: Unordered merge and ordered merge

5. Programming language: FORTRAN

6. Precision: Single and double precision

7. Portability: IBM 370 in FORTRAN

8. Other packages required: Can use HALFP

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 400 lines Percentage comments: 50%

12. Special features: Compute the product in the number of nontrivial multiplications

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: None

16. Distributor: Same as 18.

17. Original source of software:
 Developer: Fred G. Gustavson
 Institution: IBM Research
 Sponsor:

18. For further information contact:
 Dr. Fred G. Gustavson 33-205
 IBM T. J. Watson Research Center
 P.O. Box 218
 Yorktown Heights, New York 10598
 Phone: (914) 945-1980
1. Name of program or package: PROD

2. Descriptive title: Obtain the product of two sparse matrices, or of a subset of the rows of ones times a subset of the columns of the second.

3. Problem domain: sparse matrices data management and operations

5. Programming language: ANSI Standard Fortran

6. Precision: either

7. Portability: developed on a Cyber but very portable

8. Other packages required: none

9. Mode of use: callable subroutine

10. Test or demonstration program available?: yes

11. Length of code in lines: 80 Percentage comments: 40%

12. Special features: different options of storage use are available, depending on the size of the matrices

13. Documentation and references:
 Detailed header comments?: Yes
 User guide or manual, technical reports, papers, books: none at the present time

14. Approximate cost of obtaining software: free

15. Restrictions on use: none

16. Distributor: same as 18

17. Original source of software:
 Developer: Daniel Szyld and Oleg Vishnepolsky
 Institution: Institute for Economic Analysis-New York University
 Sponsor:

18. For further information contact: Daniel B. Szyld
 Institute for Economic Analysis
 New York University
 269 Mercer Street
 New York, NY 10003
 Phone (212) 598 3413
1. Name of program or package: SPRSBLAS

2. Descriptive title: Sparse vector operations on the CRAY-1.

3. Problem domain: Gather, scatter, dot and saxpy for sparse vectors. Also contains single and complex BLAS.

8. Other packages required: These routines are a part of CRAYPACK (60 subroutines including BLAS, FFTS, sorting).

10. Test or demonstration program available? No

11. Length of code in lines: 1000 lines Percentage comments: 30%

12. Special features: Software has been optimized to take advantage of CRAY-1 hardware.

13. Documentation and references:
 Detailed header comments? Yes

14. Approximate cost of obtaining software: CRAYPACK is available to BCS network users. Possibility of sale to interested organizations is under review.

15. Restrictions on use: Use on BCS systems or if sold, internal use only. May not be distributed to others.

16. Distributor: Boeing Computer Services Company

17. Original source of software:
 Developer: D. S. Dodson
 Institution: Boeing Computer Services Company
 Sponsor: Boeing Computer Services Company

18. For further information contact: Kenneth W. Neves
 Boeing Computer Services Company
 565 Andover Park West, MS 9C-01
 Tukwila, WA 98188
 (206) 575-5074
1. Name of program or package: MC19

2. Descriptive title: Scales a sparse matrix.

4. Method of solution: Minimizes the sum of squares of the logarithms of the non-zeros.

6. Precision: Both single and double precision versions are available.

8. Other packages required: None.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 174 Percentage comments: 24%

12. Special features:

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (i), (ii), (iii), (iv) (see appendix on Harwell Subroutine Library).

17. Original source of software:
 Developer: J.K.Reid.

18. For further information contact: The developer.
1. **Name of program or package:** HALFP

2. **Descriptive title:** Computes the transpose of PA where P is a permutation matrix and A is sparse

3. **Problem domain:** Used to reorder the rows and columns of a sparse matrix (form PAQ)

4. **Method of solution:** Distribution count sort

5. **Programming language:** FORTRAN

6. **Precision:** Single and double precision

7. **Portability:** IBM 370 in FORTRAN

8. **Other packages required:** None

9. **Mode of use:** Callable subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** 120 lines **Percentage comments:** 50%

12. **Special features:**

13. **Documentation and references:**
 - Detailed header comments? Yes
 - User guide or manual, technical reports, papers, books:

14. **Approximate cost of obtaining software:** See 18.

15. **Restrictions on use:** None

16. **Distributor:** Same as 18.

17. **Original source of software:**
 - Developer: Fred G. Gustavson
 - Institution: IBM Research
 - Sponsor:

18. **For further information contact:**
 Dr. Fred G. Gustavson 33-205
 IBM T. J. Watson Research Center
 P.O. Box 218
 Yorktown Heights, New York 10598
 Phone: (914) 945-1980
1. Name of program or package: TRANS

2. Descriptive title: to permute the rows (if matrix stored row wise) and transpose a sparse matrix, so large that only one fits in core.

3. Problem domain: sparse matrix data management

4. Method of solution: distribution of non zeros among row queues

5. Programming language: ANSI Standard Fortran

6. Precision: either

7. Portability: developed on a Cyber, but very portable

8. Other packages required: none

9. Mode of use: callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 150 Percentage comments: 25%

12. Special features: writes output directly into secondary storage.

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books: none at present time

14. Approximate cost of obtaining software: free

15. Restrictions on use: none

16. Distributor: same as 18

17. Original source of software:
 Developer: Oleg Vishnepolsky
 Institution: Institute for Economic Analysis, New York University
 Sponsor:

18. For further information contact: Daniel B. Szyld
 Institute for Economic Analysis
 New York University
 269 Mercer Street
 New York, NY 10003
 Phone (212) 598 3413
1. Name of program or package: MC22

2. Descriptive title: Permutes a sparse matrix.

4. Method of solution:

6. Precision: Both single and double precision versions are available.

8. Other packages required: None.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 78 Percentage comments: 35%

12. Special features: Complex version (ME22) available.

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (iii), (iii) (see appendix on Harwell Subroutine Library).

17. Original source of software:
 Developer: I.S. Duff.

18. For further information contact: The developer.
1. **Name of program or package**: MC20

2. **Descriptive title**: Sorts non-zeros.

3. **Problem domain**: Sparse matrices.

4. **Method of solution**: In place sort by columns, handling each non-zero just once.

5. **Programming language**: IBM Fortran.

6. **Precision**: Both single and double precision versions are available.

7. **Portability**: Fortran 66 version available.

8. **Other packages required**: None.

9. **Mode of use**: Subroutine calls.

10. **Test of demonstration program available**: Yes.

11. **Length of code in lines**: 103
 Percentage comments: 33%

12. **Special features**: Optional second entry bubble-sorts each column.

13. **Documentation and references**:
 Detailed header comments: No.
 User guide or manual, technical reports, papers, books:

14. **Approximate cost of obtaining software**: See appendix on Harwell Subroutine Library.

15. **Restrictions on use**: (ii), (iii) (see appendix on Harwell Subroutine Library).

16. **Distributor**: S. Marlow, CSS Division, Building 8.9, A.E.R.E. Harwell,
 Oxfordshire OX11 ORA, England.

17. **Original source of software**:
 Developer: A.W. Westerberg and J.K. Reid.
 Institution: A.E.R.E. Harwell.
 Sponsor: A.E.R.E. Harwell.

18. **For further information contact**: J.K. Reid.
1. Name of program or package: SUBMAT

2. Descriptive title: Submatrices and/or row and column permutations of a sparse matrix

3. Problem domain: Sparse Matrix data management

4. Method of solution: See 12

5. Programming language: ANSI standard FORTRAN

6. Precision: Either

7. Portability: Developed on IBM, used on a Cyber, Portable IBM version with half word integers also available

8. Other packages required: None

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 75 Percentage comments: 40%

12. Special features: If one considers the indicators for a subset of rows (or columns) as an application, say A: $R^n \rightarrow R^m$, the code uses the inverse application B: Rank (A) $\rightarrow R^n$

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 Proceedings, of the "I Jornadas Latinoamericanas de Matematica Aplicada" held in Santiago, Chile, December 1981

14. Approximate cost of obtaining software: Free

15. Restrictions on use: None

16. Distributor: Same as 18

17. Original source of software:
 Developer: Daniel B. Szyld
 Institution: Institute for Economic Analysis, New York University
 Sponsor:

18. For further information contact:
 Daniel B. Szyld
 Institute for Economic Analysis
 New York University
 269 Mercer Street
 New York, N.Y. 10003
 Phone: (212) 598-3413
1. Name of program or package: FULL ASSIGN

2. Descriptive title: Compute a maximal assignment for an arbitrary 0-1 matrix

3. Problem domain: Arbitrary Sparse (0-1) Matrix

4. Method of solution: The Assign Row Algorithm of Gustavson - a modification of M. Hall’s algorithm for finding an assignment

5. Programming language: APL, FORTRAN and 370 BAL versions

6. Precision: Single precision (only fixed point computations)

7. Portability: Standard ANSI FORTRAN

8. Other packages required: None

9. Mode of use: Callable FORTRAN subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: about 150 Percentage comments: about 60%

12. Special features: Fast and 100% accurate

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

 Finding the Block Lower Triangular Form of a Sparse Matrix - Sparse Matrix Computations, J. R. Bunch and D. J. Rose (eds.) Academic Press, 1976, pp. 275-289

15. Restrictions on use: None

16. Distributor: Same as 18.

17. Original source of software:
 Developer: Fred G. Gustavson
 Institution: IBM Research
 Sponsor:

18. For further information contact:
 Dr. Fred G. Gustavson 33-205
 IBM T. J. Watson Research Center
 P.O. Box 218
 Yorktown Heights, New York 10598
 Phone: (914) 945-1980
1. Name of program or package: MC21

2. Descriptive title: Find a permutation to place non-zeros on the diagonal.

6. Precision: Not applicable, since it works on the sparsity pattern.

8. Other packages required: None.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 118 Percentage comments: 31%

12. Special features:

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (ii), (iii) (see appendix on Harwell Subroutine Library).

16. Distributor: S. Marlow, CSS Division, Building 8.9, A.E.R.E. Harwell,
 Oxfordshire OX11 ORA, England.

17. Original source of software:
 Developer: I.S.Duff.

18. For further information contact: The developer.
1. **Name of program or package:** BLTF

2. **Descriptive title:** Compute the block lower triangular form of a Sparse Matrix

3. **Problem domain:**

4. **Method of solution:** A new improved version of Tarjan's Strong Connect Algorithm

5. **Programming language:** APL, FORTRAN and 370 BAL

6. **Precision:** Single precision

7. **Portability:** Standard FORTRAN

8. **Other packages required:** None

9. **Mode of use:** Callable FORTRAN subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** About 150 **Percentage comments:** About 60%

12. **Special features:** Fast and 100% accurate

13. **Documentation and references:**
 - Detailed header comments? Yes
 - User guide or manual, technical reports, papers, books:
 - Finding the Block Lower Triangular Form of a Sparse Matrix - Sparse Matrix Computations, J. R. Bunch and D. J. Rose (eds.) Academic Press, 1976, pp. 275-289

14. **Approximate cost of obtaining software:** See 18.

15. **Restrictions on use:** None

16. **Distributor:** Same as 18.

17. **Original source of software:**
 - **Developer:** Fred G. Gustavson
 - **Institution:** IBM Research
 - **Sponsor:**

18. **For further information contact:**
 - Dr. Fred G. Gustavson 33-205
 - IBM T. J. Watson Research Center
 - P.O. Box 218
 - Yorktown Heights, New York 10598
 - Phone: (914) 945-1980
1. **Name of program or package**: MC13
2. **Descriptive title**: Finds a symmetric permutation for block triangular form.
3. **Problem domain**: Sparse matrices.
4. **Method of solution**: Tarjan’s algorithm.
5. **Programming language**: IBM Fortran.
6. **Precision**: Not applicable, since it works on the sparsity pattern.
7. **Portability**: Fortran 66 version available.
8. **Other packages required**: None.
9. **Mode of use**: Subroutine calls.
10. **Test of demonstration program available**: Yes.
11. **Length of code in lines**: 131
 Percentage comments: 46%
12. **Special features**:
13. **Documentation and references**:
 Detailed header comments: No.
 User guide or manual, technical reports, papers, books:
14. **Approximate cost of obtaining software**: See appendix on Harwell Subroutine Library.
15. **Restrictions on use**: (ii), (iii) (see appendix on Harwell Subroutine Library).
16. **Distributor**: S. Marlow, CSS Division, Building 8.9, A.E.R.E. Harwell, Oxfordshire OX11 ORA, England,
 or I.M.S.L. (TOMS algorithm).
17. **Original source of software**:
 Developer: I.S.Duff
 Institution: A.E.R.E. Harwell.
 Sponsor: A.E.R.E. Harwell.
18. **For further information contact**: The developer.
1. Name of program or package: MC23

2. Descriptive title: Permutes a sparse matrix to block triangular form.

5. Programming language: IBM Fortran

6. Precision: Both single and double precision versions are available.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 202 Percentage comments: 41%
(451 with dependencies)

12. Special features: Complex version (ME23) available.

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (ii), (iii) (see appendix on Harwell Subroutine Library).

17. Original source of software:
 Developer: I.S.Duff.

18. For further information contact: The developer.
1. **Name of program or package:** GPSKCA, GPSKRA

2. **Descriptive title:** Bandwidth and profile (envelope) reduction.

3. **Problem domain:** Reordering algorithm for symmetric matrices.

4. **Method of solution:** Uses Gibbs-Poole, Stockmeyer and Gibbs-King algorithms.

5. **Programming language:** FORTRAN

6. **Precision:** Integer (nonzero values are not required; only locations).

7. **Portability:** Developed on CDC CYBER 760; portable.

8. **Other packages required:** None

9. **Mode of use:** Subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** 2500 lines
Percentage comments: 50%

12. **Special features:** GPSKCA uses compact (linked lists) data format; GPSKRA uses rectangular array for connection table. Improved version of Algorithms 508, 509 (TOMS, December 1976). These new codes appeared in TOMS (June 1982).

13. **Documentation and references:**
Detailed header comments? Yes
User guide or manual, technical reports, papers, books: Description appeared in TOMS (June 1982).

14. **Approximate cost of obtaining software:** Standard TOMS fee.

15. **Restrictions on use:** None

16. **Distributor:** ACM TOMS

17. **Original source of software:**
Developer: J.G. Lewis modified 508, 509 (developed by Crane, Gibbs, Poole, Stockmeyer).
Institution: Boeing Computer Services Company
Sponsor: Boeing Computer Services Company

18. **For further information contact:** J.G. Lewis
Boeing Computer Services Company
565 Andover Park West, MS 9C-01
Tukwila, WA 98188
(206) 575-5102
1. Name of program or package:

2. Descriptive title:

3. Problem domain: Packing of the integer (index) vectors and matrices of the NAG Sparse routines

4. Method of solution:

5. Programming language: FORTRAN 66

6. Precision:

7. Portability: Only the packing routines are machine dependent, the packing is done by subroutine calls or function calls

8. Other packages required: NAG Library

9. Mode of use: Subroutine calls

10. Test or demonstration program available?

11. Length of code in lines: Percentage comments:

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 User guide but only in German at the moment

14. Approximate cost of obtaining software:

15. Restrictions on use: Contracts with NAG

16. Distributor:

17. Original source of software:
 Developer: U. Harms
 Institution: RRZN
 Sponsor:

18. For further information contact:
 U. Harms
 RRZN
 Wunstorfer Strasse 14
 D-3000 Hannover 91
 West Germany
1. **Name of program or package**: VMSYST

2. **Descriptive title**: Numerical data management system

3. **Problem domain**: General purpose support - large volumes of data

4. **Method of solution**: Page buffering; "Least recently used" paging algorithm

5. **Programming language**: FORTRAN 66

6. **Precision**: NA

7. **Portability**: Good (Currently operational on: VAX 11/780, UNIVAC 11XX)

8. **Other packages required**: DMGASP (or suitable I/O interface)

9. **Mode of use**: Subroutine calls

10. **Test or demonstration program available?**: Included

11. **Length of code in lines**: 1800 **Percentage comments**: 0

12. **Special features**: Manages mass storage as a "virtual" word addressable memory or as a record file; Maintains file descriptive header; has a "note" (text) stack system.

13. **Documentation and references**:
 - Detailed header comments? Practically none in code
 - User guide or manual, technical reports, papers, books:
 "Supplementary Studies on the Sensitivity of Optimized Structures,"
 AFNWL-TR-81-3013, National Technical Information Service (NTIS),

14. **Approximate cost of obtaining software**: $300

15. **Restrictions on use**: Not to be re-distributed

16. **Distributor**: Lockheed Research Lab.

17. **Original source of software**:
 - **Developer**: Paul S. Jensen
 - **Institution**: Lockheed Palo Alto Research Laboratory
 - **Sponsor**: AFOSR, ONERA, Lockheed Ind. Research

18. **For further information contact**:
 Paul S. Jensen
 Lockheed Research Lab. 5233/255
 3251 Hanover St.
 Palo Alto, CA 94304
1. Name of program or package: FTFPACK

2. Descriptive title: Subprograms for the fast Fourier transform of real, complex and symmetric sequences

3. Problem domain: Real, complex and symmetric sequences

4. Method of solution: Stockham auto-sort algorithm

5. Programming language: ANSI FORTRAN

6. Precision: Single

7. Portability: Developed on the Cray-I but is easily ported

8. Other packages required: None

9. Mode of use: Subprogram

10. Test or demonstration program available: Yes

11. Length of code in lines: 2,000 Percentage comments: 30%

12. Special features: Nineteen subprograms for the fast transform of real, complex, real-even, real-odd and quarter wave transforms

13. Documentation and references: Yes, included with package
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 Paul N. Swartztrauber, Vectorizing the FFT's, in Parallel Computations, Garry Rodrigue (ed.) Academic Press, 1982

14. Approximate cost of obtaining software: $300

15. Restrictions on use: None

16. Distributor: Scientific Computing Division
 National Center for Atmospheric Research
 P.O. Box 3000, Boulder, Colorado 80307

17. Original source of software: Same as 16.
 Developer: Paul N. Swartztrauber
 Institution: NCAR
 Sponsor: NSF

18. For further information contact:
 To order, contact Sue Long, NCAR (303) 494-5151, Ext. 505 or FTS 322-5505
 Questions to Paul N. Swartztrauber (303) 494-5151, Ext. 605 or FTS 322-5605.
1. Name of program or package: FOIBRF/A

2. Descriptive title: Decomposes a real sparse matrix

3. Problem domain: Real, linear equations.

4. Method of solution: LU decomposition

5. Programming language: FORTRAN and Algol 60

6. Precision: Either

7. Portability: Available on 48 machine ranges/compliers

8. Other packages required: NAG

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 294 Percentage comments: 50%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 NAG Library Manual
 NAG On-line Supplement

14. Approximate cost of obtaining software: NAG Library costs $1584/year

15. Restrictions on use: License agreement

 (see below)

17. Original source of software:
 Developer: Dr. I. Duff
 Institution: Harwell (U.K.)
 Sponsor: NAG

18. For further information contact:
 Mrs. Carolyn M. Smith
 NAG (U.S.A.) Inc.
 1250 Grace Court
 Downers Grove, IL 60516
 Tel. 971-2337
 Telex 232547OR (Teleserv DFLD)
1. Name of program or package: FO1BSF/A

2. Descriptive title: Decomposes a real sparse matrix using pivotal sequence previously determined

3. Problem domain: Real, linear, algebraic equations

4. Method of solution: LU decomposition

5. Programming language: FORTRAN and Algol 60

6. Precision: Either

7. Portability: Available on 48 machine ranges/compiler

8. Other packages required: NAG

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 132 Percentage comments: 50%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 NAG Library Manual
 NAG On-line Supplement

14. Approximate cost of obtaining software: NAG Library costs $1584/year

15. Restrictions on use: License agreement

 (see below)

17. Original source of software:
 Developer: Dr. I. Duff
 Institution: Harwell (U.K.)
 Sponsor: NAG

18. For further information contact:
 Mrs. Carolyn M. Smith
 NAG (U.S.A.) Inc.
 1250 Grace Court
 Downers Grove, IL 60516
 Tel. 971-2337
 Telex 23254708 (Teleserv DFLD)
1. Name of program or package: FO4AXF/A

2. Descriptive title: Solves a system of linear equations

3. Problem domain: Real, sparse, linear algebraic equations

4. Method of solution: LU decomposition

5. Programming language: FORTRAN and Algol 60

6. Precision: Either

7. Portability: Available on 48 machine ranges/compliers

8. Other packages required: NAG

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 42 Percentage comments: 75%

12. Special features:

13. Documentation and references:
Detailed header comments? Yes
User guide or manual, technical reports, papers, books:
 NAG Library Manual
 NAG On-line Supplement

14. Approximate cost of obtaining software: NAG Library costs $1584/year

15. Restrictions on use: License agreement

 (see below)

17. Original source of software:
Developer: Dr. I. Duff
Institution: Harwell
Sponsor: NAG

18. For further information contact:
 Mrs. Carolyn M. Smith
 NAG (U.S.A.) Inc.
 1250 Grace Court
 Downers Grove, IL 60516
 Tel. 971-2337
 Telex. 23254708 (Teleserv DFLD)
1. **Name of program or package**: MA28/MA30

2. **Descriptive title**: Solves linear sets of equations.

3. **Problem domain**: Sparse unsymmetric matrices.

4. **Method of solution**: LU decomposition, using Markowitz' pivoting.

5. **Programming language**: IBM Fortran.

6. **Precision**: Both single and double precision versions are available.

7. **Portability**: Fortran 66 version available.

9. **Mode of use**: Subroutine calls.

10. **Test of demonstration program available**: Yes.

11. **Length of code in lines**: 1842

 Percentage comments: 37%

 (2520 with dependencies)

13. **Documentation and references**:

 Detailed header comments? Yes.

 User guide or manual, technical reports, papers, books:

14. **Approximate cost of obtaining software**: See appendix on Harwell Subroutine Library.

15. **Restrictions on use**: (i), (ii), (iii), (iv) (see appendix on Harwell Subroutine Library).

17. **Original source of software**:

 Developer: I.S.Duff

18. **For further information contact**: The developer.
1. Name of program or package: MA32

2. Descriptive title: Solves unsymmetric sets of linear equations.

3. Problem domain: Finite element or finite difference equations.

6. Precision: Double precision (IBM) and single precision (CRAY).

7. Portability: Written in Fortran 66 except for isolated direct-access i/o statements.

8. Other packages required: IBM version calls other Harwell routines to establish files.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 2211

 Percentage comments: 45%

 (2522 with dependencies)

12. Special features: Allows problems to be input by rows or by finite elements. Uses direct access storage.

13. Documentation and references:

 Detailed header comments? Yes, of auxiliary routines.

 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (i), (ii), (iii), (iv) (see appendix on Harwell Subroutine Library).

17. Original source of software:

 Developer: I.S.Duff.

18. For further information contact: The developer.
1. Name of program or package: MC24

2. Descriptive title: Bounds the size of non-zeros encountered in Gaussian elimination.

6. Precision: Both single and double precision versions are available.

8. Other packages required: None

10. Test of demonstration program available: Yes.

11. Length of code in lines: 46 Percentage comments: 32%

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (iii), (iii) (see appendix on Harwell Subroutine Library).

17. Original source of software:
 Developer: I.S. Duff.

18. For further information contact: The developer.
1. Name of program or package: NSPFAC
2. Descriptive title: Sparse Linear Equation Solver
3. Problem domain: Nonsymmetric Sparse Linear Equations
4. Method of solution: Sparse Gaussian Elimination with threshold partial pivoting
5. Programming language: Fortran
6. Precision: Single or Double available (Separately)
7. Portability: Developed on DEC-10, IBM/360, CDC-6600
 Easily portable to other machines
8. Other packages required: None
9. Mode of use: Callable subroutines
10. Test or demonstration program available? Yes
11. Length of code in lines: 400 Percentage comments: 61%
12. Special features: None
13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 A. H. Sherman, Algorithm 533-NSPIV, A Fortran Subroutine for Sparse Gaussian
 Elimination with Partial Pivoting, Trans. on Math Software 4 (Dec., 1978),
 pp. 391-398.
 A. H. Sherman, Algorithms for Sparse Gaussian Elimination with Partial Pivoting,
14. Approximate cost of obtaining software: No Cost
15. Restrictions on use: None
16. Distributor: Andrew H. Sherman
 Exxon Production Research Co.
 P. O. Box 2189
 Houston, TX 77001 713/966-6376
17. Original source of software:
 Developer: Andrew H. Sherman
 Institution: University of Texas at Austin
 Sponsor: AFOSR
18. For further information contact:
 Andrew H. Sherman
 Exxon Production Research Co.
 P. O. Box 2189
 Houston, TX 77001
 713/966-6376
1. Name of program or package: PORT Sparse Matrix Package

2. Descriptive title: Subroutines for solving sparse unsymmetric linear systems have been added to the PORT library.

3. Problem domain: Systems of linear equations, real and complex, nonsymmetric, sparse

4. Method of solution: Direct methods, some subroutines do minimum degree ordering, others do threshold pivoting for stability given an initial ordering.

5. Programming language: FORTRAN

6. Precision: Single and double

7. Portability: As portable as PORT, checked by PFORT verifier

8. Other packages required: Core subroutines in PORT which are in public domain

9. Mode of use: Callable subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: 8800 lines Percentage comments: 20%

12. Special features: Has easy to use subroutines and subroutines for problems with a number of matrices all with the same zero structure. Permits function input of matrices.

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books: User guide available

14. Approximate cost of obtaining software: $75 to universities, one time charge

15. Restrictions on use: License agreement

16. Distributor: Until third version of PORT library is released for distribution contact - Linda Kaufman, Bell Labs, Room 2C-459, Murray Hill, N.J. 07974

17. Original source of software:
 Developer: Linda Kaufman
 Institution: Bell Labs

18. For further information contact:
 Linda Kaufman
 Bell Labs
 Room 2C-459
 Murray Hill, N.J. 07974
1. Name of program or package: SSLEST

2. Descriptive title: LU-decomposition of general sparse matrix

3. Problem domain: Solution of systems of linear equations

4. Method of solution: Gaussian elimination with pivoting using Markowitz-strategy involving stability checking and dropping tolerance

5. Programming language: FORTRAN

6. Precision: Single precision IBM

7. Portability: Uses INTEGER*2 to save space

8. Other packages required: NONE

9. Mode of use: Callable subroutines

10. Test or demonstration program available? NO

11. Length of code in lines: 750 lines Percentage comments: 10\% comments

12. Special features: The features of using drop-tolerance, selecting different pivoting strategies and of modifying the stability check are available. 8 different modes of operation

13. Documentation and references:
 Detailed header comments?
 User guide or manual, technical reports, papers, books:
 Users Guide available, require rep. NI-78-01, gives detailed information on use and examples

14. Approximate cost of obtaining software: 50 \$

15. Restrictions on use: Non-commercial

16. Distributor: Dept. for Numerical Analysis
 Technical University of Denmark, Building 303
 DK-2800 Lyngby, Denmark

17. Original source of software:
 Developer: Z. Zlatev, V.A. Barker, P.G. Thomsen
 Institution: Dept. of Numerical Analysis, Technical University of Denmark
 Sponsor:

18. For further information contact: Per Grove Thomsen
 Dept. for Numerical Analysis, Building 303
 Technical University of Denmark, DK-2800 Lyngby
 DENMARK, Tel. 881911 ext. 4373
1. Name of program or package: Y12M

2. Descriptive title: Sparse linear systems package

3. Problem domain: Unsymmetric linear systems

4. Method of solution: Gaussian elimination with a generalized Markowitz strategy; iterative refinement as an option

5. Programming language: ANSI FORTRAN

6. Precision: Both single and double precision versions for the direct solution option; mixed arithmetic in the IR option

7. Portability: Portable

8. Other packages required: None

9. Mode of use: Callable subroutines

10. Test or demonstration program available? Yes, several test-matrices generators

11. Length of code in lines: about 2000 Percentage comments: 10%

12. Special features: Multibanking option for the UNIVAC 1100 installations

13. Documentation and references:
 Detailed header comments? No
 User guide or manual, technical reports, papers, books:
 "Y12M: Solution of Large and Sparse Systems of Linear Algebraic Equations", Lecture Notes in Computer Science, Vol. 121, Springer,

14. Approximate cost of obtaining software: Free of charge

15. Restrictions on use: None

16. Distributor: Recku (Regional Computing Centre at the University of Copenhagen)

17. Original source of software:
 Developer: Z.Zlatev, J.Wasniewski and K.Schaumburg
 Institution: Recku, Copenhagen
 Sponsor: Danish Natural Science Research Council

18. For further information contact: J.Wasniewski, Regional Computing Centre at the University of Copenhagen, Vermundsgade 5, 2100 Copenhagen Ø
 Tlf. 01-83 95 11
1. Name of program or package: General Sparse Solver (SYMFAC, NUMFAC AND BKSLVE)

2. Descriptive title: General sparse linear system solver

3. Problem domain: Unsymmetric linear equation solver

4. Method of solution: SYMFAC - NUMFAC approach

5. Programming language: FORTRAN

6. Precision: Single and double precision

7. Portability: Standard FORTRAN

8. Other packages required:

9. Mode of use: Callable FORTRAN subroutines

10. Test or demonstration program available?: Yes

11. Length of code in lines: about 500 Percentage comments: about 50%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 Some Results on Sparse Matrices, IBM Research Report 1980
 "Some Basic Techniques for Solving Sparse Systems of Linear Equations,"
 Sparse Matrices and their Applications, D. J. Rose and R. A. Willoughby
 (eds.) Plenum Press, 1972, pp. 41-52

15. Restrictions on use: None

16. Distributor: Same as 18.

17. Original source of software:
 Developer: Fred G. Gustavson
 Institution: IBM Research
 Sponsor:

18. For further information contact:
 Dr. Fred G. Gustavson 33-205
 IBM T. J. Watson Research Center
 P.O. Box 218
 Yorktown Heights, New York 10598
 Phone: (914) 945-1980
1. Name of program or package: GNSO
2. Descriptive title: Symbolic Generation of an Optimal Crout Algorithm
3. Problem domain: Unsymmetric linear equation solver
4. Method of solution: Compiled code approach
5. Programming language: FORTRAN
6. Precision: Single and double precision
7. Portability: Standard FORTRAN
8. Other packages required: None
9. Mode of use: Callable FORTRAN subroutines
10. Test or demonstration program available? Yes
11. Length of code in lines: 1000 lines Percentage comments: 30%
12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: None
16. Distributor: Same as 18.

17. Original source of software:
 Developer: Fred C. Gustavson
 Institution: IBM Research
 Sponsor:

18. For further information contact:
 Dr. Fred C. Gustavson 33-205
 IBM T. J. Watson Research Center
 P.O. Box 218
 Yorktown Heights, New York 10598
 Phone: (914) 945-1980
1. Name of program or package: SPAR/VECTOR

2. Descriptive title: General Sparse Solver for CRAY-1

3. Problem domain: Unsymmetric sparse matrices

4. Method of solution: LU factorization

5. Programming language: Fortran

6. Precision: 64-Bit

7. Portability: CRAY-1, CRAY-1S, CRAY X-MP, CYBER 205

8. Other packages required: None

9. Mode of use: Subroutine

10. Test or demonstration program available: Yes

11. Length of code in lines: 700 Percentage comments: 20

12. Special features: Two-pass symbolic/numeric. From column-ordered symbolic matrix description and row and column permutation vectors, dense segments of columns are tagged for later processing in vector mode.

13. Documentation and references:
 Detailed header comments?
 User guide or manual, technical reports, papers, books:
 "A Collection of Sparse Matrix Solvers for the CRAY-1", Report #166, Systems Engineering Laboratory, University of Michigan, Ann Arbor, MI 48109; October, 1982.

14. Approximate cost of obtaining software: Send user tape

15. Restrictions on use: None

16. Distributor: See Below

17. Original source of software:
 Developer: D.A. Calahan, Dept. of Elec. & Comp. Engineering
 Institution: University of Michigan, Ann Arbor, MI 48109; 313-763-0036
 Sponsor: Air Force Office of Scientific Research

18. For further information contact: See Above
1. Name of program or package: SPAR/SC/CRAY

2. Descriptive title: General Sparse Solver for CRAY-1 by Loopless Scalar Code Generation

3. Problem domain: Unsymmetric highly sparse matrices

4. Method of solution: LU factorization

5. Programming language: Fortran and CRAY Assembly Language

6. Precision: 64-Bit

7. Portability: CRAY-1, CRAY-1S, CRAY X-MP

8. Other packages required: None

9. Mode of use: Stand-alone; easily modified to subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 1600 Percentage comments: 20

12. Special features: Two-pass symbolic/numeric. After special equation ordering to maximize local decoupling, loopless scalar code is generated in symbolic phase. Achieves 14-16 MFLOPS.

13. Documentation and references:

 Detailed header comments? No

 User guide or manual, technical reports, papers, books:
 "A Collection of Sparse Matrix Solvers for the CRAY-1", Report #166, Systems Engineering Laboratory, University of Michigan, Ann Arbor, MI 48109; October, 1982.

14. Approximate cost of obtaining software: Send user tape

15. Restrictions on use: None

16. Distributor: See Below

17. Original source of software:

 Developer: D.A. Calahan, Dept. of Elec. & Comp Engineering
 Institution: University of Michigan, Ann Arbor, MI 48109
 Sponsor: Air Force Office of Scientific Research

18. For further information contact: See Above
1. Name of program or package: RUFS

2. Descriptive title: Sparse linear system solver

3. Problem domain: Real, unsymmetric linear systems

4. Method of solution: LU Decomposition

5. Programming language: Assembly Language - FPS-164 Array Processor

6. Precision: 64-bit word

7. Portability: Developed for the FPS-164 Array Processor. A version also exists for the following FPS 38-bit Array Processors: FPS-100, AP-120B, AP-180V, and AP-190L.

8. Other packages required: FPS-164 Math Library (APMATH64)

9. Mode of use: Callable subroutine

10. Test or demonstration program available? No

11. Length of code in lines: 1017 Percentage comments: 70

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 APMATH64 Reference Manual
 Floating Point Systems, Inc.

14. Approximate cost of obtaining software: This routine is included in the FPS-164 Math Library (APMATH64)

15. Restrictions on use: License agreement required

 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151

17. Original source of software:
 Developer: Ron Coleman
 Institution: Floating Point Systems, Inc.
 Sponsor: Floating Point Systems, Inc.

18. For further information contact:
 Phil Vaughn
 Floating Point Systems, Inc.
 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151 TLX: 360470 FLOATPOIN BEAV
1. Name of program or package: CUFS

2. Descriptive title: Sparse linear system solver

3. Problem domain: Complex, unsymmetric linear systems

4. Method of solution: LU Decomposition

5. Programming language: FPS-164 Array Processor

6. Precision: 64-bit word

7. Portability: Developed for the FPS-164 Array Processor. A version also exists for the following FPS 38-bit Array Processors: FPS-100, AP-120B, AP-180V, and AP-190L.

8. Other packages required: FPS-164 Math Library (APMATH64)

9. Mode of use: Callable subroutine

10. Test or demonstration program available? No

11. Length of code in lines: 1212 Percentage comments: 70

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 APMATH64 Reference Manual
 Floating Point Systems, Inc.

14. Approximate cost of obtaining software: This routine is included in the FPS-164 Math Library (APMATH64).

15. Restrictions on use: License agreement required

 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151

17. Original source of software:
 Developer: Ron Coleman
 Institution: Floating Point Systems, Inc.
 Sponsor: Floating Point Systems, Inc.

18. For further information contact:
 Phil Vaughn
 Floating Point Systems, Inc.
 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151 TLX: 360470 FLOATPOIN BEAV
1. Name of program or package: ECTLIB

2. Descriptive title: Subroutines for out-of-core solutions of large complex linear systems

3. Problem domain: The solving of large linear complex systems

5. Programming language: FORTRAN IV

6. Precision: Single

7. Portability: CDC CYBER 170 Series

8. Other packages required: No

9. Mode of use: Stand Alone

10. Test or demonstration program available? Yes

11. Length of code in lines: 3530

12. Special features:

 Applicable to both dense and sparse matrices that are too large to stored in core

13. Documentation and references:
 Detailed header comments? No
 User guide or manual, technical reports, papers, books:
 NASA CR159142

14. Approximate cost of obtaining software: $675.00

15. Restrictions on use: No

16. Distributor: COSMIC
 112 Barrow Hall, University of Georgia
 Athens, GA 30602

17. Original source of software:
 Developer: Elizabeth Yip
 Institution: Boeing Commercial Airplane Co.
 Sponsor: NASA Langley Research Center

18. For further information contact:
 Steve Horton
 COSMIC
 404 542-3265
1. Name of program or package: SPAR2PAS

2. Descriptive title: Sparse linear equation solver by 2-pass approach

3. Problem domain: Unsymmetric linear systems, reorder equations

4. Method of solution: P4, HP (hierarchical partitioning), Gaussian elimination

5. Programming language: FORTRAN, mostly ANSI with few exceptions

6. Precision: Single

7. Portability: Portable

8. Other packages required: None

9. Mode of use: Callable subroutines

10. Test or demonstration program available? No

11. Length of code in lines: ~4500 Percentage comments: 30%

12. Special features: Optionally, matrix is out-of-core, row at a time processing; reordering techniques especially suited for chemical process flowsheeting problems.

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 User guide forthcoming.

14. Approximate cost of obtaining software: Small fee

15. Restrictions on use: none

16. Distributor: Same as 18

17. Original source of software:
 Developer: Mark A. Stadtherr
 Institution: University of Illinois
 Sponsor: NSF

18. For further information contact:
 Mark A. Stadtherr
 Chemical Engineering Department
 University of Illinois
 1209 West California Street
 Urbana, Illinois 61801
 Phone: 217-333-0275
1. Name of program or package: LINPACK

2. Descriptive title: Dense linear equation solver

3. Problem domain: Linear systems for general, banded, symmetric indefinite, symmetric positive definite, triangular and tridiagonal; plus QR and SVD for rectangular matrices.

4. Method of solution: Direct matrix factorization

5. Programming language: Fortran

6. Precision: Single, double, complex and double complex

7. Portability: Fully portable

8. Other packages required: BLAS

9. Mode of use: Callable subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: Percentage comments: 50%
 7000 lines in each precision

12. Special features: Column orientation for efficiency.

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 LINPACK Users' Guide, J. J. Dongarra, J. R. Bunch, C. B. Moler,

14. Approximate cost of obtaining software: $75 handling fee

15. Restrictions on use: None

 Argonne National Laboratory Sixth Floor, NBC Building
 9700 South Cass Avenue 7500 Bellaire Boulevard
 Argonne, IL 60439 Houston, TX 77036

17. Original source of software:
 Developer: Dongarra, Bunch, Moler, Stewart
 Institution: Argonne National Laboratory, Univ. of California (San Diego), Univ.
 Sponsor: of New Mexico, Univ. of Maryland
 NSF & DOE

18. For further information contact:
 Jack Dongarra
 Mathematics and Computer Science Div.
 Argonne National Laboratory
 Argonne, IL 60439
 (312) 972-7246

 ARPA: ANLAMS!Dongarra@UCR-C70
1. Name of program or package: PROFILE/U/CRAY

2. Descriptive title: Unsymmetric Banded and Profile Solvers for the CRAY-1

3. Problem domain: Unsymmetric banded and profile matrices

4. Method of solution: LU factorization

5. Programming language: CRAY assembly language

6. Precision: 64-Bit
7. Portability: CRAY-1, CRAY-1S, CRAY X-MP

8. Other packages required: None
9. Mode of use: Subroutine
10. Test or demonstration program available? Yes
11. Length of code in lines: 2700 Percentage comments: 20

12. Special features: Compressed storage by rows or columns; no bandwidth restriction; achieves 100 MFLOPS with bandwidths greater than 40.

13. Documentation and references:
 Detailed header comments? No
 User guide or manual, technical reports, papers, books:
 "High Performance Banded and Profile Solvers for the CRAY-1: The Unsymmetric Case" Report #160, Systems Engineering Laboratory, University of Michigan, Ann Arbor, MI 48109; February, 1982.

14. Approximate cost of obtaining software: Send user tape
15. Restrictions on use: None
16. Distributor: See Below

17. Original source of software:
 Developer: D.A. Calahan, Dept. of Elec. & Comp. Engineering
 Institution: University of Michigan, Ann Arbor, MI 48109; 313-763-0036
 Sponsor: Air Force Office of Scientific Research

18. For further information contact: See Above
1. Name of program or package: SPAR/BL/CRAY

2. Descriptive title: General Block-Oriented Sparse Solver for CRAY-1

3. Problem domain: Unsymmetric matrices

4. Method of solution: LU factorization

5. Programming language: Fortran and CRAY Assembly Language

6. Precision: 64-bit

7. Portability: CRAY-1, CRAY-1S, CRAY X-MP

8. Other packages required:

9. Mode of use: Subroutine(s)

10. Test or demonstration program available? Yes

11. Length of code in lines: 1800 Percentage comments: 20

12. Special features: Solves matrices blocked by row and column strips emanating from diagonal blocks.

13. Documentation and references:
Detailed header comments?
User guide or manual, technical reports, papers, books:
"A Collection of Sparse Matrix Solvers for the CRAY-1", Report #166, Systems Engineering Laboratory, University of Michigan, Ann Arbor, MI 48109; October, 1982

14. Approximate cost of obtaining software: Send user tape

15. Restrictions on use: None

16. Distributor: See Below

17. Original source of software:
Developer: D.A. Calahan, Dept. of Elec. & Comp. Engineering
Institution: University of Michigan, Ann Arbor, MI 48109
Sponsor: Air Force of Scientific Research

18. For further information contact: See Above
1. Name of program or package: SOLVEBLOK

2. Descriptive title: Direct almost block diagonal system solver

3. Problem domain: Almost block diagonal systems such as arise in spline approximation, e.g., in the pp collocation solution to ODE BVPs.

4. Method of solution: Gauss elimination with scaled partial pivoting

5. Programming language: Fortran V

6. Precision: single

7. Portability: developed on UNIVAC 1100, is running on various other machines

8. Other packages required: none

9. Mode of use: callable subroutine(s)

10. Test or demonstration program available? yes, part of package

11. Length of code in lines: 510 Percentage comments: (297/510)*100

12. Special features: none

13. Documentation and references:
 Detailed header comments? yes

14. Approximate cost of obtaining software: postage

15. Restrictions on use: none

16. Distributor: ACM Algorithms Distribution service (listing), or send tape to developer (see 18.)

17. Original source of software:
 Developer: C. de Boor & R. Weiss
 Institution: MRC, U. Wisconsin-Madison
 Sponsor:

18. For further information contact: C. de Boor, MRC, 610 Walnut St., Madison WI 53706
1. **Name of program or package:** ARCECO
2. **Descriptive title:** Almost block diagonal linear system solver
3. **Problem domain:** Finite element methods for the solution of differential equations in one space variable.
4. **Method of solution:** Modified alternate row and column elimination
5. **Programming language:** ANSI Fortran
6. **Precision:** Double (changes for single indicated)
7. **Portability:** IBM 370/165, IBM 3033/N8, DEC-10. Easily portable
8. **Other packages required:** None
9. **Mode of use:** Callable subroutine
10. **Test or demonstration program available?** Yes
11. **Length of code in lines:** 1110
 Percentage comments: 70%
12. **Special features:** None
13. **Documentation and references:**
 - Detailed header comments? Yes
 - User guide or manual, technical reports, papers, books: J.C. Diaz, G. Fairweather and P. Keast FORTRAN packages for solving almost block diagonal linear systems by modified alternate row and column elimination, Technical Report 148/81, Department of Computer Science, University of Toronto.
14. **Approximate cost of obtaining software:** Free on submission of a tape.
15. **Restrictions on use:** None
16. **Distributor:** Dr. P. Keast, Department of Computer Science, University of Toronto, Toronto, CANADA M5S 1A7
17. **Original source of software:**
 - Developer: J.C. Diaz, G. Fairweather, P. Keast
 - Institution: University of Kentucky and University of Toronto
 - Sponsor: NSERC
18. **For further information contact:**
 Dr. P. Keast, Department of Computer Science, University of Toronto, Toronto, CANADA M5S 1A7
1. **Name of program or package:** ROWCOL

2. **Descriptive title:** Almost block diagonal linear system solver

3. **Problem domain:** \(H^{-1} \)-Galerkin and collocation \(H^{-1} \)-Galerkin methods for differential equations in one space variable

4. **Method of solution:** Modified alternate row and column elimination

5. **Programming language:** ANSI Fortran

6. **Precision:** Double (changes for single indicated)

7. **Portability:** IBM 370/165, IBM 3033/N8, DEC-10. Easily portable.

8. **Other packages required:** None

9. **Mode of use:** Callable subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** 675
 Percentage comments: 74%

12. **Special features:** None

13. **Documentation and references:**
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 G. Fairweather and P. Keast, ROWCOL - a program for solving almost block diagonal linear systems arising in the \(H^{-1} \)-Galerkin and collocation \(H^{-1} \)-Galerkin methods, Technical Report, Department of Computer Science, University of Toronto, to appear.

14. **Approximate cost of obtaining software:** Free on submission of a tape.

15. **Restrictions on use:** None

16. **Distributor:**
 Dr. P. Keast, Department of Computer Science, University of Toronto, Toronto, Canada M5S 1A7

17. **Original source of software:**
 Developer: G. Fairweather and P. Keast
 Institution: University of Kentucky and University of Toronto
 Sponsor: NSERC

18. **For further information contact:**
 Dr. P. Keast, Department of Computer Science, University of Toronto, Toronto, Canada M5S 1A7
1. Name of program or package: COLROW

2. Descriptive title: Almost block diagonal linear system solver

4. Method of solution: Modified alternate row and column elimination

5. Programming language: ANSI Fortran

6. Precision: Double (changes for single indicated)

8. Other packages required: None

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 1120 Percentage comments: 65%

12. Special features: None

13. Documentation and references:
 Yes
 Detailed header comments?
 User guide or manual, technical reports, papers, books:
 J.C. Diaz, G. Fairweather, and P. Keast, FORTRAN packages for solving almost block diagonal linear systems by modified alternate row and column elimination, Technical Report 148/81, Department of Computer Science, University of Toronto.

15. Restrictions on use: None

16. Distributor:
 Dr. P. Keast, Department of Computer Science, University of Toronto, Toronto, CANADA M5S 1A7

17. Original source of software:
 Developer: G. Fairweather and P. Keast
 Institution: University of Kentucky and University of Toronto
 Sponsor: NSERC

18. For further information contact:
 Dr. P. Keast, Computer Science Department, University of Toronto.
 Toronto, Canada M5S 1A7
1. Name of program or package: MA27

2. Descriptive title: Solves linear sets of equations.

3. Problem domain: Sparse symmetric matrices, which need not be definite.

4. Method of solution: Symmetric factorization, including 2x2 pivots.

6. Precision: Both single and double precision versions are available.

8. Other packages required: None.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 2922 Percentage comments: 37%

13. Documentation and references:
 Detailed header comments? Yes.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (i), (ii), (iii), (iv) (see appendix on Harwell Subroutine Library).

17. Original source of software:
 Developer: I.S. Duff and J.K. Reid.

18. For further information contact: The developers.
1. **Name of program or package:** SPARSPAK

2. **Descriptive title:** Solution of Sparse Systems of Linear Equations

3. **Problem domain:** Systems of Equations having symmetric structure and for which no pivoting for stability is required; symmetric positive definite systems.

4. **Method of solution:** Cholesky's method, Gaussian elimination

5. **Programming language:** FORTRAN

6. **Precision:** SINGLE OR DOUBLE

7. **Portability:** Runs through PFORT; special IBM versions also available.

8. **Other packages required:** None

9. **Mode of use:** Sets of sub-routines - callable from Fortran user program.

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** Approx. 20,000

12. **Percentage comments:** Approx. 20%

13. **Special features:**
 - friendly user interface
 - easy to use SAVE and RESTART facility.

14. **Documentation and references:**

15. **Approximate cost of obtaining software:** US$750.00 (one time charge for source code).

16. **Restrictions on use:** License agreement required

17. **Distributor:** Waterloo Research Institute
 University of Waterloo
 Waterloo, Ontario, CANADA N2L 3G1

18. **Original source of software:**
 - **Developer:** Alan George and Joseph Liu
 - **Institution:** University of Waterloo
 - **Sponsor:** 1) Natural Sciences and Engineering Council of Canada
 2) University of Waterloo

19. **For further information contact:**
 - Prof. Alan George
 - Dept. of Computer Science
 - University of Waterloo
 - Waterloo, Ontario, CANADA N2L 3G1.
1. Name of program or package: YSMP

2. Descriptive title: Yale Sparse Matrix Package

3. Problem domain: Re-ordering, Factorization and Solution of Symmetric and non-symmetric linear equations

4. Method of solution: Minimum degree ordering and Sparse Gaussian Elimination

5. Programming language: Fortran

6. Precision: Single (marked, simple conversion to double)

7. Portability: Developed on DEC-10, DEC-20, IBM/360, IBM/370, CDC-6600; easily portable to other machines.

8. Other packages required: None

9. Mode of use: Callable subroutines (5 drivers + lower level subroutines)

10. Test or demonstration program available? Yes (2)

11. Length of code in lines: 4000 Percentage comments: 59%

12. Special features: None

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: $100.00

15. Restrictions on use: None

16. Distributor: YSMP Librarian
 Department of Computer Science
 Box 2158 Yale Station
 New Haven, Conn. 06520

17. Original source of software:
 Developer: Stanley C. Eisenstat, Martin H. Schultz, Andrew H. Sherman
 Institution: Yale University
 Sponsor: ONR, AFOSR

18. For further information contact:
 Stanley C. Eisenstat
 Department of Computer Science
 Box 2158 Yale Station
 New Haven, CT 06520
 713/432-4674
1. Name of program or package: General Symmetric Sparse Solver (Symmetric SYMFAC, NUMFAC and BKSLVE)

2. Descriptive title: Symmetric sparse linear systems solver

3. Problem domain: Symmetric positive definite linear systems

4. Method of solution: SYMFAC - NUMFAC approach

5. Programming language: FORTRAN

6. Precision: Single and double precision

7. Portability: Standard FORTRAN

8. Other packages required: None

9. Mode of use: Callable FORTRAN subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: about 500 Percentage comments: about 50%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 Some Results on Sparse Matrices, IBM Research Report 1980
 "Some Basic Techniques for Solving Sparse Systems of Linear Equations,"
 Sparse Matrices and their Applications, D. J. Rose and R. A. Willoughby
 (eds.) Plenum Press, 1972, pp. 41-52

15. Restrictions on use: None

16. Distributor: Same as 18.

17. Original source of software:
 Developer: Fred G. Gustavson
 Institution: IBM Research
 Sponsor:

18. For further information contact:
 Dr. Fred G. Gustavson 33-205
 IBM T. J. Watson Research Center
 P.O. Box 218
 Yorktown Heights, New York 10598
 Phone: (914) 945-1980
1. Name of program or package: RSFS

2. Descriptive title: Sparse linear system solver

3. Problem domain: Real, symmetric linear systems

4. Method of solution: LDU Decomposition

5. Programming language: FPS-164 Array Processor

6. Precision: 64-bit word

7. Portability: Developed for the FPS-164 Array Processor. A version also exists for the following FPS 38-bit Array Processors:
 - FPS-100, AP-120B, AP-180V, and AP-190L.

8. Other packages required: FPS-164 Math Library (APMATH64)

9. Mode of use: Callable subroutine

10. Test or demonstration program available? No

11. Length of code in lines: 1112 Percentage comments: 70

13. Documentation and references:
 - Detailed header comments? Yes
 - User guide or manual, technical reports, papers, books:
 - APMATH64 Reference Manual
 - Floating Point Systems, Inc.

14. Approximate cost of obtaining software: This routine is included in the FPS-164 Math Library (APMATH64).

15. Restrictions on use: License agreement required

 - P.O. Box 23489
 - Portland, Or. 97223
 - (503) 641-3151

17. Original source of software:
 - Developer: Ron Coleman
 - Institution: Floating Point Systems, Inc.
 - Sponsor: Floating Point Systems, Inc.

18. For further information contact:
 - Phil Vaughn
 - Floating Point Systems, Inc
 - P.O. Box 23489
 - Portland, OR 97223
 - (503) 641-3151 TLX: 360470 FLOATPOIN BEAV
1. **Name of program or package:** CSPARSPAK

2. **Descriptive title:** Complex version of sparse linear system solver, SPARSPAK.

3. **Problem domain:** Large sparse complex systems of linear equations; most efficient for symmetric or Hermitian matrices.

4. **Method of solution:** Choice of 5 reordering algorithms followed by sparse Gaussian elimination.

5. **Programming language:** FORTRAN

6. **Precision:** Single

7. **Portability:** Developed on CYBER, IBM; portable.

8. **Other packages required:** SPARSPAK

9. **Mode of use:** Collection of subroutines.

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** 9000 lines
 Percentage comments: about 50%

12. **Special features:** User insulated from complicated data structures and storage management.

13. **Documentation and references:**
 - Detailed header comments? Yes
 - User guide or manual, technical reports, papers, books: SPARSPAK User Guide

14. **Approximate cost of obtaining software:** CSPARSPAK is available to BCS network users.
 - Possibility of sale to interested organizations is under review.

15. **Restrictions on use:**
 - Use on BCS systems or if sold, internal use only. May not be distributed to others.

16. **Distributor:** Boeing Computer Services Company

17. **Original source of software:**
 - **Developer:** J.G. Lewis modified SPARSPAK (developed by Alan George & Joseph Liu).
 - **Institution:** Boeing Computer Services Company
 - **Sponsor:** Boeing Computer Services Company

18. **For further information contact:**
 - J.G. Lewis
 Boeing Computer Services Company
 565 Andover Park West, MS 9C-01
 Tukwila, WA 98188
 (206) 575-5102
1. Name of program or package: CSFS

2. Descriptive title: Sparse linear system solver

3. Problem domain: Complex, symmetric linear systems

4. Method of solution: LDU Decomposition

5. Programming language: Assembly language – FPS-164 Array Processor

6. Precision: 64-bit word

7. Portability: Developed for the FPS-164 Array Processor. A version also exists for the following FPS 38-bit Array Processors: FPS-100, AP-120B, AP-180V, and AP-190L.

8. Other packages required: FPS-164 Math Library (APMATH64)

9. Mode of use: Callable subroutine

10. Test or demonstration program available? No

11. Length of code in lines: 1421 Percentage comments: 71

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 APMATH64 Reference Manual
 Floating Point Systems, Inc.

14. Approximate cost of obtaining software: This routine is included in the FPS-164 Math Library (APMATH64).

15. Restrictions on use: License agreement required.

 P.O. Box 23489
 Portland, OR 97223 (503) 641-3151

17. Original source of software:
 Developer: Ron Coleman
 Institution: Floating Point Systems, Inc.
 Sponsor: Floating Point Systems, Inc.

18. For further information contact:
 Phil Vaughn
 Floating Point Systems, Inc.
 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151 TLX: 360470 FLOATPOIN BEAV
1. Name of program or package: FO1MCF

2. Descriptive title: Factorises a matrix

3. Problem domain: Symmetric, positive definite, variable bandwidth matrix

4. Method of solution: Cholesky

5. Programming language: FORTRAN

6. Precision: Either

7. Portability: Available on 48 machine ranges/compilers

8. Other packages required: NAG

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 126 Percentage comments: 54%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 NAG Library Manual
 NAG On-line Supplement

14. Approximate cost of obtaining software: NAG Library costs $1584/year

15. Restrictions on use: License agreement

 (see below)

17. Original source of software:
 Developer: Dr. M. Cox
 Institution: N.P.L.
 Sponsor: NAG

18. For further information contact:
 Mrs. Carolyn M. Smith
 NAG (U.S.A.) Inc.
 1250 Grace Court
 Downers Grove, IL 60515
 Tel. 971-2337
 Telex 23254708 (Teleserv DFLD)
1. Name of program or package: FO4MCF

2. Descriptive title: Solves a system of linear algebraic equations

3. Problem domain: Symmetric, positive-definite variable bandwidth matrix

4. Method of solution: Cholesky

5. Programming language: FORTRAN

6. Precision: Either

7. Portability: Available on 48 machine ranges/compilers

8. Other packages required: NAG

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 155 Percentage comments: 76%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 NAG Library Manual
 NAG On-line Supplement

14. Approximate cost of obtaining software: NAG Library License costs $1584/year

15. Restrictions on use: License agreement

 (see below)

17. Original source of software:
 Developer: Dr. M. Cox
 Institution: N.P.L.
 Sponsor: NAG

18. For further information contact:
 Mrs. Carolyn M. Smith
 NAG (U.S.A.) Inc.
 1250 Grace Court
 Downers Grove, IL 60516
 Tel. 971-2337
 Telex 23254708 (Telexerv DFLD)
1. **Name of program or package**: MA15

2. **Descriptive title**: Solve linear sets of equations.

3. **Problem domain**: Symmetric positive-definite banded matrices.

4. **Method of solution**: Symmetric factorization.

5. **Programming language**: IBM Fortran.

6. **Precision**: Both single and double precision versions are available.

7. **Portability**: Fortran 77 version available.

8. **Other packages required**: Harwell subroutine FM01.

9. **Mode of use**: Subroutine calls.

10. **Test of demonstration program available**: Yes.

11. **Length of code in lines**: 147
 Percentage comments: 4%
 (252 with dependencies)

12. **Special features**: Overflows to direct-access file if necessary.

13. **Documentation and references**:
 - **Detailed header comments**: No.
 - **User guide or manual, technical reports, papers, books**:
 J.K. Reid (1972), Two Fortran subroutines for direct solution of linear equation whose matrix is sparse, symmetric and positive definite. Harwell report R.7119, H.M.S.O., London.

14. **Approximate cost of obtaining software**: See appendix on Harwell Subroutine Library.

15. **Restrictions on use**: (ii), (iii) (see appendix on Harwell Subroutine Library).

16. **Distributor**: S. Marlow, CSS Division, Building 8.9, A.E.R.E. Harwell,
 Oxfordshire OX11 ORA, England.

17. **Original source of software**:
 - **Developer**: J.K. Reid.
 - **Institution**: A.E.R.E. Harwell.
 - **Sponsor**: A.E.R.E. Harwell.

18. **For further information contact**: The developer.
1. **Name of program or package:** PROFILE/S/CRAY

2. **Descriptive title:** Symmetric Banded and Profile Solvers for the CRAY-1

3. **Problem domain:** Symmetric banded and profile matrices

4. **Method of solution:** $U^T D U$ factorization

5. **Programming language:** CRAY assembly language

6. **Precision:** 64-bit

7. **Portability:** CRAY-1, CRAY-1S, CRAY X-MP

8. **Other packages required:** None

9. **Mode of use:** Subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** 2500 **Percentage comments:** 20

12. **Special features:** Compressed storage by rows or columns; no bandwidth restriction; achieves 120 MFLOPS with bandwidth greater than 40.

13. **Documentation and references:**
 - Detailed header comments? No
 - User guide or manual, technical reports, papers, books:
 "High Performance Banded and Profile Solvers for the CRAY-1:
 The Symmetric Case" Report #165, Systems Engineering Laboratory,
 University of Michigan, Ann Arbor, MI 48109; August 1982.

14. **Approximate cost of obtaining software:** Send user tape

15. **Restrictions on use:** None

16. **Distributor:** See Below

17. **Original source of software:**
 - **Developer:** D.A. Calahan, Dept. of Elec. & Comp. Engineering
 - **Institution:** University of Michigan, Ann Arbor, MI 48109; 313-763-0036
 - **Sponsor:** Air Force Office of Scientific Research

18. **For further information contact:** See Above
1. Name of program or package: SKYSOL

2. Descriptive title: Sparse linear system solver

3. Problem domain: Real, symmetric, skyline profile linear systems

4. Method of solution: LU Decomposition

5. Programming language: Assembly Language - FPS-164 Array Processor

6. Precision: 64-bit word

7. Portability: Developed for the FPS-164 Array Processor. A version also exists for the following FPS 38-bit Array Processors: FPS-100, AP-120B, AP-180V, and AP-190L.

8. Other packages required: FPS-164 Math Library (APMATH64)

9. Mode of use: Callable subroutine

10. Test or demonstration program available? No

11. Length of code in lines: 576 Percentage comments: 50

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 APMATH64 Reference Manual
 Floating Point Systems, Inc.

14. Approximate cost of obtaining software: This routine is included in the FPS-164 Math Library (APMATH64).

15. Restrictions on use: License agreement required

 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151

17. Original source of software:
 Developer: L. Tarvestad
 Institution: Floating Point Systems, Inc.
 Sponsor: Floating Point Systems, Inc.

18. For further information contact:

 Phil Vaughn
 Floating Point Systems, Inc.
 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151 TLX: 360470 FLOATPOIN BEAV
1. Name of program or package: ITPACK 2C

2. Descriptive title: Sparse linear system solver using iterative methods

3. Problem domain: The seven ITPACK routines can be called with any linear system containing positive diagonal elements, however they are most successful in solving systems with symmetric positive definite or mildly nonsymmetric matrices.

4. Method of solution: Jacobi Conjugate Gradient, Jacobi Semi-iteration, SOR, Symmetric SOR Conjugate Gradient, Symmetric SOR semi-iteration, Reduced System Conjugate Gradient, Reduced System Semi-iteration

5. Programming language: ANSI FORTRAN 66

6. Precision: Single

7. Portability: Easily portable since entire package written in ANSI FORTRAN 66. Was developed on a CDC CYBER 170/750 but tested on other computers.

8. Other packages required: None

9. Mode of use: Callable subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: 8960 Percentage comments: 51%

12. Special features: Uses sparse storage scheme (symmetric or nonsymmetric). Automatic selection of the acceleration parameters and the use of accurate stopping criteria are major features of this software package.

13. Documentation and references: Detailed header comments? Yes
User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: Mag. Tape $76.50 ACM Member; $90 Others

15. Restrictions on use: None

16. Distributor: ACM ALGORITHMS DISTRIBUTION SERVICE
International Mathematical and Statistical Libraries, Inc.
Sixth Floor, NBC Building, 7500 Bellaire Boulevard
Houston, Texas 77036 (713) 772-1927

17. Original source of software:
Developer: David R. Kincaid, Roger C. Grimes, John R. Respess, David M. Young
Institution: Center for Numerical Analysis, University of Texas at Austin
Sponsor: National Science Foundation

18. For further information contact: John R. Respess, Center for Numerical Analysis
University of Texas at Austin
RLM 13.150
Austin, Texas 78712
(512) 471-1242

ARPANET: RESSPE@UTEXAS-11
1. Name of program or package: SITSOL

2. Descriptive title: Sparse linear system solver

3. Problem domain: Real, unsymmetric linear systems

4. Method of solution: SOR or Gauss-Seidel

5. Programming language: Assembly language - FPS-164 Array Processor

6. Precision: 64-bit word

7. Portability: Developed for the FPS-164 Array Processor.

8. Other packages required: FPS-164 Math Library (APMATH64)

9. Mode of use: Callable subroutine

10. Test or demonstration program available? No

11. Length of code in lines: 742 Percentage comments: 7%

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 APMATH64 Reference Manual
 Floating Point Systems, Inc.

14. Approximate cost of obtaining software: This routine is included in the FPS-164 Math Library (APMATH64)

15. Restrictions on use: License agreement required

 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151

17. Original source of software:
 Developer: Ron Coleman
 Institution: Floating Point Systems, Inc.
 Sponsor: Floating Point Systems, Inc.

18. For further information contact:
 Phil Vaugh
 Floating Point Systems, Inc.
 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151 TLX: 360470 FLOATPOIN BEAV
1. Name of program or package: TCHLIB

2. Descriptive title: Sparse Linear System Solver

3. Problem domain: Symmetric and Nonsymmetric Linear Systems

4. Method of solution: Tchebychev iteration with Dynamic Estimation of Parameters

5. Programming language: FORTRAN

6. Precision: Single

7. Portability: Passes PFORT Verifier

8. Other packages required: BLAS, EISPACK

9. Mode of use: Subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 2734 Percentage comments: 40%

12. Special features: Highly vectorized

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books: None

14. Approximate cost of obtaining software: None

15. Restrictions on use: None

16. Distributor: NESC

17. Original source of software:
 Developer: T. A. Manteuffel
 Institution: Los Alamos National Laboratory
 Sponsor: DOE

18. For further information contact:
 T. A. Manteuffel
 Mail Stop B265
 Los Alamos National Laboratory
 Los Alamos, NM 87545
1. **Name of program or package:** SYMMLQ
2. **Descriptive title:** Sparse linear system solver
3. **Problem domain:** Symmetric systems, definite or indefinite
4. **Method of solution:** Lanczos tridiagonalization
5. **Programming language:** ANSI FORTRAN
6. **Precision:** Single, easily converted to double
7. **Portability:** Developed on IBM and Burroughs; easily portable to other machines
8. **Other packages required:** BLAS if available; simplified alternatives provided
9. **Mode of use:** Callable subroutine
10. **Test or demonstration program available?** Yes
11. **Length of code in lines:** 500
12. **Special features:** BLAS operations are efficient in a paging environment and on pipeline machines. Overall efficiency may depend on user's own routine for computing matrix-vector products \(y = Ax \).
13. **Documentation and references:**
 - Detailed header comments? Yes
 - User guide or manual, technical reports, papers, books:
14. **Approximate cost of obtaining software:** Zero, if tape is returned after use.
15. **Restrictions on use:** None
16. **Distributor:** Michael Saunders
 Ph: (415)497-1875
 Department of Operations Research
 Stanford University, Stanford, CA 94305
17. **Original source of software:**
 - Developer: Chris Paige
 - Institution: McGill University
 - Sponsor: National Research Council of Canada; DSIR, New Zealand; AEC, NSF.
18. **For further information contact:** Michael Saunders (see 16 above)
1. **Name of program or package:** ICCG-package

2. **Descriptive title:** Mathematical software for elliptic boundary value problems.

3. **Problem domain:** Self-adjoint/mixed, periodic boundary conditions/2D rectangular domains.

4. **Method of solution:** Standard finite differences with conjugate gradient iteration technique, preconditioned with incomplete Choleski factorization.

5. **Programming language:** FORTRAN (ANSI)

6. **Precision:** Single

7. **Portability:** Portable FORTRAN (PFORT verifier); tested on Cyber 175-28 (CDC)

8. **Other packages required:** None

9. **Mode of use:** Callable subroutines

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** ca. 3000 **Percentage comments:** over 50%

12. **Special features:** Versions for space or time economization

13. **Documentation and references:** Available

 Detailed header comments? Yes

 User guide or manual, technical reports, papers, books:

 J. M. van Kats & H. A. van der Vorst, "Software for the discretisation and solution of second order self-adjoint elliptic partial differential equations in two dimensions,: TR-10, ACCU, Budapestlaan 6, Utrecht, The Netherlands

14. **Approximate cost of obtaining software:** Free

15. **Restrictions on use:** None

16. **Distributor:** ACCU, Budapestlaan 6, Utrecht, The Netherlands

17. **Original source of software:** A.C.C.U.

 Developer: Jan van Kats & Henk van der Vorst

 Institution: Academic Computer Centre Utrecht

 Sponsor: Utrecht University

18. **For further information contact:**

 Henk van der Vorst
 ACCU
 Budapestlaan 6
 Utrecht
 The Netherlands
1. **Name of program or package:** MA31

2. **Descriptive title:** Solves linear sets of equations.

3. **Problem domain:** Symmetric sparse positive-definite matrices.

4. **Method of solution:** Incomplete factorization and conjugate gradients.

5. **Programming language:** IBM Fortran.

6. **Precision:** Both single and double precision versions are available.

7. **Portability:** Fortran 66 version available.

8. **Other packages required:** None.

9. **Mode of use:** Subroutine calls.

10. **Test of demonstration program available:** Yes.

11. **Length of code in lines:** 1111
 Percentage comments: 35%

12. **Special features:** Contains a parameter to adjust the amount of fill. It can therefore be used as a direct solver with iterative refinement or as an iterative solver requiring a variable amount of storage.

13. **Documentation and references:**
 Detailed header comments? Yes.
 User guide or manual, technical reports, papers, books:

14. **Approximate cost of obtaining software:** See appendix on Harwell Subroutine Library.

15. **Restrictions on use:** (ii), (iii) (see appendix on Harwell Subroutine Library).

17. **Original source of software:**
 Developer: N.Munksgaard.
 Institution: Technical University of Denmark.
 Sponsor: Danish Natural Science Research Council.

18. **For further information contact:** I.S.Duff or J.K.Reid at Harwell.
1. Name of program or package:
PCGPAK

2. Descriptive title:
Sparse linear system solver.

3. Problem domain:
General nonsingular sparse linear systems.

4. Method of solution:
Preconditioned conjugate gradient method and conjugate gradient-like iterative methods.

5. Programming language:
FORTRAN

6. Precision:
 Either

7. Portability:
Developed on DEC-20 and VAX-780. Easily portable.

8. Other packages required:
BLAS

9. Mode of use:
Callable subroutine.

10. Test or demonstration program available?
NO

11. Length of code in lines:
Percentage comments:
length 2700 percentage 30%

12. Special features:
None

13. Documentation and references:
Detailed header comments?
User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software:
Software not available for distribution at present.

15. Restrictions on use:

16. Distributor:

17. Original source of software:
Howard C. Elman, Stanley C. Eisenstat, Martin H. Schultz
Developer:
Institution: Yale University, Dept. of Computer Science
Sponsor: ONR, NSF, Scientific Computing Associates

18. For further information contact:
Howard C. Elman
Yale Univ. Dept. of Computer Science
O.O. Box 2158 Yale Station
New Haven, CT 06520

(203) 432-4674
1. **Name of program or package:** CG25, BCG25, CCG25.

2. **Descriptive title:** Packages for solving five diagonal systems of algebraic equations.

3. **Problem domain:** Solves systems of five diagonal systems of equations such as arise in finite difference models of two dimensional elliptic partial differential equations. CG is for symmetric systems, BCG for unsymmetric systems and CCG for complex systems.

4. **Method of solution:** Preconditioned Conjugate Gradients.

5. **Programming language:** ANSI FORTRAN 66.

6. **Precision:** Single and double precision versions available.

7. **Portability:** Developed on IBM, but written in ANSI FORTRAN.

8. **Other packages required:** None

9. **Mode of use:** Callable subroutine.

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** About 2000 each
Percentage comments: About 70%

12. **Special features:** Written for computational efficiency and for ease of modification and further enhancement. Hence the development of specialized versions for very large problems, for example, which use particular features of a computer, is made as easy as possible.

13. **Documentation and references:**
User guide or manual, technical reports, papers, books:

14. **Approximate cost of obtaining software:** On application

15. **Restrictions on use:** License Agreement Required

16. **Distributor:** External Sales, Headquarters Computing Centre, Central Electricity Generating Board, 85 Park Street, London, SEL 9DY, England,
Tele. 01 248 1202.

17. **Original source of software:**
Developer: D.A.H. Jacobs
Institution: Central Electricity Research Labs., Leatherhead, Surrey, England.
Sponsor: Central Electricity Generating Board

18. **For further information contact:** For sales: Mr. M. Wall (address in 16 above)
Technical Queries: Dr. D.A.H. Jacobs, Central Electricity Research Labs.,
Kelvin Avenue, Leatherhead, Surrey, England,
Tele. 0372 374488
1. **Name of program or package:** CG37, BCG37, CCG37.

2. **Descriptive title:** Packages for solving seven diagonal systems of algebraic equations.

3. **Problem domain:** Solves systems of seven diagonal systems of equations such as arise in finite difference models of three dimensional elliptic partial differential equations. CG is for symmetric systems, BCG for unsymmetric systems and CCG for complex systems.

4. **Method of solution:** Preconditioned Conjugate Gradients

5. **Programming language:** ANSI FORTRAN 66

6. **Precision:** Single and double precision versions available.

7. **Portability:** Developed on IBM, but written in ANSI FORTRAN.

8. **Other packages required:** None

9. **Mode of use:** Callable subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** About 2000 each
Percentage comments: About 70%

12. **Special features:** Written for computational efficiency and for ease of modification and further enhancement. Hence the development of specialized versions for very large problems, for example which use particular features of a computer, is made as easy as possible.

13. **Documentation and references:**
Detailed header comments? Yes

14. **Approximate cost of obtaining software:** On application

15. **Restrictions on use:** License agreement required

16. **Distributor:** External Sales, Headquarters Computing Centre, Central Electricity Generating Board, 85 Park Street, London, SE1 9DY, England, Tel. 01 248 1202.

17. **Original source of software:**
Developer: D.A.H. Jacobs
Institution: Central Electricity Research Labs., Leatherhead, Surrey, England
Sponsor: Central Electricity Generating Board

18. **For further information contact:** For sales: Mr. M. Wall (address in 16 above)
Technical Queries: Dr. D.A.H. Jacobs, Central Electricity Research Labs., Kelvin Avenue, Leatherhead, Surrey, England, Tel. 0372 374488
1. **Name of program or package:** CGS, BCGS, CCGS

2. **Descriptive title:** Sparse code packages for solving general irregular systems of algebraic equations.

3. **Problem domain:** Solves systems of equations whose matrices are irregular (i.e. non-banded) such as arise for example from finite element formulations of elliptic partial differential equations. CGS is for symmetric systems. BCGS for unsymmetric systems, and CCGS for general complex systems.

4. **Method of solution:** Preconditioned Conjugate Gradients

5. **Programming language:** ANSI FORTRAN 66

6. **Precision:** Single and double precision versions available

7. **Portability:** Developed on IBM but written in ANSI FORTRAN

8. **Other packages required:** None

9. **Mode of use:** Callable subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** Percentage comments: Approx. 75%

 - CGS approx 1500, BCGS/CCGS approx 2000

12. **Special features:** Written for computational efficiency and for ease of modification and further enhancement (modular approach, fully internally documented).

13. **Documentation and references:**

 Detailed header comments? Yes

 User guide or manual, technical reports, papers, books: Program Note to be published, A user's guide to CGS, BCGS and CCGS: sparse code packages using preconditioned conjugate gradient methods for solving systems of algebraic equations. Author: G. Markham

14. **Approximate cost of obtaining software:** On application

15. **Restrictions on use:** License agreement required

16. **Distributor:** External Sales, Headquarters Computing Centre, Central Electricity Generating Board, 85 Park Street, London, SE1 9DY, England. Tele 01 248 1202

17. **Original source of software:**

 Developer: G. Markham

 Institution: Central Electricity Research Laboratories

 Sponsor: Central Electricity Generating Board

18. **For further information contact:** Sales: (Mr. M. Wall (address as for 16 above)

 Technical queries: G. Markham, Central Electricity Research Laboratories

 Kelvin Avenue, Leatherhead, Surrey, England, KT22 7SE.

 Tele: 0372 374488
1. Name of program or package: D1205, D13707, D1209, D1213

2. Descriptive title: Subroutines to solve a five, seven, nine and thirteen diagonal system of algebraic equations.

3. Problem domain: Solves systems of multi-diagonal systems of equations such as arise in finite difference models of partial differential equations. Five, nine and thirteen point molecules in two dimensions, and seven point in three dimensions can be used. Extensions to cover small perturbations on these structures can be employed.

4. Method of solution: Stone's Strongly Implicit Procedure

5. Programming language: ANSI FORTRAN 66

6. Precision: Single and double precision versions available.

7. Portability: Developed on IBM, but written in ANSI FORTRAN.

8. Other packages required: None

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: About 2000 each Percentage comments: About 70%

12. Special features: Written for computational efficiency and for ease of modification and further enhancement. Hence the development of specialized versions for very large problems, for example which use particular features of a computer, is made as easy as possible.

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 Program Notes: RD/L/P9/79: D1205; RD/L/P11/79: D1307; RD/L/P14/79: D1209; RD/L/P16/79: D1213. Author: D.A.H. Jacobs, Central Electricity Research Laboratories, Leatherhead, Surrey, England

14. Approximate cost of obtaining software: On application

15. Restrictions on use: License agreement required

17. Original source of software:
 Developer: D.A.H. Jacobs
 Institution: Central Electricity research Labs., Leatherhead, Surrey, England
 Sponsor: Central Electricity Generating Board

18. For further information contact:
 For sales: Mr. M. Wall (address in 16 above)
 Technical Queries: Dr. D.A.H. Jacobs, Central Electricity Research Labs., Kelvin Avenue, Leatherhead, Surrey, England, Tele. 0372 374488.
1. Name of program or package: DO3EBF

2. Descriptive title: Solver for Systems of Simultaneous Algebraic Equations

3. Problem domain: Equations of five-point Molecule form on a two dimensional topologically rectangular mesh

4. Method of solution: Strongly Implicit Procedure

5. Programming language: FORTRAN

6. Precision: Either

7. Portability: Available on 48 machine ranges/compliers

8. Other packages required: NAG

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 297 Percentage comments: 66%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 NAG Library Manual
 NAG Library On-line Supplement

14. Approximate cost of obtaining software: NAG Library costs $1584/year

15. Restrictions on use: License agreement

16. Distributor: NAG (U.S.A.) Inc., 1250 Grace Court, Downers Grove, IL 60516
 Tel. 971-2337

17. Original source of software:
 Developer: Dr. D. Jacobs
 Institution: C.E.G.B. (U.K.)
 Sponsor: NAG

18. For further information contact:
 Mrs. Carolyn M. Smith
 NAG (U.S.A.) Inc.
 1250 Grace Court
 Downers Grove, IL 60516
 Tel. 971-2337
 Telex 23254708 (Teleserv DFLD)
1. Name of program or package: DO3ECF

2. Descriptive title: Solver for Systems of Simultaneous Algebraic Equations

3. Problem domain: Equations of seven-point molecule form on a topologically rectangular mesh.

4. Method of solution: Strongly Implicit Procedure

5. Programming language: FORTRAN

6. Precision: Either

7. Portability: Available on 48 machine ranges/compliers

8. Other packages required: NAG

9. Mode of use: Callable subroutine

10. Test or demonstration program available? YES

11. Length of code in lines: 358 Percentage comments: 70%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 NAG Library Manual
 NAG Library On-line Supplement

14. Approximate cost of obtaining software: NAG Library costs $1584/year

15. Restrictions on use: License agreement

 (see below)

17. Original source of software:
 Developer: Dr. D. Jacobs
 Institution: C.E.G.B.
 Sponsor: NAG

18. For further information contact:
 Mrs. Carolyn M. Smith
 NAG (U.S.A.) Inc.
 1250 Grace Court
 Downers Grove, IL 60516
 Tel. 971-2337
 Telex 23254708 (Teleserv DFLD)
1. Name of program or package: D03UAF

2. Descriptive title: Performs one iteration of the Strongly Implicit Procedure.

3. Problem domain: Algebraic equations of five-point molecule form on a topologically rectangular mesh.

4. Method of solution: Strongly Implicit Procedure

5. Programming language: FORTRAN

6. Precision: Either

7. Portability: Available on 48 machine ranges/compilers

8. Other packages required: NAG

9. Mode of use: Callable Subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 375 Percentage comments: 66%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 NAG Library Manual
 NAG On-line Supplement

14. Approximate cost of obtaining software: NAG Library costs $1584/year

15. Restrictions on use: License agreement

16. Distributor: NAG (U.S.A.) Inc. (see below)

17. Original source of software:
 Developer: Dr. D. Jacobs
 Institution: C.E.G.B.
 Sponsor: NAG

18. For further information contact:
 Mrs. Carolyn M. Smith
 NAG (U.S.A.) Inc.
 1250 Grace Court
 Downers Grove, IL 60516
 Tel. 971-2337
 Telex 23254708 (Teleserv DFLD)
1. **Name of program or package:** D03UBF

2. **Descriptive title:** Performs one iteration of the Strongly Implicit Procedure

3. **Problem domain:** Algebraic Equations of seven-point molecule form on a topologically rectangular mesh.

4. **Method of solution:** Strongly Implicit Procedure

5. **Programming language:** Fortran

6. **Precision:** Either

7. **Portability:** Available on 48 machine ranges/compilers

8. **Other packages required:** NAG

9. **Mode of use:** Callable subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** 468
 Percentage comments: 50%

12. **Special features:**

13. **Documentation and references:**
 - Detailed header comments? Yes
 - User guide or manual, technical reports, papers, books:
 - NAG Library Manual
 - NAG On-line Supplement

14. **Approximate cost of obtaining software:** NAG Library costs $1584/year

15. **Restrictions on use:** License agreement

16. **Distributor:** NAG (U.S.A.) Inc.

17. **Original source of software:**
 - **Developer:** Dr. D. Jacobs
 - **Institution:** C.E.G.B.
 - **Sponsor:** NAG

18. **For further information contact:**
 Mrs. Carolyn M. Smith
 NAG (U.S.A.) Inc.
 1250 Grace Court
 Downers Grove, IL 60516
 Tel. 971-2337
 Telex 23254708 (Teleserv DFLD)
1. Name of program or package: LLSS01

2. Descriptive title: Sparse linear least squares and linear system package

3. Problem domain: Linear least squares and unsymmetric linear systems

4. Method of solution: Orthogonalization

5. Programming language: Fortran

6. Precision: Mixed

7. Portability: Portable

8. Other packages required: None

9. Mode of use: Callable subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: about 1000 Percentage comments: 10%

12. Special features: None

13. Documentation and references:
 Detailed header comments? No
 User guide or manual, technical reports, papers, books:
 Two technical reports at the Numerical Institute, Technical University of Denmark, Lyngby, Denmark;
 Comp. & Maths. with Appl., 8(1982), pp. 119-135

14. Approximate cost of obtaining software: Free of charge

15. Restrictions on use: None

16. Distributor: Numerical Institute, Technical University of Denmark, Lyngby, Denmark

17. Original source of software:
 Developer: Z.Zlatev and H.B.Nielsen
 Institution: Numerical Institute, Technical University of Denmark
 Sponsor: The Danish Technical Science Research Council

18. For further information contact: H. B. Nielsen, Numerical Institute, Technical University of Denmark, Lyngby, Denmark
1. Name of program or package: SPARSPAK - B

2. Descriptive title: Sparse matrix package

3. Problem domain: General square systems of linear equations, least squares problems, underdetermined systems of linear equations.

4. Method of solution: Orthogonal decomposition

5. Programming language: FORTRAN

6. Precision: Either single or double

7. Portability: Developed on IBM 4341 using ANSI FORTRAN.

8. Other packages required: SPARSPAK

9. Mode of use: Callable subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: 9000 Percentage comments: about 10%

12. Special features: Require use of secondary storage

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books: User guide is available

14. Approximate cost of obtaining software: $100.00 distribution fee

15. Restrictions on use: none

16. Distributor: Waterloo Research Institute
 Needles Hall
 University of Waterloo, Waterloo, Ontario, CANADA, N2L 3G1.

17. Original source of software:
 Developer: Alan George, Michael Heath, Esmond Ng
 Institution: University of Waterloo
 Sponsor: Natural Sciences and Engineering Research Council of Canada
 and U.S. Department of Energy

18. For further information contact:
 Dr. Alan George
 Department of Computer Science
 University of Waterloo
 Waterloo, Ontario
 CANADA N2L 3G1

 Phone: (519) 885-1211, ext.3473
1. **Name of program or package:** LASSO

2. **Descriptive title:** Least square Adjustments for Sparse Systems, Out-of-core with optional inverse elements.

3. **Problem domain:** Symmetric positive definite linear systems with reordering of equations to minimize storage. Primarily least square adjustments.

4. **Method of solution:** Minimum column profile reordering and Cholesky factorization.

5. **Programming language:** FORTRAN (compatible with FORTRAN 77)

6. **Precision:** Double precision.

7. **Portability:** Operational on Univac 1100, IBM 360/195, IBM 3300. Portability depends on FORTRAN 77, and logical functions for AND, OR, and LOC I the memory location of an array.

8. **Other packages required:** Optional interface for SPARSPAK, but not required

9. **Mode of use:** Subroutine calls.

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** 7000
 Percentage comments: 5-10%

12. **Special features:** Input is usually observation equations and output is solution vector and optional partial matrix inverse (i.e., elements inside sparse storage).

 Optional assembly code for disk I/O on Univac 1100 and IBM 360.

13. **Documentation and references:**

 Detailed header comments? Yes

14. **Approximate cost of obtaining software:** $45

15. **Restrictions on use:** None

16. **Distributor:** NOAA/NOS/NGS, National Geodetic Information Center, OA/C184

 6001 Executive Blvd.

 Rockville, MD 20852
 Phone (301) 443-8623

17. **Original source of software:**

 Developer: W. H. Dillinger, R. H. Hanson

 Institution: NOAA, NOS, National Geodetic Survey

 Sponsor: U.S. Department of Commerce, NOAA, NOS, NGS

18. **For further information contact:** W. H. Dillinger

 NOAA, NOS, National Geodetic Survey

 6001 Executive Blvd.

 Rockville, MD 20852
 Phone (301) 443-2520
1. Name of program or package: LSQR
2. Descriptive title: Sparse linear system solver
Sparse linear least squares solver
3. Problem domain: Unsymmetric linear systems
Overdetermined systems
4. Method of solution: Damped least squares
Lanczos bidiagonalization
5. Programming language: ANSI FORTRAN
6. Precision: Single, easily converted to double
7. Portability: Developed on IBM and Burroughs;
easily portable to other machines
8. Other packages required: BLAS
9. Mode of use: Callable subroutine
10. Test or demonstration program available? Yes
11. Length of code in lines: 574 Percentage comments: 66%
12. Special features: BLAS operations are efficient in a paging
environment and on pipeline machines.
Overall efficiency may depend on user's own
routine for computing y + Ax and x + A'y.
13. Documentation and references:
Detailed header comments? Yes
User guide or manual, technical reports, papers, books:
Papers: C.C. Paige and M.A. Saunders, "LSQR: An algorithm for sparse
linear equations and sparse least squares", ACM TOMS 8, 1
C.C. Paige and M.A. Saunders, "Algorithm 583. LSQR: Sparse linear
equations and least squares problems", ACM TOMS 8, 2 (1982).
15. Restrictions on use: None
IMSL, Inc.
Sixth Floor, NBC Building, 7500 Bellaire Blvd.
Houston, TX 77036
17. Original source of software:
Developer: Chris Paige Michael Saunders
Institution: McGill University Stanford University
Sponsor: Natural Sciences and Engineering Research Council of Canada;
DSIR, New Zealand; DOE, NSF, ONR.
18. For further information contact:
Michael Saunders
Department of Operations Research
Stanford University
Stanford, CA 94305 Ph: (415)497-1875
1. Name of program or package: RNCLIN

2. Descriptive title: "Sparse Linear Systems and Least Squares Solver"

5. Programming language: Fortran IV

6. Precision: Either

7. Portability: Developed using IBM 360/370 computer. Is portable or easily modified for other machines.

8. Other packages required: Program to generate matrix equation or Least Squares Prob.

10. Test or demonstration program available? Yes.

11. Length of code in lines: 343 lines Percentage comments: 67%

12. Special features: Uses column packed storage for matrices - can be modified to use secondary storage or generate columns as necessary (Would involve additional programming by user).

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 User's Guide.
 Technical reports and papers as soon as published.

14. Approximate cost of obtaining software: To be determined based on cost.

15. Restrictions on use: Propriety.

16. Distributor: Dr. Larry F. Bennett
 Department of Mathematics, South Dakota State University
 Brookings, South Dakota 57007 (Phone: 1-605-688-6218)

17. Original source of software:
 Developer: Dr. Larry F. Bennett
 Institution: South Dakota State University
 Sponsor: South Dakota State University

18. For further information contact:
 Dr. Larry F. Bennett
 Department of Mathematics
 South Dakota State University
 Brookings, South Dakota 57007
 Office Phone: 1-605-688-6218 Home Phone: 1-605-692-2161
1. Name of program or package: RNRWIN

2. Descriptive title: "Sparse Linear System and Least Squares Solver"

5. Programming language: Fortran IV

6. Precision: Either

7. Portability: Developed using IBM 360/370. Is portable or easily modified for other machines.

8. Other packages required: Program to generate matrix equation or Least Squares Prob.

9. Mode of use: Callable Subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 325 lines Percentage comments: 71%

12. Special features: Uses row-packed storage for matrices - can be modified to use secondary storage or generate rows as needed (Would involve additional programming by user).

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 User's Guide
 Technical reports and papers as soon as published.

14. Approximate cost of obtaining software: To be determined based on cost.

15. Restrictions on use: Propriety

16. Distributor: Dr. Larry F. Bennett
 Department of Mathematics, South Dakota State University
 Brookings, South Dakota 57007 (Phone: 1-605-688-6218)

17. Original source of software:
 Developer: Dr. Larry F. Bennett
 Institution: South Dakota State University
 Sponsor: South Dakota State University

18. For further information contact:
 Dr. Larry F. Bennett
 Department of Mathematics
 South Dakota State University
 Brookings, South Dakota 57007
 Office Phone: 1-605-688-6218 Home Phone: 1-605-692-2161
1. Name of program or package: EISPACK

2. Descriptive title: A Package of Matrix Eigensystem Routines

3. Problem domain: Standard eigensystem problem (real and complex),
 generalized eigensystem problem (real), singular value decomposition

4. Method of solution: QR, LR, QL, rational QR, bisection, QZ, inverse
 iteration

5. Programming language: FORTRAN

6. Precision: Double on IBM 360, single on others

7. Portability: Specific version for each of several machines

8. Other packages required: None

9. Mode of use: Library of callable subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: 10,000 Percentage comments: 50%

12. Special features: None

13. Documentation and references:
 Machine-readable document for each subroutine
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 B. T. Smith et al., Matrix Eigensystem Routines - EISPACK Guide, Springer-
 Verlag, Lecture Notes in Computer Science, Vol. 6 (2nd ed.), 1976
 B. S. Garbow et al., Matrix Eigensystem Routines - EISPACK Guide Extension
 Springer-Verlag, Lecture Notes in Computer Science, Vol. 51, 1977

14. Approximate cost of obtaining software: $75

15. Restrictions on use: None

16. Distributor: NESC, Argonne National Laboratory (312) 972-7250
 IMSL, Houston, Texas (713) 772-1927

17. Original source of software: Handbook of Linear Algebra, Wilkinson & Reinsch (eds.)
 Developer: Applied Mathematics Division
 Institution: Argonne National Laboratory
 Sponsor: NSF, DOE

18. For further information contact:
 Burton S. Garbow
 Mathematics and Computer Science Division
 Argonne National Laboratory
 9700 S. Cass Avenue
 Argonne, Illinois 60439
 Phone: (312) 972-7184
1. **Name of program or package:** BES

2. **Descriptive title:** Basic Eigenanalysis System - Symmetric

3. **Problem domain:** Large, sparse, generalized, symmetric, real

4. **Method of solution:** Block Lanczos with shifting

5. **Programming language:** FORTRAN 77

6. **Precision:** Single or double

7. **Portability:** Good

8. **Other packages required:** VMSYST, EZ-GAL (data management)

9. **Mode of use:** Independent program system, interactive

10. **Test or demonstration program available?** Included

11. **Length of code in lines:** \(\approx 100,000 \)
 Percentage comments: 40%

12. **Special features:** Problem oriented language, interactive problem description followed by batch analysis, spectral range (section) specification of desired eigenpairs

13. **Documentation and references:**
 - Detailed header comments? Moderate
 - User guide or manual, technical reports, papers, books:
 "Basic Eigenanalysis System" (in preparation)

14. **Approximate cost of obtaining software:** Not yet available

15. **Restrictions on use:**

16. **Distributor:**

17. **Original source of software:**
 - **Developer:** Paul S. Jensen
 - **Institution:** Lockheed Missiles and Space Co.
 - **Sponsor:** Lockheed Missiles and Space Co.

18. **For further information contact:**
 - Paul S. Jensen
 Lockheed Research Laboratory 5233/255
 3251 Hanover St.
 Palo Alto, CA 94304
1. Name of program or package: BLMAIN

2. Descriptive title: Eigenvalue/Eigenvector Computations

3. Problem domain: Large Symmetric Matrices

4. Method of solution: Block Lanczos Recursion with Limited Reorthogonalization

5. Programming language: FORTRAN

6. Precision: Double

7. Portability: IBM/168/3033

8. Other packages required: Eispack

9. Mode of use: Stand-alone (can easily be modified to callable subroutines)

10. Test or demonstration program available? Yes

11. Length of code in lines: ~1000 Percentage comments: ~55%

12. Special features: None

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: Please contact authors

15. Restrictions on use: None

16. Distributor: Please contact authors

17. Original source of software:
 Developer: Jane Cullum and Ralph A. Willoughby
 Institution: IBM T.J. Watson Research Laboratory, Yorktown Heights, N.Y. 10598
 Sponsor:

18. For further information contact:
 Jane Cullum
 IBM T.J. Watson Research Center
 Yorktown Heights, N.Y. 10598
 914-945-2227 (if no answer message may be left with dept. secretary at 914-945-2331)
1. Name of program or package: LMAIN & LVMAIN

2. Descriptive title: Eigenvalue/Eigenvector Computations

3. Problem domain: Large Symmetric Matrices

4. Method of solution: Lanczos method with no reorthogonalization

5. Programming language: FORTRAN

6. Precision: Double

7. Portability: IBM/168/3033

8. Other packages required: None (Needs Random Number Generator)

9. Mode of use: Stand-alone (can easily be modified to callable subroutines)

10. Test or demonstration program available? Yes

11. Length of code in lines: 2100 Percentage comments: -55%

12. Special features: None

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 Book: Lanczos Algorithms for Large Symmetric Eigenvalue Computations by
 Jane Cullum and Ralph Willoughby.
 G. Golub, H. Kreiss, S. Arbarbanel, R. Glowinski,
 Birkhäuser Boston Inc. 1983.

14. Approximate cost of obtaining software: Please contact authors

15. Restrictions on use: None

16. Distributor: Please contact authors

17. Original source of software:
 Developer: Jane Cullum and Ralph A. Willoughby
 Institution: IBM T.J. Watson Research Laboratory, Yorktown Heights, N. Y. 10598
 Sponsor:

18. For further information contact:
 Jane Cullum
 IBM T.J. Watson Research Center
 Yorktown Heights, N. Y. 10598
 914-945-2227 (if no answer message may be left with dept. secretary at
 914-945-2331)
1. **Name of program or package**: EA12

2. **Descriptive title**: Find a group of eigenvalues and vectors.

3. **Problem domain**: Sparse symmetric matrices.

4. **Method of solution**: Simultaneous iteration.

5. **Programming language**: Fortran 66.

6. **Precision**: Both single and double precision versions are available.

7. **Portability**: Fortran 66.

8. **Other packages required**: Harwell subroutines EA13, FA01, FM01, FM02.

9. **Mode of use**: Subroutine calls.

10. **Test of demonstration program available**: Yes.

11. **Length of code in lines**: 427

 Percentage comments: 37%

 (934 with dependencies)

12. **Special features**: Reverse communication makes its use particularly flexible.

13. **Documentation and references**:

 Detailed header comments? No.

 User guide or manual, technical reports, papers, books:
 The code is based on a adaptation by J.K.Reid of the work of H.Rutishauser (1970)

14. **Approximate cost of obtaining software**: See appendix on Harwell Subroutine Library.

15. **Restrictions on use**: (ii), (iii) (see appendix on Harwell Subroutine Library).

16. **Distributor**: S. Marlow, CSS Division, Building 8.9, A.E.R.E. Harwell,
 Oxfordshire OX11 ORA, England.

17. **Original source of software**:

 Developer: I.S.Duff.

 Institution: A.E.R.E. Harwell.

 Sponsor: A.E.R.E. Harwell.

18. **For further information contact**: I.S.Duff or J.K.Reid.
1. Name of program or package: EA14

2. Descriptive title: Eigenvalue spectrum.

6. Precision: Double precision.

8. Other packages required: Harwell subroutine FA01.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 648 Percentage comments: 29% (756 with dependencies)

12. Special features: Automatically chooses the number of Lanczos steps necessary to have confidence that the spectrum in a given interval has been found.

13. Documentation and references:
 Detailed header comments? Yes, for auxiliary routines.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (i), (ii), (iii), (iv) (see appendix on Harwell Subroutine Library).

17. Original source of software:
 - Developer: J.K.Reid.

18. For further information contact: The developer.
1. Name of program or package: LASO2

2. Descriptive title: Eigenvalue Solver

3. Problem domain: Sparse Symmetric Eigenvalue Problems

4. Method of solution: The Lanczos Algorithm with Selective Orthogonalization

5. Programming language: ANSI FORTRAN 66

6. Precision: Either

7. Portability: Completely Portable

8. Other packages required: None

9. Mode of use: Callable Subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: 3288 Percentage comments: 45%

12. Special features: Requires user supplied subroutines for matrix vector multiplication and temporary storage of the Lanczos vectors

13. Documentation and references:
 Detailed header comments? yes
 User guide or manual, technical reports, papers, books:

 LASO2.DOC, a text file available with the package

14. Approximate cost of obtaining software: Tape fee from NESC

15. Restrictions on use: None

 CS.SCOTT@UTEXAS-20 on the ARPA net

17. Original source of software:
 Developer: D. S. Scott
 Institution: Oak Ridge National Lab
 Sponsor: DOE

18. For further information contact:
 David S. Scott
 Computer Sciences Dept.
 PAI 3.28
 University of Texas at Austin
 Austin, TX 78712
1. Name of program or package: STLM

2. Descriptive title: Sparse eigenvalue problem solver

3. Problem domain: Large, sparse, generalized, symmetric, and real eigenvalue problems

4. Method of solution: The Lanczos method applied on a sequence of shifted and inverted problems

5. Programming language: ANSI FORTRAN. (will also run as a FORTRAN 77 package).

6. Precision: Either (type converter available).

7. Portability: CDC Cyber 730, PRIME 550-II. Easily portable (has passed the PFORT Verifier).

8. Other packages required: Includes all necessary code, but linear system solver may be replaced by the user's own if it makes use of special algorithms or data structures.

10. Test or demonstration program available? Yes.

11. Length of code in lines: 6500 Percentage comments: 46

12. Special features: Requires a direct access file or virtual memory for large problems.

13. Documentation and references:
 Detailed header comments? No
 User guide or manual, technical reports, papers, books: User guide and

14. Approximate cost of obtaining software:

15. Restrictions on use: Will try to get it published in

16. Distributor: ACM TOMS.

17. Original source of software:
 Developer: Thomas Ericsson and Axel Ruhe
 Institution: University of Umeå, Inst of Information Processing
 Sponsor: The Swedish Institute of Applied Mathematics (par't'y)

18. For further information contact:
 Thomas Ericsson
 University of Umeå
 Institute of Information Processing
 S-901 87 Umeå
 Sweden
1. Name of program or package: Subroutine TRACMN

2. Descriptive title: Generalized Eigenvalue Routine Using Trace Minimization and Shifting

3. Problem domain: Generalized eigenvalues, real, symmetric, only matrix-vector multiply required

4. Method of solution: Trace minimization

5. Programming language: FLECS (FORTRAN)

6. Precision: Single

7. Portability: 66 Standard

8. Other packages required: BLAS, LINPACK, EISPACK, URAND (Forsythe Malcom & Moler)

9. Mode of use: Subroutine call

10. Test or demonstration program available? Yes

11. Length of code in lines: 586 Percentage comments: 30%

12. Special features:

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: None

15. Restrictions on use: None

16. Distributor: Authors

17. Original source of software:
 Developer: John A. Wisniewski
 Institution: University of Illinois
 Sponsor: NSF

18. For further information contact:
 John A. Wisniewski
 Division 2113
 Sandia National Laboratories
 Albuquerque, NM 87185
 or
 Ahmed H. Sameh
 Dept. of Computer Science
 University of Illinois
 1304 W. Springfield
 Urbana, IL 61801
1. Name of program or package: SIMITZ

2. Descriptive title: Eigenvectors and eigenvalues of real generalized symmetric matrices by simultaneous iteration.

3. Problem domain: Structural analysis, numerical weather prediction.

4. Method of solution: Subspace iteration (Rutishauser-Reinsch algorithm)

5. Programming language: Version 1 - FORTRAN 66
 Version 2 - FORTRAN 78

6. Precision: Single (Easily converted to double)

7. Portability: Control Data Corporation Cyber, fully portable.

8. Other packages required: Version 1 - EISPACK, Version 2 - SLATEC

10. Test or demonstration program available? Yes

11. Length of code in lines: 550 Percentage comments: 40%

12. Special features: Program is easily adaptable to vector or array processors.

13. Documentation and references: Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

 Version II - None

15. Restrictions on use: None

 7500 Bellaire Blvd
 Houston, TX 77036
 (713) 772-1927
 Version II - Paul J. Nikolai
 AFWAL/FIBR
 Wright-Patterson AFB OH 45433
 (513) 255-5350

17. Original source of software: Developer: Paul J. Nikolai
 Institution: US Air Force Wright Aeronautical Laboratories
 Sponsor: Air Force Systems Command

18. For further information contact:
 Paul J. Nikolai
 AFWAL/FIBR
 Wright-Patterson AFB, OH 45433
 (513) 255-5350
 Autovon 785-5350
1. Name of program or package: LA05

2. Descriptive title: Solves linear sets of equations.

3. Problem domain: Linear programming bases.

6. Precision: Both single and double precision versions are available.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 959

 Percentage comments: 22%

 (1062 with dependencies)

12. Special features: Markowitz’ pivoting used for original factorization. If updating can be performed by permutations alone, without fill-in, then this is done.

13. Documentation and references:

 Detailed header comments? No.

 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (iii) (see appendix on Harwell Subroutine Library).

17. Original source of software:

 Developer: J.K.Reid.

18. For further information contact: The developer.
1. Name of program or package: SPLP

2. Descriptive title: Sparse linear programming subprogram

3. Problem domain: Linear optimization problems with general bounds on the variables (including no bounds) and linear constraints.

5. Programming language: SPTRAN and FTRAN 77

6. Precision: Single

7. Portability: Developed and used on CDC, useu on VAX and IBM.

8. Other packages required: BLAS, XERROR (SLATEC library error package)

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: code 5600 (FORTRAN), Percentage comments: 10% comments
document 1500

12. Special features: Permits out-of-core storage of data matrix (may require machine dependent I/O subprograms -- 3 types now provided) efficient design for paging, written in several subprograms so easily segmented.

 Detailed header comments? Brief document and full.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: Rights to redistribute (modified) LA05 within the package have been purchased.

16. Distributor: Ultimately NESC

17. Original source of software:
 Developer: R. J. Hanson, K. L. Hiebert
 Institution: Sandia National Labs
 Sponsor: DOE

18. For further information contact:
 Dick Hanson
 Org. 5642
 Sandia National Labs
 Albuquerque, NM 87185
 (505) 844-1715
 FTS 844-1715
 Kathie Hiebert
 Org. 5642
 Sandia National Labs
 Albuquerque, NM 87185
 (505) 844-3538
 FTS 844-3538
1. **Name of program or package**: XMP

2. **Descriptive title**: Hierarchically structured linear programming library

3. **Problem domain**: Linear Programming

4. **Method of solution**: Simplex Method

5. **Programming language**: FORTRAN

6. **Precision**: Double (or single for Control Data)

7. **Portability**: Any FORTRAN compiler—highly portable

8. **Other packages required**: LAOS package from Harwell

9. **Mode of use**: Subroutine Library

10. **Test or demonstration program available?**: Yes

11. **Length of code in lines**: 20,000
 Percentage comments: 50%

12. **Special features**: primal and dual simplex methods; simple and generalized upper bounds; postoptimality analysis

13. **Documentation and references**:
 Detailed header comments?: Yes
 User guide or manual, technical reports, papers, books:

14. **Approximate cost of obtaining software**: negotiable

15. **Restrictions on use**: negotiable

16. **Distributor**: Management Information Systems Dept.
 University of Arizona

17. **Original source of software**:
 Developer: Roy Marsten
 Institution: NBER/MIT/University of Arizona
 Sponsor: NSF

18. **For further information contact**:
 Professor Roy Marsten
 Management Information Systems Dept.
 University of Arizona
 Tucson, Arizona - 85721
1. Name of program or package: SIMPLE

2. Descriptive title: Sparse linear programming problem solver

3. Problem domain: Linear programming

4. Method of solution: Revised simplex

5. Programming language: AP FORTRAN and FPS-164 assembly language

6. Precision: 64-bit word

7. Portability: Developed for the FPS-164 Array Processor.

8. Other packages required: FPS-164 Math Library (APMATH64)

9. Mode of use: Callable subroutine

10. Test or demonstration program available? No

11. Length of code in lines: 558 Percentage comments: 63

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 APMATH64 Reference Manual
 Floating Point Systems, Inc.

14. Approximate cost of obtaining software: This routine is included in the FPS-164 Math Library (APMATH64)

15. Restrictions on use: License agreement required

 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151

17. Original source of software:
 Developer: Ron Coleman
 Institution: Floating Point Systems, Inc.
 Sponsor: Floating Point Systems, Inc.

18. For further information contact:
 Phil Vaughn
 Floating Point Systems, Inc.
 P.O. Box 23489
 Portland, OR 97223
 (503) 641-3151 TLX: 360470 FLOATPOIN BEAV
1. Name of program or package: P3, P4

2. Descriptive title: Subroutines for Hellerman-Rarick P3 and P4 algorithms

3. Problem domain: Useful in codes for linear programming and solving sparse nonlinear equations via tearing.

5. Programming language: IBM Fortran with simple conversion to ANSI Fortran.

6. Precision: Single or double -- no floating-point data are used.

7. Portability: Developed on IBM 370/168: acceptable to PFORT Verifier (after simple conversion)

8. Other packages required: Harwell Library subroutines MC13D, MC21A

9. Mode of use: Subroutine call; P4 calls P3.

10. Test or demonstration program available? No.

11. Length of code in lines: 684 Percentage comments: 45.8%

12. Special features: Some integer arrays can be "short" integers -- INTEGER*2 in IBM Fortran. Changing "INTEGER*2" to "INTEGER" is the simple conversion mentioned above.

13. Documentation and references:
 Detailed header comments? Yes.
 User guide or manual, technical reports, papers, books: references:

14. Approximate cost of obtaining software: no fee

15. Restrictions on use: none

16. Distributor: see item 18.

17. Original source of software:
 Developer: David M. Gay
 Institution: Center for Computational Research in Economics and Management Science, Massachusetts Institute of Technology.
 Sponsor: NSF

18. For further information contact: David M. Gay
 Bell Labs
 600 Mountain Avenue
 Murray Hill, NJ 07974
 phone: (201) 582-5623
1. Name of program or package: MINOS - HP

2. Descriptive title: Linear Programming Package for HP1000

3. Problem domain: Linear Programming

4. Method of solution: Simplex method

5. Programming language: FORTRAN

6. Precision: Single

7. Portability: HP1000F; portable (see 12 below)

8. Other packages required:

9. Mode of use: Stand-alone

10. Test or demonstration program available? Yes

11. Length of code in lines: 6700 Percentage comments: 5%

12. Special features: Stores large array, Z(25000), in (paged) memory; some machine-dependent routines

13. Documentation and references:
 Detailed header comments? No
 User guide or manual, technical reports, papers, books: MINOS User Guide
 MINOS System Manual

14. Approximate cost of obtaining software: TBA

15. Restrictions on use: TBA

16. Distributor: TBA

17. Original source of software:
 Developer: Michael Saunders, Systems Optimization Laboratory
 Institution: Stanford University
 Sponsor: U.S. and New Zealand governments

18. For further information contact:
 James E. Giles
 Tennessee Valley Authority
 P.O. Drawer E
 Norris, Tennessee 37828
 (FTS) 856-4460
1. Name of program or package: NS03

2. Descriptive title: Solves non-linear sets of equations.

6. Precision: Both single and double precision versions are available.

8. Other packages required: Harwell subroutines MA17, FM01, MC09, TD02.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 668 Percentage comments: 24%
 (1034 with dependencies)

12. Special features: Provision of derivatives is optional.

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:
 J.K.Reid (1972) Fortran subroutines for the solution of sparse systems of non-linear

15. Restrictions on use: (ii) and (iii) (see appendix on Harwell Subroutine Library).

16. Distributor: S. Marlow, CSS Division, Building 8.9, A.E.R.E. Harwell,
 Oxfordshire OX11 ORA, England.

17. Original source of software:
 Developer: J.K.Reid.

18. For further information contact: The developer.
1. Name of program or package: VAO8

2. Descriptive title: Function minimization.

3. Problem domain: Functions with sparse Hessian matrices.

6. Precision: Both single and double precision versions are available.

7. Portability: Fortran 66

8. Other packages required: Harwell subroutine FM02.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 86 Percentage comments: 1% (211 with dependencies)

12. Special features:

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (ii), (iii) (see appendix on Harwell Subroutine Library).

17. Original source of software:
 Developer: R. Fletcher.
 Institution: Univ. of Dundee.

18. For further information contact: The developer.
1. Name of program or package: VA14

2. Descriptive title: Function minimization.

3. Problem domain: Functions with sparse Hessian matrices.

6. Precision: Both single and double precision versions are available.

8. Other packages required: None.

10. Test of demonstration program available: Yes.

11. Length of code in lines: 191 Percentage comments: 13%

12. Special features: Automatic restart procedure included.

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: (ii), (iii) (see appendix on Harwell Subroutine Library).

17. Original source of software:
 Developer: M.J.D.Powell.
 Institution: Univ. of Cambridge.

18. For further information contact: The developer.
1. **Name of program or package:** VE05

2. **Descriptive title:** Minimization subject to linear constraints.

3. **Problem domain:** Sparse constraint matrix.

4. **Method of solution:** Variable metric algorithm.

5. **Programming language:** IBM Fortran.

6. **Precision:** Both single and double precision versions are available.

7. **Portability:** Fortran 66 version available.

8. **Other packages required:** Other Harwell subroutines.

9. **Mode of use:** Subroutine calls.

10. **Test of demonstration program available:** Yes.

11. **Length of code in lines:** 1075 \hspace{1cm} \textbf{Percentage comments:} 16% \hspace{1cm} (3022 with dependencies)

12. **Special features:** Essentially extends sparse linear programming techniques to non-linear objective functions.

13. **Documentation and references:**
 - \textbf{Detailed header comments?} No.
 - \textbf{User guide or manual, technical reports, papers, books:}

14. **Approximate cost of obtaining software:** See appendix on Harwell Subroutine Library.

15. **Restrictions on use:** (ii), (iii) (see appendix on Harwell Subroutine Library).

17. **Original source of software:**
 - \textbf{Developer:} A.Buckley.
 - \textbf{Institution:} Concordia Univ., Montreal.

18. **For further information contact:** The developer.
1. Name of program or package: MINOS

2. Descriptive title: Sparse nonlinear programming system

3. Problem domain: Optimization involving a nonlinear objective function, bounds, and linear and nonlinear constraints.

5. Programming language: FORTRAN IV

6. Precision: Single or mixed, depending on machine.

7. Portability: Developed on IBM; easily portable to other (large) machines.

8. Other packages required: None

9. Mode of use: Stand-alone, primarily; callable by expert user.

10. Test or demonstration program available? Yes

11. Length of code in lines: 10,000 Percentage comments: 35%

12. Special features: In-core solution procedure; designed for efficiency in a paging environment; disk files used to input data and save current solution.

13. Documentation and references: No

User guide or manual, technical reports, papers, books:

User manuals: reports SOL 77-9, 77-31, 80-14, 80-15, 80-100, Department of Operations Research, Stanford University.

15. Restrictions on use: License agreement required.

16. Distributor: Office of Technology Licensing

105 Encina Hall
Stanford University
Stanford, California 94305 Ph: (415)497-0651

17. Original source of software: Bruce A. Murtagh Michael A. Saunders

Institution: University of NSW Stanford University

Sponsor: DOE, NSF, ONR, ARO

18. For further information contact:

Technical details: Michael Saunders, Dept. of Operations Research, Stanford University, Stanford, CA 94305. (415)497-1875

Distribution: Bill Osborn, Office of Technology Licensing (see 16 above)
1. **Name of program or package:** TDO2

2. **Descriptive title:** Evaluates an approximate Jacobian matrix.

3. **Problem domain:** Must be given a function f(x).

4. **Method of solution:** First central differences with an automatic choice of step-size.

5. **Programming language:** IBM Fortran.

6. **Precision:** Both single and double precision versions are available.

7. **Portability:** Fortran 66 version available.

8. **Other packages required:** None.

9. **Mode of use:** Subroutine calls.

10. **Test of demonstration program available:** Yes.

11. **Length of code in lines:** 237
 Percentage comments: 18%

12. **Special features:** May or may not be given the sparsity pattern. Uses the sparsity to economize on function calls.

13. **Documentation and references:**
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:

14. **Approximate cost of obtaining software:** See appendix on Harwell Subroutine Library.

15. **Restrictions on use:** (ii), (iii) (see appendix on Harwell Subroutine Library).

17. **Original source of software:**
 Developer: J.K.Reid.
 Institution: A.E.R.E. Harwell.
 Sponsor: A.E.R.E. Harwell.

18. **For further information contact:** The developer.
1. Name of program or package: TD03

2. Descriptive title: Evaluates an approximate Hessian matrix.

6. Precision: Double precision.

8. Other packages required: None.
10. Test of demonstration program available: Yes.
11. Length of code in lines: 882 Percentage comments: 53%

12. Special features: Uses sparsity to economize function calls.

13. Documentation and references:
 - include header comments? Yes, for auxiliary routines.

15. Restrictions on use: (ii), (iii) (see appendix on Harwell Subroutine Library).
16. Distributor: S. Marlow, CSS Division, Building 8.9, A.E.R.E. Harwell,
 Oxfordshire OX11 ORA, England.
17. Original source of software:
 - Institution: Univ. of Namur and A.E.R.E. Harwell.
 - Sponsor: Univ. of Namur and A.E.R.E. Harwell.
18. For further information contact: I.S.Duff.
1. **Name of program or package:** DSM

2. **Descriptive title:** Package for estimating a sparse Jacobian matrix with a minimal or nearly minimal number of function evaluations.

3. **Problem domain:** DSM partitions the columns of a sparse matrix into groups so that columns in a given group do not have a nonzero in the same row position.

4. **Method of solution:** The partitioning problem is associated with an equivalent graph coloring problem, and graph coloring heuristics are used to solve the partitioning problem.

5. **Programming language:** ANSI Fortran 66

6. **Precision:** Not applicable. Only integer arithmetic used.

7. **Portability:** Machine independent.

8. **Other packages required:** None

9. **Mode of use:** Callable subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** 1470 **Percentage comments:** 67%

12. **Special features:** DSM is designed to produce optimal or nearly optimal results. DSM is called once to analyze the sparsity structure of the Jacobian matrix. DSM then produces the partitioning information needed to estimate the Jacobian matrix. This information is stored in an integer array of length equal to the number of variables.

13. **Documentation and references:**

 - Detailed header comments? Yes
 - User guide or manual, technical reports, papers, books:

14. **Approximate cost of obtaining software:** Determined by NESC

15. **Restrictions on use:** None

16. **Distributor:** National Energy Software Center (NESC)

17. **Original source of software:**

 - Developer: Coleman, T. F., Garbow, B. S., and Moré, J. J.
 - Institution: Argonne National Laboratory
 - Sponsor: DOE

18. **For further information contact:**

 B. S. Garbow
 Mathematics and Computer Science Division
 Argonne National Laboratory
 Argonne, Illinois 60439
 (312) 972-7184 (FTS):972-7184
1. Name of program or package: MFLPP

2. Descriptive title: Continuous Minisum Multifacility Location Problem Solver

3. Problem domain: Unconstrained t distance problems

5. Programming language: ANSII FORTRAN

6. Precision: Single

7. Portability: Runs through PFORT verify

8. Other packages required: None

9. Mode of use: Callable subroutines

10. Test or demonstration program available? Not yet

11. Length of code in lines: Percentage comments:

12. Special features: Ability to handle certain constraints to be added in the near future

13. Documentation and references:
 Detailed header comments? No
 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: Mail + tape (research); To be determined (commercial).

15. Restrictions on use: None (research);
 To be determined (commercial)

16. Distributor: To be determined (commercial)
(See 18.)

17. Original source of software:
 Developer: Paul Calamai and Andrew Conn
 Institution: University of Waterloo, Waterloo, Ontario, CANADA
 Sponsor: NSERCC

18. For further information contact:
 A. R. Conn, Department of Computer Science
 P. H. Calamai, Department of Systems Design
 University of Waterloo
 Waterloo, Ontario, CANADA N2L 3G1
1. Name of program or package: EPO

3. Problem domain: Maximization of entropy subject to sparse linear equality and inequality constraints. Applications in regional science, traffic planning, etc.

5. Programming language: ANSI FORTRAN

6. Precision: Single and double.

8. Other packages required: None.

10. Test or demonstration program available? Yes.

11. Length of code in lines: 1200 Percentage comments: 65%

12. Special features: -

13. Documentation and references:
 Detailed header comments? Yes.
 User guide or manual, technical reports, papers, books:

15. Restrictions on use: License agreement required for commercial use.

16. Distributor:

17. Original source of software:
 Developer: Jan Eriksson
 Institution: Department of Mathematics, Linköping University
 Sponsor:

18. For further information contact: Jan Eriksson
 Department of Mathematics
 Linköping University, S-581 83 Linköping
 Sweden. Phone: 46-111700
1. Name of program or package:

2. Descriptive title: Input-Output Model of the World Economy

3. Problem domain: Nonsymmetric sparse bordered block diagonal linear systems in each time period

4. Method of solution: Block Gauss in each system, direct method for each block

5. Programming language: ANSI FORTRAN

6. Precision: Available in single and double precision

7. Portability: Developed on IBM, but only used standard FORTRAN to make it very portable—IBM version with half length integer also available

8. Other packages required: LINPACK, MA28 set from Harwell

9. Mode of use: Driver program and 36 subroutines (18 of which are from the above mentioned packages)

10. Test or demonstration program available? Yes

11. Length of code in lines: 5000 including 40% Percentage comments: 40%

12. Special features: special "global" storage scheme

13. Documentation and references:
 Detailed header comments: Yes

14. Approximate cost of obtaining software: To discuss in each case

15. Restrictions on use: Agreement required

16. Distributor: Same as 18.

17. Original source of software:
 Developer: Daniel B. Szyld
 Institution: Institute for Economic Analysis, New York University
 Sponsor:

18. For further information contact:
 Daniel B. Szyld
 Institute for Economic Analysis
 New York University
 269 Mercer Street
 New York, N.Y. 10003
 Phone: (212) 598-3413
1. Name of program or package: CONOPT

2. Descriptive title: Large Scale Optimal Control System

3. Problem domain: Time-dependent optimization problems with linear/nonlinear objective, linear/nonlinear constraints, and bounds.

4. Method of solution: Reduced gradient - relying on sparsity and staircase structure.

5. Programming language: FORTRAN

6. Precision: Single and double

7. Portability: Developed on CDC. Other versions are being developed.

8. Other packages required: none

9. Mode of use: Stand-alone job control procedure

10. Test or demonstration program available? Yes

11. Length of code in lines: 20,000 Percentage comments: 40

12. Special features:

13. Documentation and references:
 Detailed header comments?
 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: negotiable

15. Restrictions on use: license agreement required

16. Distributor: See 18

17. Original source of software:
 Developer: Arne Drud
 Institution: Development Research Department, World Bank
 Sponsor: -

18. For further information contact:
 Arne Drud
 Development Research Department
 The World Bank
 1818 H Street, N.W.
 Washington, D.C. 20433
 U.S.A.
 Phone - (202) 676-1034
1. Name of program or package: NLPNET

2. Descriptive title: Large-Scale LINEAR and Nonlinear Network Flow Optimization Solver

3. Problem domain: Minimization of separable functions subject to network flow constraints (water distribution, electrical power network optimization, Econometrics)

4. Method of solution: optimization, Econometrics

5. Programming language: Fortran IV

6. Precision: Single or Double

7. Portability: CDC, IBM, DEC

8. Other packages required: NONE

9. Mode of use: Callable subroutine, stand alone main also included

10. Test or demonstration program available? Yes

11. Length of code in lines: 6,000 Percentage comments: 40%

12. Special features: Can take advantage of machines supporting INTEGER * 2 to reduce storage significantly.

13. Documentation and references:
 Detailed header comments?
 User guide or manual, technical reports, papers, books:
 User guide, technical reports

14. Approximate cost of obtaining software: $300.00 for research

15. Restrictions on use: None (research). Varies for commercial use.

16. Distributor:
 Ron Dembo
 SOM, Yale University, Box 1A, New Haven, CT 06520 Ph. (203) 436-1952

17. Original source of software:
 Developer: R. Dembo
 Institution: Yale University
 Sponsor: (In part) NSF

18. For further information contact:
 Ron Dembo
 SOM
 Yale University
 Box 1A
 New Haven, CT 06520
1. Name of program or package: FACSIMILE

2. Descriptive title: Simulator for mass action kinetics with diffusion/advection, and other initial value problems.

3. Problem domain: Stiff ODE, including large problems.

7. Portability: Available on IBM, Amdahl, Perkins-Elmer; Cray; ICL 29XX; DEC VAX. Others considered.

8. Other packages required: All included.

9. Mode of use: Background or foreground.

10. Test or demonstration program available? Package of ~ 10 test problems.

11. Length of code in lines: ~ 21,000. Percentage comments: Small.

12. Special features: Complete package providing command language and high-level programming language, with powerful input/output features, all in a single job step. Optimisation (parameter-fitting) features.

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:
 User manual (with updates).
 Implementation Manual.
 Reports on applications in certain cases.

14. Approximate cost of obtaining software: $5,000 for indefinite license.

15. Restrictions on use: Single CPU. Special terms for more than one.

 Developer: Applied Mathematics Group, A.E.R.E.
 Institution: A.E.R.E.
 Sponsor: U.K.A.E.A.

18. For further information contact:
 (a) A.R. Curtis, Computer Science and Systems Division, A.E.R.E.
 (b) Commercial Officer, C.S.S.D. A.E.R.E.
1. Name of program or package: GEARBI

2. Descriptive title: Solves initial value problem for ODE system having a blocked sparse Jacobian

3. Problem domain: Stiff or nonstiff systems, given in explicit form $y = f(t,y)$ with regular block structure

4. Method of solution: Adams or BDF integration, with block-SOR for linear system solution

5. Programming language: FORTRAN IV

6. Precision: Single

7. Portability: Developed on CDC-7600, but reasonably portable

8. Other packages required: None

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: appx. 1350 Percentage comments: 43%

12. Special features: Internal Common blocks require redimensioning for large problems. Relaxing assumptions about block structure requires changes in one routine.

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: None

15. Restrictions on use: None

16. Distributor: Same as 18.

17. Original source of software:
 Developer: Alan C. Hindmarsh
 Institution: LLNL
 Sponsor: DOE

18. For further information contact:
 Alan C. Hindmarsh
 Mathematics and Statistics Division, L-316
 Lawrence Livermore National Laboratory
 Livermore, California 94550
 Phone: (415) 422-4276
 FTS - 532-4276
1. **Name of program or package:** LSODES

2. **Descriptive title:** Solves initial value problem for ODE system having a general sparse Jacobian

3. **Problem domain:** Stiff or nonstiff systems, given in explicit form $\dot{y} = f(t,y)$

4. **Method of solution:** Adams or BDF integration, with YSMP (Yale Sparse Matrix Package) for linear system solution

5. **Programming language:** FORTRAN IV

6. **Precision:** Both single and double precision versions (separate) available

7. **Portability:** Developed on CDC-7600 but designed to be highly portable

8. **Other packages required:** [YSMP (ODRV and CDRV) supplied with package]

9. **Mode of use:** Callable subroutine

10. **Test or demonstration program available?** Yes

11. **Length of code in lines:** approx. 5400 **Percentage comments:** 55%

12. **Special features:** Easy to use in dump/restart or overlay mode

13. **Documentation and references:**
 - Detailed header comments? Yes (this is the only usage manual at present)
 - User guide or manual, technical reports, papers, books:

14. **Approximate cost of obtaining software:** None

15. **Restrictions on use:** None

16. **Distributor:** Same as 18.

17. **Original source of software:** (excluding development of YSMP)
 - **Developer:** Alan C. Hindmarsh(LLNL), Andrew H. Sherman (Exxon Prod. Res. Co.)
 - **Institution:** LLNL
 - **Sponsor:** DOE

18. **For further information contact:**
 - Alan C. Hindmarsh
 Mathematics and Statistics Division, L-316
 Lawrence Livermore National Laboratory
 Livermore, California 94550
 Phone: (415) 422-4276
 FTS - 532-4276
1. Name of program or package: LSOD28

2. Descriptive title: Stiff ODE Solver for Sparse Systems

3. Problem domain: Stiff ODE initial value problems with particular application to problems having a general large sparse Jacobian matrix.

5. Programming language: FORTRAN

6. Precision: Single and double precision; standard FORTRAN, IBM FORTRAN using INTEGER*2 representation.

7. Portability: Developed on IBM; designed to be easily portable

8. Other packages required: Proprietary package MA28

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: 3000 Percentage comments: 35%

12. Special features: Option of using INTEGER*2 representation for integer arrays on IBM machines.

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 LSOD28: A Variant of LSODE for Problems Having a General Large Sparse Jacobian Matrix by Richard L. Cox, K/CSD-16 (October 1982).

14. Approximate cost of obtaining software: LSOD28, nominal; MA28, $400

15. Restrictions on use: None on LSOD28; MA28 proprietary.

16. Distributor: National Energy Software Center Harwell Subroutine Library
 LSOD28: Argonne National Laboratory MA28: AERE Harwell
 9700 South Cass Avenue Argonne, Illinois 60439 Oxon UJI, ORA
 Argonne, Illinois 60439 Oxon UJI, ORA
 England

17. Original source of software:
 Developer: Richard L. Cox
 Institution: Oak Ridge Gaseous Diffusion Plant, Oak Ridge, TN
 Sponsor: DOE

18. For further information contact:
 Richard L. Cox
 Union Carbide Corporation
 Nuclear Division
 P. O. Box P, Bldg. K-1007
 Oak Ridge, TN 37830

 Phone: Commercial 615/574-8726
 FTS 624-8726
1. Name of program or package: SPARKS

2. Descriptive title: Stiff ODE package

3. Problem domain: Large systems of ODE's with Sparse Jacobians

5. Programming language: FORTRAN

6. Precision: Single IBM-3033

7. Portability: Developed for IBM-3033 but has been transformed to UNIVAC

8. Other packages required: Uses SSLEST for Sparse Matrix Factorization

9. Mode of use: Callable subroutine package includes 5 subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: 1100 lines of code
 Percentage comments: 25% comments

12. Special features:
 - Uses efficient Jacobian evaluation.
 - Applies drop tolerance and iterative refinement.
 - Variable stepsize control

13. Documentation and references:
 Detailed header comments?
 User guide or manual, technical reports, papers, books:
 Users guide: N. Houbak & P.G. Thomsen
 SPARKS - A Fortran subroutine for the solution of Large Systems of Stiff ODE's with Sparse Jacobians. NI-79-02

14. Approximate cost of obtaining software: $50

15. Restrictions on use: Non commercial

16. Distributor: Dept. for Numerical Analysis
 Bulding 303
 Technical University of Denmark, DK-2800 Lyngby, Denmark

17. Original source of software:
 Developer: N. Houbak - P.G. Thomsen
 Institution: Dept. for Numerical Analysis, Technical Univ. of Denmark
 Sponsor:

18. For further information contact: Per Grove Thomsen
 Dept. for Numerical Analysis, Bulding 303
 Technical University of Denmark, DK-2800 Lyngby
 DENMARK, Tel. 881911 ext. 4373
1. Name of program or package: LARKIN

2. Descriptive title: Simulation package for large chemical reaction systems

3. Problem domain: Solution of very large systems of stiff ODE's arising from chemical kinetics

4. Method of solution: Stiff extrapolation integrator using adapted sparse matrix techniques

5. Programming language: Standard FORTRAN (ANSI-FORTRAN with few extensions)

6. Precision: Either

7. Portability: Developed on IBM 370/168, easily portable to other machines

8. Other packages required: None

9. Mode of use: Main program with subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: 8300 Percentage comments: 35%

12. Special features: Segmented for OVERLAY package designed especially for interactive use

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: Not yet decided

15. Restrictions on use: Licence agreement required

16. Distributor: Prof. Dr. P. Deufihard
 Universität Heidelberg, Institut f. Angewandte Mathematik
 D-6900 Heidelberg, W. Germany

17. Original source of software:
 Developer: U. Nowak, G. Bader, P. Deufihard
 Institution: Inst. f. Applied Mathematics, Universität Heidelberg
 Sponsor: DFG (SFB 123)

18. For further information contact:
 Ulrich Nowak
 Universität Heidelberg
 Institut für Angewandte Mathematik
 Im Neuenheimer Feld 293
 D-6900 Heidelberg
 W. Germany
1. Name of program or package: GRIDPACK

2. Descriptive title: Grid manipulation software

3. Problem domain: Problems described on grids, mainly derived from partial differential boundary value problems.

4. Method of solution: Any grid-oriented method. (The package is most useful for implementing multigrid solutions, especially for general domains).

5. Programming language: Standard FORTRAN only.

6. Precision: mixed

7. Portability: Software developed on IBM, fully portable. (Machine-dependent constants are fully specified).

8. Other packages required: None

9. Mode of use: Collection of subroutines

10. Test or demonstration program available? Yes.

11. Length of code in lines: 20,000 Percentage comments: 15%

12. Special features: Requires secondary storage for some parts.

13. Documentation and references:
 Detailed header comments? Yes.

15. Restrictions on use: None.

16. Distributor: Department of Applied Mathematics
 The Weizmann Institute of Science
 Rehovot, Israel 76100
 Attention: Dr. Dan Ophir

17. Original source of software:
 Developer: Achi Brandt and Dan Ophir.
 Institution: Weizmann Institute of Science, Rehovot, Israel, 76100.
 Sponsor: ARO

18. For further information contact: Dr. Dan Ophir
 Department of Applied Mathematics
 The Weizmann Institute of Science
 Rehovot, Israel 76100

 Telephone: (Country code 972) 54-83545
 (Secretary)
1. Name of program or package: KUBIK

2. Descriptive title: Finite and infinite element mesh generator.

3. Problem domain: 2- and 3- dimensional domains of any degree of complexity.

4. Method of solution: Divide and conquer. Sparse matrix techniques are used throughout and a sparse mesh connectivity matrix is provided.

5. Programming language: FORTRAN IV.

8. Other packages required: None.

9. Mode of use: A main program calls the subroutines as required by the commands issued by user.

10. Test or demonstration program available? Yes

12. Special features: The program is segmented for overlay. Secondary storage is optional.

13. Documentation and references:
 Detailed header comments? No.
 User guide or manual, technical reports, papers, books:
 a. User Manual and Operations Manual are provided with program.

15. Restrictions on use: Only for research purposes.

17. Original source of software:
 Developer: Sergio Pissanetzky
 Institution: Comisión Nacional de Energía Atómica.
 Sponsor: Comisión Nacional de Energía Atómica.

18. For further information contact: Ronald Peierls, Chairman.
 Applied Mathematics Department. Brookhaven National Laboratory.
 Upton, N.Y. 11973, U.S.A.
1. Name of program or package: ELLPACK

2. Descriptive title:
 Solution of Elliptic Problems in 2 and 3 Dimensions

3. Problem domain:
 Linear, Second Order Elliptic PDEs. General domains in 2-D, rectangular
domains in 3-D.

4. Method of solution:
 Manifold

5. Programming language:
 Fortran, has own language as Fortran preprocessor

6. Precision:
 Single or double

7. Portability:
 High

8. Other packages required: None

9. Mode of use: Batch

10. Test or demonstration program available? Yes

11. Length of code in lines: Percentage comments:
 60-80,000 unknown, but reasonable

12. Special features:
 Included are: 4 YALE PACK sparse matrix programs, ACM Algorithm 533:NSPIV
 (Sparse Gauss elimination with pivoting), 7 ITPACK iterative method routines
 and 4 band solvers.

13. Documentation and references:
 Yes
 Detailed header comments?
 Solving Elliptic Problems with ELLPACK
 User guide or manual, technical reports, papers, books: J.R. Rice and R.F.
 Boisvert, Springer-Verlag, 1983. Several technical reports also
 available.

14. Approximate cost of obtaining software: $75 (obsolete version), $1000 (current
 version) $200 to educational inst.

15. Restrictions on use: None

16. Distributor: IMSL (obsolete version), Purdue Univ. (current version)

17. Original source of software: ELLPACK cooperative project
 Developer: John R. Rice coordinator, about 20 contributors
 Institution: Purdue University
 Sponsor: Many

18. For further information contact: John R. Rice
 Math Science 428
 Purdue University
 W. Lafayette, IN 47907
 (317)494-6007
1. Name of program or package: FISHPAK

2. Descriptive title: Efficient FORTRAN subprograms for solving separable elliptic equations

3. Problem domain: Separable elliptic equations subject to standard boundary conditions

4. Method of solution: Cyclic reduction and Fourier analysis

5. Programming language: ANSI FORTRAN

6. Precision: Single

7. Portability: PFORT verified

8. Other packages required: None

9. Mode of use: Subprograms

10. Test or demonstration program available? Yes, included with package

11. Length of code in lines: 20,000 Percentage comments: 30%

12. Special features: None

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

 Algorithm 541, efficient FORTRAN subprograms for the solution of separable elliptic partial differential equations, TOMS, Vol. 5, No. 3, 1979

14. Approximate cost of obtaining software: $300

15. Restrictions on use: None

16. Distributor: Scientific Computing Division
 National Center for Atmospheric Research
 P.O. Box 3000, Boulder, Colorado 80307

17. Original source of software:
 Developer: Paul N. Swartztrauber and Roland A. Sweet
 Institution: NCAR
 Sponsor: NSF

18. For further information contact:
 To order FISHPAK contact Sue Long, NCAR (303) 494-5151 Ext. 505 or FTS 322-5505. Questions should be directed to authors listed in 17.

 Paul N. Swartztrauber: (303) 494-5151, Ext. 605 or FTS 322-5605.
 Roland A. Sweet: (301) 921-3395 or FTS 921-3395.
1. Name of program or package: HELM3D

2. Descriptive title: Algorithm for Solving the Helmholtz Equation for the Dirichlet Problem

3. Problem domain: General bounded three-dimensional regions

4. Method of solution: Capacitance matrix

5. Programming language: FORTRAN

6. Precision: Single

7. Portability: Easily portable

8. Other packages required: None

9. Mode of use: Callable subroutine

10. Test or demonstration program available? Yes

11. Length of code in lines: Approx. 1700 Percentage comments: 50

12. Special features: None

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: $50

15. Restrictions on use:

 IMSL
 Sixth Floor, NBC Building, 7500 Bellaire Blvd
 Houston, Texas 77036

17. Original source of software:
 Developer: Dianne P. O'Leary and Olof Widlund
 Institution: University of MI Courant Inst.
 Sponsor: NSF, ERDA

18. For further information contact: Dianne P. O'Leary
 Computer Science Department
 University of Maryland
 College Park, MD 20742
1. Name of program or package: HELM

2. Descriptive title: Solution of Helmholtz equation in a general two-dimensional domain

3. Problem domain:
\[-\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + cu = f(x,y) \text{ in } \Omega \subset (0, 1) \times (0,1)\]
\[u(x,y) = g(x,y) \text{ on } \Gamma = \partial \Omega\]

4. Method of solution: Multi-grid iteration

5. Programming language: FORTRAN

6. Precision: Single

7. Portability: Developed on CDC 72/76

8. Other packages required: None

9. Mode of use: Sequence of subroutines to be called

10. Test or demonstration program available? No

11. Length of code in lines: about 350 Percentage comments: 0%

12. Special features: Arrays on LEVEL 2 used

13. Documentation and references:
Detailed header comments? No
User guide or manual, technical reports, papers, books:
Programme list with some comments in report (German)

14. Approximate cost of obtaining software: Mailing costs

15. Restrictions on use: –

16. Distributor: Same as 18.

17. Original source of software:
Developer: W. Hackbusch
Institution: Universität zu Köln
Sponsor: –

18. For further information contact:
W. Hackbusch
Institut für Informatik
Universität Kiel
Olshausenstr 40-60
D-2300 Kiel 1
Germany
1. Name of program or package: RECTCF

2. Descriptive title: Solution of elliptic second order problems in a rectangle

3. Problem domain: PDE: \(a_{xx} + b u_{xy} + c u_{yy} + d u_x + e u_y + f u = g \), \(a = a(x,y) \), \(b = \ldots \)

 Boundary condition: Dirichlet, Neumann, mixed, periodic on rectangle

5. Programming language: FORTRAN (equivalent programme available in ALGOL)

6. Precision: Single

7. Portability: Developed on CDC 72/76, easily portable

8. Other packages required: None

9. Mode of use: Sequence of subroutines to be called

10. Test or demonstration program available? Report contains test examples with output

11. Length of code in lines: about 500 Percentage comments: 0%

12. Special features: Arrays on LEVEL 2 used

13. Documentation and references:
 Detailed header comments? None
 User guide or manual, technical reports, papers, books:

14. Approximate cost of obtaining software: Mail costs

15. Restrictions on use: None

16. Distributor: Same as 18; or: OECD-NEA Data Bank

17. Original source of software:
 Developer: W. Hackbusch
 Institution: Universität zu Köln
 Sponsor:

18. For further information contact:
 W. Hackbusch
 Institut für Informatik
 Universität Kiel
 Olshausenstr. 40-60,
 D-2300 Kiel 1
 Germany
1. Name of program or package:
 IMSL TWODEPEP

2. Descriptive title:
 Two dimensional partial differential equation solver

3. Problem domain:
 General elliptic, parabolic and eigenvalue PDE systems in general 2-D regions

4. Method of solution:
 Finite element method with quadratic, cubic or quartic triangular elements

5. Programming language:
 FORTRAN

6. Precision:
 Single and double for 32 bit computers; otherwise single only

7. Portability:
 Versions tested on IBM, CDC, DEC, VAX, Data General, Burroughs, Univac, Honeywell, Prime, Siemens and Cray computers

8. Other packages required:
 none

9. Mode of use:
 Preprocessor reads input in special simple format

10. Test or demonstration program available?
 Yes

11. Length of code in lines:
 Percentage comments:

12. Special features:
 Has out of core solution capability using disk storage but also runs efficiently in a virtual memory environment.

13. Documentation and references:
 Detailed header comments? No
 User guide or manual, technical reports, papers, books:
 IMSL TWODEPEP User's Manual (approx. 100 pages)

14. Approximate cost of obtaining software:
 $1,500/year ($900 for universities)

15. Restrictions on use:
 license agreement

16. Distributor:
 IMSL, Inc.
 7500 Bellaire Blvd., 6th floor
 Houston, TX 77036
 tele: (713) 772-1927

17. Original source of software:
 Developer: Granville Sewell
 Institution: IMSL
 Sponsor:

18. For further information contact:
 Granville Sewell
 IMSL (tele: (713) 772-1927)
1. Name of program or package: PDE2D

2. Descriptive title: Nonlinear PDE Solver

3. Problem domain: Second Order Quasi-linear Homogeneous PDE's in Two Space Variables

4. Method of solution: Conjugate Gradient, SOR

5. Programming language: 1966 ANSI FORTRAN

6. Precision: Single

7. Portability: Satisfies PFORT Standard of Portability

8. Other packages required: None

9. Mode of use: Callable Subroutines

10. Test or demonstration program available? Yes

11. Length of code in lines: 5000 Percentage comments: 70

12. Special features: None

13. Documentation and references:
 Detailed header comments? Yes
 User guide or manual, technical reports, papers, books:
 "A Portable Software Package for Nonlinear Partial Differential Equations" ORNL/CSD-102

14. Approximate cost of obtaining software: None

15. Restrictions on use: None

16. Distributor:
 Robert Renka, Union Carbide Corporation, Nuclear Division
 P. O. Box X, Building 4500N, D-224
 Oak Ridge, TN 37830, Phone: (615) 576-5139

17. Original source of software:
 Developer: Robert Renka
 Institution: Oak Ridge National Laboratory
 Sponsor: DOE

18. For further information contact:
 Robert Renka
 Union Carbide Corporation, Nuclear Division
 P. O. Box X, Building 4500N, D-224
 Oak Ridge, TN 37830
 Phone: (615) 576-5139
Appendix A

SPARSE MATRIX 1982: SOFTWARE CATALOG

In conjunction with the Sparse Matrix Symposium to be held at Fairfield Glade, Tennessee on October 25-27, 1982, we are compiling a catalog of sparse matrix software. The purpose of the catalog is to help potential consumers or developers of sparse matrix software determine what software is available and how it can be obtained. All developers of sparse matrix software are invited to submit a one-page description of each program or package for inclusion in the catalog, which will be distributed to attendees at the conference; the catalog will be available to others on request subsequent to the conference. The catalog will include software for solving general sparse problems in the basic areas of linear systems; eigenvalues and least squares; in other general areas where sparse matrix problems are fundamental, such as optimization and differential equations; and in application areas where the use of sparse matrix techniques is critical.

To achieve a consistent format for the reporting of software, we have devised a form to be completed, together with guidelines and sample responses. This form must be completed with a typewriter using black ribbon. To further enhance reproduction quality of the catalog, please use only original forms, not copies. If additional forms are needed, please request more originals.

To help in organizing and indexing the catalog, we have also prepared an outline of various sparse-matrix problem categories, printed on the back of the form. Please indicate which category and keywords apply to your software.

Select the single category that most closely describes the problem to be solved by your software and mark the most appropriate keyword on each line when applicable. This selection will determine the placement of your form in the catalog. An index will also be compiled, based on the methods indicated in Item 4 of the form. We have not listed separate keywords for complex matrices in Categories 1 and 2. If your code is for complex matrices, use the equivalent keywords for real matrices (e.g., "symmetric" for "hermitian").

Our goal is to make the software catalog as inclusive as possible. However, we reserve the right to reject a given submission if it appears to make no significant use of sparse matrix techniques. For example, a stiff ODE solver that provides for a sparse Jacobian matrix would be suitable for inclusion, whereas the average general ODE solver probably would not.

Please return the completed forms by July 1, 1982 and direct all correspondence to:

Robert C. Ward
Union Carbide Corporation Nuclear Division
P.O. Box Y
Oak Ridge, TN 37830
Appendix B

INSTRUCTIONS AND SAMPLE RESPONSES FOR FORM

1. **Name of program or package**: One word (typically 6 to 8 characters) name of package or of primary subroutine.

2. **Descriptive title**: Short phrase such as “Sparse linear system solver” or “Structural analysis package”.

3. **Problem domain**: Specify problem(s) solved in as much generality as is warranted (e.g., unsymmetric linear systems, symmetric positive definite linear systems, reordering equations to minimize storage, etc.) or a specific application such as power network optimization.

4. **Method of solution**: Brief indication of methods used (e.g., SOR, bandwidth minimization, minimum degree ordering, Lanczos method, orthogonalization, simplex method, branch and bound, etc.)

5. **Programming language**: FORTRAN, Algol, PL/1, Basic, etc. Be more specific, if desired and appropriate (e.g., ANSI FORTRAN, FORTRAN IV, IBM FORTRAN H, etc.). If any assembly language modules are used, specify machine.

6. **Precision**: Single, double, both, mixed, etc.

7. **Portability**: Specify machine(s) on which software was developed and state whether it is easily portable to other machines.

8. **Other packages required**: BLAS, LINPACK, EISPACK, IMSL, NAG, etc.

9. **Mode of use**: Callable subroutine, stand-alone main program, etc.

10. **Test or demonstration program available?** Yes or no

11. **Length of code in lines**: (Approximate number.) **Percentage comments**: Approximate percentage of lines which are comments.

12. **Special features**: Does the software utilize any special features of computer architecture or storage, especially in handling very large problems? (e.g., the program permits or requires use of secondary storage, is easily segmented for overlay, is designed for efficiency in a paging environment, takes advantage of pipeline, parallel or array processors, etc.)

13. **Documentation and references**: Detailed header comments? Yes, if sufficient to run program on straightforward problem, otherwise no

 User guide or manual, technical reports, papers, books: List only items of direct relevance to the use of the code or to the explanation of its theoretical basis.

14. **Approximate cost of obtaining software**: If fee is not a one-time charge, state time period covered (typically one year).

15. **Restrictions on use**: None, proprietary, license agreement required, etc.

16. **Distributor**: List name, address and phone number of agency (e.g., NESC), commercial vendor, developer, etc., from which software may be obtained. Include electronic mail address if software is obtainable via a computer network.

17. **Original source of software**: Developer: List principle author(s) of software

 Institution: University, laboratory, private company, etc. where software was developed

 Sponsor: Funding agency (DOE, NSF, ONR, ARO, AFOSR, etc.), corporation or institution which financed research and development

18. **For further information contact**: List name, address and phone number of one person, not necessarily a developer, who is willing to answer questions about software. Include FTS or other special communications network number if applicable.
Appendix C

CATEGORIES AND KEY WORDS

1. Systems of Linear Equations
 real / complex
 nonsymmetric / symmetric indefinite / symmetric positive definite
 general sparse / band or profile oriented
 direct method / iterative method / combined or semi-iterative

2. Eigenvalue Problems
 real / complex
 nonsymmetric / symmetric
 standard / generalized / lambda-matrix
 matrix required / only matrix-vector multiply required

3. Least Squares and other Approximations
 norm: L₁ / L₂ / Lₚ / other
 matrix input by user / matrix generated by program from model
 model: user defined / polynomial / spline / exponential / trigonometric / other
 parameters: linear / separable / nonlinear
 method: exchange / lp / elimination / orthogonalization / other

4. Optimization
 Mathematical programming:
 objective: linear / separable / sum of squares / quadratic / nonlinear
 constraints: none / bounds / linear / nonlinear
 Combinatorial optimization and graph algorithms:
 integer programming / network flow / shortest path / minimal spanning tree / strongly connected components / other

5. Differential Equations
 ODE / PDE
 finite differences / finite elements
 time dependent / time independent
 initial value problems / boundary value problems / both / mixed

6. Applications
 structural analysis
 electric power systems
 image enhancement and reconstruction
 petroleum and mineral prospecting and recovery
 economic, energy and environmental modeling
 statistical analysis
 control theory and sensitivity analysis
 other (specify):
Appendix D

The Harwell Subroutine Library

We wish the subroutine library to be of use to many people and we are willing to provide copies in source code of individual routines or of the whole library to external users on request. Charges are made (see below) to external users to cover the cost of handling, postage and documentation involved in fulfilling their requests for copies.

The charges cover only the copying and despatching of library routines. Therefore we do not undertake to provide any assistance that may be needed to use a subroutine successfully, and we do not guarantee the efficacy of any subroutine or documentation. However we hope that deficiencies in subroutines and the documentation will be brought to our attention, in order that we can improve the library.

Except for a small number of subroutines obtained from elsewhere, the subroutines in the Harwell Subroutine Library are the property of the United Kingdom Atomic Energy Authority and a potential user must accept and abide by the conditions listed below. All communication with the library by external users should be made through Mr. S. Marlow, Building 8.9, AERE Harwell, Didcot, Oxon, OX11 ORA, England. (Tel. Abingdon 24141 ext. 2930), who is the liaison officer for the library's external affairs.

The conditions attached to external use are as follows:

(i) the subroutines may only be used for research purposes by the person or organisation to whom they are supplied. They may not be copied for use by other persons or organisations, except with the written permission of the liaison officer.

(ii) due acknowledgement is made of the use of subroutines in any research publications resulting from their use.

(iii) the subroutines may be modified for use in research applications by external users. The nature of such modifications should be indicated in writing for information to the liaison officer. At no time however, shall the subroutines or modifications thereof become the property of the external user.

(iv) the use of the subroutines in commercial applications must be agreed in writing with AERE Harwell and on terms and conditions to be negotiated. In the first instance, anyone considering such commercial applications should write to the liaison officer.

Conditions (i) and (iv) will be waived for most subroutines dating from before January 1977 and for some more recent ones. The conditions are listed under the subroutine entries in the current version of the catalogue.

The charges for library material are listed below. Overseas customers are charged on a different scale than that used for U.K. customers to cover the extra costs in meeting their requirements and all items are despatched by air mail. Charges to customers in the United Kingdom are subject to VAT. All prices given are valid to the 31st December 1982, and subject to review thereafter.

(1) Listings of subroutines
 U.K. (excluding VAT) £7 each
 Overseas £14 each

(2) Card decks of subroutines
 U.K. (excluding VAT) £7 per 400 cards (minimum order £14)
 Overseas £21 per 400 cards (minimum order £42)

(3) Subroutines on magnetic tape (including the cost of the tape which we supply)
 U.K. (excluding VAT) £30 for the first two subroutines plus £2 for each subroutine in excess of two.
 Overseas £50 for the first two subroutines plus £2 for each subroutine in excess of two.

(4) Complete library on tape (including the cost of the tape which we supply and one set of specification sheets)
 U.K. (excluding VAT) £120
 Overseas £200

(5) Additional complete sets of specification sheets
 U.K. (excluding VAT) £30 each set
 Overseas £45 each set
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bader, G.</td>
<td>111</td>
</tr>
<tr>
<td>Barker, V. A.</td>
<td>30</td>
</tr>
<tr>
<td>Bartels, R. H.</td>
<td>88</td>
</tr>
<tr>
<td>Bennett, L. F.</td>
<td>77, 78</td>
</tr>
<tr>
<td>Boisvert, R. F.</td>
<td>114</td>
</tr>
<tr>
<td>Brandt, A.</td>
<td>112</td>
</tr>
<tr>
<td>Buckley, A.</td>
<td>97</td>
</tr>
<tr>
<td>Bunch, J. R.</td>
<td>39</td>
</tr>
<tr>
<td>Calahan, D. A.</td>
<td>34, 35, 40, 41, 56</td>
</tr>
<tr>
<td>Calamai, P. H.</td>
<td>102</td>
</tr>
<tr>
<td>Coleman, R.</td>
<td>36, 37, 50, 52, 59, 91</td>
</tr>
<tr>
<td>Coleman, T. F.</td>
<td>101</td>
</tr>
<tr>
<td>Conn, A. R.</td>
<td>102</td>
</tr>
<tr>
<td>Cox, M.</td>
<td>53, 54</td>
</tr>
<tr>
<td>Cox, R. L.</td>
<td>109</td>
</tr>
<tr>
<td>Crane, H. L.</td>
<td>18</td>
</tr>
<tr>
<td>Cullum, J.</td>
<td>81, 82</td>
</tr>
<tr>
<td>Curtis, A. R.</td>
<td>7, 99, 106</td>
</tr>
<tr>
<td>de Boor, C.</td>
<td>42</td>
</tr>
<tr>
<td>Dembo, R.</td>
<td>105a</td>
</tr>
<tr>
<td>Deufhard, P.</td>
<td>111</td>
</tr>
<tr>
<td>Diaz, J. C.</td>
<td>43, 45</td>
</tr>
<tr>
<td>Dillinger, W. H.</td>
<td>75</td>
</tr>
<tr>
<td>Dodson, D. S.</td>
<td>6</td>
</tr>
<tr>
<td>Dongarra, J. J.</td>
<td>39</td>
</tr>
<tr>
<td>Drud, A.</td>
<td>105</td>
</tr>
<tr>
<td>Duff, I. S.</td>
<td>10, 14, 16, 17, 22, 23, 24, 25, 26, 27, 46, 83, 100</td>
</tr>
<tr>
<td>Eisenstat, S. C.</td>
<td>48, 64</td>
</tr>
<tr>
<td>Elman, H. C.</td>
<td>64</td>
</tr>
<tr>
<td>Ericsson, T.</td>
<td>86</td>
</tr>
<tr>
<td>Eriksson, J.</td>
<td>103</td>
</tr>
<tr>
<td>Fairweather, G.</td>
<td>43, 44, 45</td>
</tr>
<tr>
<td>Fletcher, R.</td>
<td>95</td>
</tr>
<tr>
<td>Garbow, B. S.</td>
<td>79, 101</td>
</tr>
<tr>
<td>Gay, D. M.</td>
<td>92</td>
</tr>
<tr>
<td>George, A.</td>
<td>47, 51, 74</td>
</tr>
<tr>
<td>Gibbs, N. E.</td>
<td>18</td>
</tr>
<tr>
<td>Giles, J. E.</td>
<td>93</td>
</tr>
<tr>
<td>Golub, G. H.</td>
<td>88</td>
</tr>
<tr>
<td>Grimes, R. G.</td>
<td>58</td>
</tr>
<tr>
<td>Gursky, M. C.</td>
<td>48</td>
</tr>
<tr>
<td>Gustavson, F. G.</td>
<td>4, 8, 13, 15, 32, 33, 49</td>
</tr>
<tr>
<td>Hackbusch, W.</td>
<td>117, 118</td>
</tr>
<tr>
<td>Hanson, R. H.</td>
<td>75</td>
</tr>
<tr>
<td>Hanson, R. J.</td>
<td>89</td>
</tr>
<tr>
<td>Harms, U.</td>
<td>2, 19</td>
</tr>
<tr>
<td>Heath, M.</td>
<td>74</td>
</tr>
<tr>
<td>Hellerman, E.</td>
<td>92</td>
</tr>
<tr>
<td>Hiebert, K. L.</td>
<td>89</td>
</tr>
<tr>
<td>Hindmarsh, A. C.</td>
<td>107, 108</td>
</tr>
<tr>
<td>Horton, S.</td>
<td>38</td>
</tr>
<tr>
<td>Houbak, N.</td>
<td>110</td>
</tr>
<tr>
<td>Jacobs, D. A. H.</td>
<td>65, 66, 68, 69, 70, 71, 72</td>
</tr>
<tr>
<td>Jensen, P. S.</td>
<td>20, 80</td>
</tr>
<tr>
<td>Kaufman, L.</td>
<td>29</td>
</tr>
<tr>
<td>Keast, P.</td>
<td>43, 44, 45</td>
</tr>
<tr>
<td>Kincaid, D. R.</td>
<td>58</td>
</tr>
<tr>
<td>King, I. P.</td>
<td>18</td>
</tr>
<tr>
<td>Lewis, J. G.</td>
<td>18, 51</td>
</tr>
<tr>
<td>Liu, J.</td>
<td>47, 51</td>
</tr>
<tr>
<td>Manteuffel, T. A.</td>
<td>60</td>
</tr>
<tr>
<td>Markham, G.</td>
<td>67</td>
</tr>
<tr>
<td>Marsten, R.</td>
<td>90</td>
</tr>
<tr>
<td>McNamee, J. M.</td>
<td>1, 2</td>
</tr>
<tr>
<td>Meeraus, A.</td>
<td>105</td>
</tr>
<tr>
<td>Moler, C. B.</td>
<td>39</td>
</tr>
<tr>
<td>More, J. J.</td>
<td>101</td>
</tr>
<tr>
<td>Munksgaard, N.</td>
<td>63</td>
</tr>
<tr>
<td>Murtagh, B. A.</td>
<td>98</td>
</tr>
<tr>
<td>Neves, K. W.</td>
<td>6</td>
</tr>
<tr>
<td>Ng, E.</td>
<td>47, 74</td>
</tr>
<tr>
<td>Nielsen, H. B.</td>
<td>73</td>
</tr>
<tr>
<td>Nikolai, P. J.</td>
<td>87a</td>
</tr>
<tr>
<td>Nowak, U.</td>
<td>111</td>
</tr>
<tr>
<td>O’Leary, D. P.</td>
<td>116</td>
</tr>
<tr>
<td>Ophir, D.</td>
<td>112</td>
</tr>
<tr>
<td>Paige, C. C.</td>
<td>61, 76</td>
</tr>
<tr>
<td>Parlett, B. N.</td>
<td>84</td>
</tr>
<tr>
<td>Pissanetzky, S.</td>
<td>3, 113</td>
</tr>
<tr>
<td>Poole, W. G.</td>
<td>18</td>
</tr>
<tr>
<td>Powell, M. J. D.</td>
<td>96, 99, 100</td>
</tr>
<tr>
<td>Rarick, D. C.</td>
<td>92</td>
</tr>
<tr>
<td>Reeves, C. M.</td>
<td>95</td>
</tr>
<tr>
<td>Reid, J. K.</td>
<td>7, 11, 16, 25, 27, 46, 55, 83, 84, 88, 94, 99</td>
</tr>
<tr>
<td>Reinsch, C.</td>
<td>79</td>
</tr>
<tr>
<td>Renka, R.</td>
<td>120</td>
</tr>
<tr>
<td>Respess, J. R.</td>
<td>58</td>
</tr>
<tr>
<td>Name</td>
<td>Pages</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Rice, J. R.</td>
<td>114</td>
</tr>
<tr>
<td>Ruhe, A.</td>
<td>86</td>
</tr>
<tr>
<td>Rutishauser, H.</td>
<td>83</td>
</tr>
<tr>
<td>Saunders, M. A.</td>
<td>61, 76, 93, 98</td>
</tr>
<tr>
<td>Schaumburg, K.</td>
<td>31</td>
</tr>
<tr>
<td>Schultz, M. H.</td>
<td>48, 64</td>
</tr>
<tr>
<td>Scott, D. S.</td>
<td>85</td>
</tr>
<tr>
<td>Sewell, G.</td>
<td>119</td>
</tr>
<tr>
<td>Sherman, A. H.</td>
<td>28, 48, 108</td>
</tr>
<tr>
<td>Smith, B. T.</td>
<td>79</td>
</tr>
<tr>
<td>Stadtherr, M. A.</td>
<td>38a</td>
</tr>
<tr>
<td>Stewart, G. W.</td>
<td>39</td>
</tr>
<tr>
<td>Stockmeyer, P. K.</td>
<td>18</td>
</tr>
<tr>
<td>Swartztrauber, P. N.</td>
<td>21, 115</td>
</tr>
<tr>
<td>Sweet, R. A.</td>
<td>115</td>
</tr>
<tr>
<td>Szyld, D. B.</td>
<td>5, 9, 12, 104</td>
</tr>
<tr>
<td>Tarjan, R.</td>
<td>16</td>
</tr>
<tr>
<td>Tarvestad, L.</td>
<td>57</td>
</tr>
<tr>
<td>Thomsen, P. G.</td>
<td>30, 110</td>
</tr>
<tr>
<td>Toint, P. L.</td>
<td>100</td>
</tr>
<tr>
<td>van der Vorst, H.</td>
<td>62</td>
</tr>
<tr>
<td>van Kats, J.</td>
<td>62</td>
</tr>
<tr>
<td>Vishnepolsky, O.</td>
<td>5, 9</td>
</tr>
<tr>
<td>Wasniewski, J.</td>
<td>31</td>
</tr>
<tr>
<td>Weiss, R.</td>
<td>42</td>
</tr>
<tr>
<td>Westerberg, A. W.</td>
<td>11</td>
</tr>
<tr>
<td>Widlund, O.</td>
<td>116</td>
</tr>
<tr>
<td>Wilkinson, J. H.</td>
<td>79</td>
</tr>
<tr>
<td>Willoughby, R. A.</td>
<td>81, 82</td>
</tr>
<tr>
<td>Wisniewski, J. A.</td>
<td>87</td>
</tr>
<tr>
<td>Wood, E. S.</td>
<td>38a</td>
</tr>
<tr>
<td>Yip, E.</td>
<td>38</td>
</tr>
<tr>
<td>Young, D. M.</td>
<td>58</td>
</tr>
<tr>
<td>Zlatev, Z.</td>
<td>30, 31, 73</td>
</tr>
</tbody>
</table>
Software Index

<table>
<thead>
<tr>
<th>Algorithm 408</th>
<th>1*, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm 508</td>
<td>18</td>
</tr>
<tr>
<td>Algorithm 509</td>
<td>18</td>
</tr>
<tr>
<td>Algorithm 529</td>
<td>16</td>
</tr>
<tr>
<td>Algorithm 533</td>
<td>28, 114</td>
</tr>
<tr>
<td>Algorithm 538</td>
<td>87a</td>
</tr>
<tr>
<td>Algorithm 541</td>
<td>115</td>
</tr>
<tr>
<td>Algorithm 546</td>
<td>42</td>
</tr>
<tr>
<td>Algorithm 572</td>
<td>116</td>
</tr>
<tr>
<td>Algorithm 575</td>
<td>14</td>
</tr>
<tr>
<td>Algorithm 582</td>
<td>18</td>
</tr>
<tr>
<td>Algorithm 583</td>
<td>76</td>
</tr>
<tr>
<td>APMATH64</td>
<td>36, 37, 50, 52, 57, 59, 91</td>
</tr>
<tr>
<td>ARCECO</td>
<td>43</td>
</tr>
<tr>
<td>BCG25</td>
<td>65</td>
</tr>
<tr>
<td>BCG37</td>
<td>66</td>
</tr>
<tr>
<td>BCGS</td>
<td>67</td>
</tr>
<tr>
<td>BES</td>
<td>80</td>
</tr>
<tr>
<td>BKSLVE</td>
<td>32, 49</td>
</tr>
<tr>
<td>BLAS</td>
<td>6, 39, 60, 61, 64, 76, 87, 89</td>
</tr>
<tr>
<td>BLMAIN</td>
<td>81</td>
</tr>
<tr>
<td>BLTF</td>
<td>15</td>
</tr>
<tr>
<td>CCG25</td>
<td>65</td>
</tr>
<tr>
<td>CCG37</td>
<td>66</td>
</tr>
<tr>
<td>CCGS</td>
<td>67</td>
</tr>
<tr>
<td>CG25</td>
<td>65</td>
</tr>
<tr>
<td>CG37</td>
<td>66</td>
</tr>
<tr>
<td>CGS</td>
<td>67</td>
</tr>
<tr>
<td>COLROW</td>
<td>45</td>
</tr>
<tr>
<td>CONOPT</td>
<td>105</td>
</tr>
<tr>
<td>CSFS</td>
<td>52</td>
</tr>
<tr>
<td>CSPARSPAK</td>
<td>51</td>
</tr>
<tr>
<td>CUFS</td>
<td>37</td>
</tr>
<tr>
<td>D03EBF</td>
<td>69</td>
</tr>
<tr>
<td>D03ECF</td>
<td>70</td>
</tr>
<tr>
<td>D03UAF</td>
<td>71</td>
</tr>
<tr>
<td>D03UBF</td>
<td>72</td>
</tr>
<tr>
<td>DI205</td>
<td>68</td>
</tr>
<tr>
<td>DI209</td>
<td>68</td>
</tr>
<tr>
<td>DI213</td>
<td>68</td>
</tr>
<tr>
<td>DI3707</td>
<td>68</td>
</tr>
<tr>
<td>DMSGASP</td>
<td>20</td>
</tr>
<tr>
<td>DSM</td>
<td>101</td>
</tr>
</tbody>
</table>

EA12	83
EA13	83
EA14	84
ECTLIB	38
EISPACK	60, 79*, 81, 87, 87a
ELLPACK	114
EPO1	103
EZ-GAL	80
F01BRF	22
F01BSF	23
F01MCF	53
F04AXF	24
F04MCF	54
FA01	83, 84
FACSIMILE	106
FFTPACK	21
FISHPAK	115
FM01	55, 83, 94
FM02	83, 95
FULL ASSIGN	13
GEARBI	107
GNSO	33
GPSKCA	18
GPSKRA	18
GRIDPACK	112
HALFP	4, 8*
HELM	117
HELM3D	116
ICCG	62
ITPACK	58*, 114
KUBIK	113
LA05	88*, 89, 90
LARKIN	111
LASO2	85
LASSO	75
LINPACK	39*, 87, 104
LLSS01	73
LMAINE	82
LSOD28	109
LSODES	108
LSQR	76
LVMAIN	82
MA15	55
MA17	94

* Indicates principal entry, if any, in cases of multiple entries.
<table>
<thead>
<tr>
<th>Code</th>
<th>Page</th>
<th>Notes</th>
<th>Code</th>
<th>Page</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA27</td>
<td>46</td>
<td></td>
<td>RSFS</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>MA28</td>
<td>25*, 104, 109</td>
<td></td>
<td>RUF5</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>MA30</td>
<td>25</td>
<td></td>
<td>SIMITZ</td>
<td>87a</td>
<td></td>
</tr>
<tr>
<td>MA31</td>
<td>63</td>
<td></td>
<td>SIMPLE</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>MA32</td>
<td>26</td>
<td></td>
<td>SITSOl</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MC09</td>
<td>94</td>
<td></td>
<td>SKYSOL</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>MC13</td>
<td>16*, 17, 25, 92</td>
<td></td>
<td>SMULT</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MC19</td>
<td>7</td>
<td></td>
<td>SOLVEBLOK</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>MC20</td>
<td>11*, 25, 88</td>
<td></td>
<td>SPAR/BL</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>MC21</td>
<td>14*, 17, 25, 92</td>
<td></td>
<td>SPAR/SC</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MC22</td>
<td>10*, 25</td>
<td></td>
<td>SPAR/VECTOR</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>MC23</td>
<td>17*, 25</td>
<td></td>
<td>SPARKS</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>MC24</td>
<td>25, 27*</td>
<td></td>
<td>SPARSE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ME22</td>
<td>10</td>
<td></td>
<td>SPARSPAK</td>
<td>47*, 51, 74, 75</td>
<td></td>
</tr>
<tr>
<td>ME23</td>
<td>17</td>
<td></td>
<td>SPARSPAK-B</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>ME24</td>
<td>27</td>
<td></td>
<td>SPAR2PAS</td>
<td>38a</td>
<td></td>
</tr>
<tr>
<td>ME27</td>
<td>46</td>
<td></td>
<td>SPLP</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>ME28</td>
<td>25</td>
<td></td>
<td>SPRSBLAS</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ME30</td>
<td>25</td>
<td></td>
<td>SSLEST</td>
<td>30*, 110</td>
<td></td>
</tr>
<tr>
<td>MFLPP</td>
<td>102</td>
<td></td>
<td>STLM</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>MINOS</td>
<td>93, 98*</td>
<td></td>
<td>SUBMAT</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>NLPNET</td>
<td>105a</td>
<td></td>
<td>SYMFAC</td>
<td>32, 49</td>
<td></td>
</tr>
<tr>
<td>NS03</td>
<td>94</td>
<td></td>
<td>SYMMLQ</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>NSPFAC</td>
<td>28</td>
<td></td>
<td>TCHLIB</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>NSPIV</td>
<td>28, 114</td>
<td></td>
<td>TD02</td>
<td>94, 99*</td>
<td></td>
</tr>
<tr>
<td>NUMFAC</td>
<td>32, 49</td>
<td></td>
<td>TD03</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>92</td>
<td></td>
<td>TRACMN</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>92</td>
<td></td>
<td>TRANS</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>PCGPAK</td>
<td>64</td>
<td></td>
<td>TWODEPEP</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>PDE2D</td>
<td>120</td>
<td></td>
<td>URAND</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>PORT</td>
<td>29</td>
<td></td>
<td>VA08</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>PROD</td>
<td>5</td>
<td></td>
<td>VA14</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>PROFILE/S</td>
<td>56</td>
<td></td>
<td>VE05</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>PROFILE/U</td>
<td>40</td>
<td></td>
<td>VMSYST</td>
<td>20*, 80</td>
<td></td>
</tr>
<tr>
<td>RALAPACK</td>
<td>3</td>
<td></td>
<td>XERROR</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>RECTCF</td>
<td>118</td>
<td></td>
<td>XMP</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>RNCLIN</td>
<td>77</td>
<td></td>
<td>Y12M</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>RNRWIN</td>
<td>78</td>
<td></td>
<td>YSMP</td>
<td>48*, 108, 114</td>
<td></td>
</tr>
</tbody>
</table>