DISCOVERING HIDDEN TOTALLY LEONTIEF SUBSTITUTION SYSTEMS

BY

GEORGE B. DANTZIG

TECHNICAL REPORT SOL 77-17
JUNE 1977

Systems Optimization Laboratory
Department of Operations Research
Stanford University
Stanford California 94305
DISCOVERING HIDDEN TOTALLY LEONTIEF SUBSTITUTION SYSTEMS

by

George B. Dantzig

TECHNICAL REPORT SOL-77-17
June 1977

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
Stanford University
Stanford, California

Research and reproduction of this report were partially supported by the U.S. Energy Research and Development Administration Contract E(04-3)-326 PA #18; the Office of Naval Research Contracts N00014-75-C-0267 and N00014-75-C-0865; the National Science Foundation Grants MCS76-81259 and MCS76-22019.

Reproduction in whole or in part is permitted for any purposes of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.
DISCOVERING HIDDEN TOTALLY LEONTIEF SUBSTITUTION SYSTEMS

by

George B. Dantzig

A Totally Leontief Square System $L u = b$ is defined by the following properties:

(a) Every column of L has at most one positive element; $b > 0$; L is $m \times m$.

(b) $L u = b$ has a solution $u \geq 0$.

It is easy to see that every row of L has at least one positive element -- indeed there are exactly m positive elements, each in a different column. Other properties are: L is non-singular, $L^{-1} \geq 0$ and $L u = b$, $u L = c$ yields $u > 0$, $u > 0$ for all $b \geq 0$, $c > 0$. See [4].

A Totally Leontief Substitution System $A x = b$ is defined by the following properties:

(c) Every column $A(*,j)$ of A has at most one positive component; $b > 0$; A is $m \times n$.

(d) The linear program; Find Max z:

$$A x = b, \quad x \geq 0, \quad e x = z,$$

where $e = (1, 1, \ldots, 1)$, is feasible and Max z is finite.

*Arthur F. Veinott, Jr. has made several suggestions that are incorporated into the algorithm and proofs presented, see [7].
Other properties are that every column of \(A \) has exactly one positive element; every row of \(A \) has one or more positive elements; every subset of \(m \) columns with a positive element in each row forms a feasible basis. All basic feasible solutions are non-degenerate. Main references are [3], [7], [8], and [9].

Substitution Classes: Associated with any feasible basis \(B \) to a general linear program is the set \(S_i \) of column indices \(j \) such that \(A(*)_j \) if substituted for \(B(*)_i \) forms a feasible basis. \(S_i \) is non-empty for each \(i \) since it includes \(j: A(*)_j = B(*)_i \). In general \(S_i \) depends on \(B \). For the Leontief substitution case, however, it is independent of the choice of \(B \), since the substitution class \(S_i \) clearly consists of all \(j \) that have a positive element in the same row. It is convenient to have \(S_i \) correspond to all columns \(j \) whose positive element is in row \(i \). We shall refer to the latter as "row-standardized" substitution classes.

A system

\[
\tilde{A} x = \tilde{b}
\]

where \(\tilde{A} \) is \(m \times n \) is a "hidden" totally Leontief substitution system if there exists a nonsingular matrix \(R \) such that

\[
(R\tilde{A}) x = (R\tilde{b})
\]

is a totally Leontief substitution system.
The Problem. Given a linear system \(Ax = \bar{b} \) find a nonsingular matrix \(R \) if it exists such that \(RAx = RB \) is a totally Leontief substitution system.

Constructive Solution.

Step 1: Solve the linear program: Find \(\max z \)

(2) \[
\bar{A}x = \bar{b}, \quad x \geq 0, \quad ex = z \quad (\text{Max})
\]

Terminate if infeasible or unbounded, or if the optimal basic feasible solution is degenerate. Let \(\hat{B} \) be the optimal feasible basis.

Step 2: Determine substitution classes \(S_1, S_2, \ldots, S_m \) with respect to \(\hat{B} \). Terminate if there is ambiguity about which substitution class a column belongs to.

Step 3: For each \(i \), for \(i = (1, \ldots, m) \) determine multipliers \(R(i, *) \) such that

\[
R(i, *) \bar{A}(*, j) \geq 1, \quad \text{if } j \in S_i
\]

\[
\leq 0, \quad \text{if } j \notin S_i
\]

\[
R(i, *)\bar{b} \geq 1
\]

Terminate if for any \(i = (1, \ldots, m) \) the above linear inequality system is infeasible. If not terminate, the matrix \(R \) whose rows are \(R(i, *) \) is the solution.

Proof Step 1: If the original system (2) is infeasible or unbounded, i.e., an optimal solution of the linear program (2) fails to exist, then the same is true for every linear transform using non-singular \(R \), contradicting the existence of an \(R \) for (2) such that (d) holds.
Proof Step 2: The only way there can be difficulty in determining which columns an entering column replaces in the basis is the unbounded case (ruled out on Step 1) or there is a tie in the ratio test for selecting a pivot in the simplex method. The latter implies that the feasible basic feasible solution obtained after the substitution is degenerate. This is ruled out since all basic feasible solutions are non-degenerate in a Leontief substitution system.

Proof Step 3: Note that feasibility and the adjacency properties of feasible bases that differ by one column are invariant under non-singular linear transforms. After transformation by $R(i, \ast)$, assuming R exists, row i of RA should have $+$ components corresponding to substitution class S_k. We can permute the rows of R so that S_i corresponds to the "row standardized" substitution class associated with $R(i, \ast)$, namely $R(i, \ast)A(\ast, j) > 0$ for $j \in S_i$ and $R(i, \ast)A(\ast, j) \leq 0$ otherwise; we also have $R(i, \ast)b > 0$ for $i = (1, \ldots, m)$. Step III can be solved by applying Phase I of the simplex method to a linear program.
References

1. K.J. Arrow, Alternative proof of the substitution theorem for
Leontief models in the general case, in Activity Analysis of
Production and Allocation (T.C. Koopmans, ed.), Chapter 9,

2. G.B. Dantzig, Optimal solution of a dynamic Leontief model with

3. G.B. Dantzig, A proof of a property of Leontief and Markov
Matrices, Operations Research Center, University of California,

4. M. Fiedler and V. Ptak, On matrices with nonpositive off-diagonal
elements and positive principal minors, Czech. Math. J. 12 (1962),
382–400.

6. P. Wolfe and G.B. Dantzig, Linear programming in a Markov chain,

7. A.F. Veinott, Jr., Extreme points of Leontief substitution systems,
Linear Algebra and Its Applications 1, (1968), 181-194.

8. G.J. Koehler, A.B. Whinston, G.P. Wright, Optimization over
Leontief Substitution Systems, North-Holland, 1975, Chapter V,

9. R. Saigal, "On a Generalization of Leontief Substitution Systems,"
Working Paper No. CP-325, Center for Research in Management Science,
University of California, Berkeley, January 1971.
Discovering Hidden Totally Leontief Substitution Systems

In earlier work by R. Saigal, necessary and sufficient conditions were stated for the equivalence of a given linear program with a totally Leontief substitution system. In this paper, we present a constructive procedure for determining the existence and evaluating (when it does exist) the non-singular matrix that transforms the L.P. into a member of the substitution class.