Unusual Metalloporphyrins
Phosphorus Complexes of Tetraphenylporphine

by

Carl J. Carrano and Minoru Tsutsui

Prepared for Publication in the

Journal of Coordination Chemistry

Texas A&M University
Department of Chemistry
College Station, Texas 77843

January 1, 1977

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for Public Release; Distribution Unlimited.
Unusual Metalloporphyrins: Phosphorus Complexes of Tetraphenylporphine

Authors
Carl J. Carrano and Minoru Tsutsui

Performing Organization
Department of Chemistry, Texas A&M University, College Station, Texas 77843

Contract or Grant Number
N00014-74-A-0680-0006

Distribution Statement
Approved for Public Release, Distribution Unlimited

Abstract
The synthesis and spectral properties of several phosphorus complexes of tetraphenylporphine (TPP) are reported. The compounds appear to have the form \((\text{TPP})P(V)X^+Y^-\) as previously reported by Gouterman et al. for the analogous octaethylporphyrin (OEP) complexes. The electronic and nmr spectra show a striking dependence on the nature of the anionic ligand \(X\), which has not previously been reported and appears to be inconsistent with a symmetrical in-plane structure.
Unusual Metalloporphyrins.
Phosphorus Complexes of Tetraphenylporphine

by

Carl J. Carrano and Minoru Tsutsui*

Department of Chemistry, Texas A&M University
College Station, Texas 77843

Abstract: The synthesis and spectral properties of several phosphorus complexes of tetraphenylporphine (TPP) are reported. The compounds appear to have the form \((\text{TPP})P(V)X_2Y^-\) as previously reported by Gouterman et al. for the analogous octaethylporphyrin (OEP) complexes. The electronic and nmr spectra show a striking dependence on the nature of the anionic ligand \(X\), which has not previously been reported and appears to be inconsistent with a symmetrical in-plane structure.
Introduction:

Metalloporphyrin derivatives of the Group VA elements have recently been discovered.\(^1\) Phosphorus complexes, in particular, of octaethylporphyrin (OEP) have only just been reported.\(^2\) Independently we have prepared similar phosphorus complexes of tetraphenylporphine (TPP) that have shown some unexpected properties.

Interest in this class of porphyrins stems from the existence of two possible oxidation states, +\(\text{III}\) and +\(\text{V}\) for the central "metal". Recent evidence has shown that the valence +\(\text{V}\) species has the form \((P)\ M(\text{V})\ X_2^+Y^-\), where \((P)\) stands for a porphyrin, \(M\) for a group VA metal, \(K\) for an anionic ligand and \(Y\) for a non-ligand counter ion.\(^2\) Theory has predicted and experiments have shown that, for OEP at least, the complex should have a "normal" optical absorption spectra. The formation of what appears to be mixed complexes where the two anionic ligands \(X\) are different has resulted in some interesting spectroscopic properties which are reported herein.

Experimental Section:

Physical measurements: Infrared spectra were recorded on a Beckman IR-8 spectrometer as KBr pellets. Mass spectra were obtained on a CEC21-110B mass spectrometer operated at 70 eV. Par spectra were recorded in CDCl\(_3\) or \(d^6\)-DMSO either on a Varian T-60 or HA-100 nmr spectrometer using TMS as an internal standard. Electronic spectra were run on either a Cary-14 or Beckman 24 spectrophotometer using 1 cm cells.

Reaction of Tetraphenylporphine with POC\(_1\)_3

Into a 50 ml round bottom flask were placed 500 mg of tetraphenyl-
porphine (TPP) and 20 ml of reagent grade pyridine. Approximately 4 ml of POCl₃ were gradually added dropwise and the solution was refluxed for 24 hrs. The initially red solution turned a greenish-red and precipitated violet crystals. The reaction mixture was hydrolyzed by the dropwise addition of methanol until HCl evolution ceased. Additional methanol was added to bring the solution volume up to 40 ml. Dissolved HCl was removed by slight warming under reduced pressure. The solution was then filtered and 250 ml of acetone was added to the filtrate. On some occasions two layers were formed. The acetone solution was flash evaporated to yield the crude product. This was then chromatographed on basic alumina using benzene, chloroform and methanol as eluants. The benzene eluted a faint red fraction (TPP), the chloroform a dark red fraction (I), and the methanol a greenish-violet band which contained the bulk of product II. The solutions were evaporated to dryness and then fully dried at 100°C over P₂O₅ under vacuum. Only a small amount of product II was obtained and it was not fully characterized although a visible spectra was obtained. Product II analyzed to be TPP P(V) OHC1⁺ Cl⁻.

Calcd. for C₄₄H₂₉N₄Cl₂PO·3H₂O: C, 67.18; H, 4.61; N, 7.12; P, 3.93; Cl, 9.01.
Found: C, 67.83; H, 4.74; N, 7.24; P, 3.87; Cl, 9.35.

MW (ethanol), 342 (ionized) theoretical 732

λₘₐₓ(MeOH) 434 nm (280,000), 525 sh, 562 (17,000), 609 (6,000).
Pmr (CDCl₃) 2.40 ppm (s, H-D), 7.58 (s, p-H) 7.75 (s, m-H), 7.92 (s, o-H), 8.90 (d, β-H), 9.16 (d, β-H).

IR (KBr) 1070 cm⁻¹, 1033, 1019, 895, 793, 752, 698, 680.
Reaction of II with Aqueous Pyridine:

Compound \(II \) could be converted to a new complex \(III \) by heating with pyridine for approximately 30 min. The reaction was quite fast in aqueous pyridine and was very slow in dried distilled pyridine. A large quantity of \(III \) was prepared by taking \(II \) and allowing it to stand in aqueous pyridine for several days after heating. A quantity of acetone was added and the solution was concentrated by flash evaporation. Fine violet crystals precipitated from the solution. These were filtered off, washed with water and acetone, and dried. This proved to be the dihydroxy phosphorous (V) complex, \(\text{TPP P(V) (OH)}_2^+ \text{Cl}^- \). Calcd.

\[
\begin{align*}
C_{44}H_{30}N_4O_2PCl_\text{~5H}_2O & \quad \text{C}, 65.80; \quad H, 5.02; \quad N, 6.97; \quad P, 3.86; \quad Cl, 4.41; \\
\text{Found: C, 65.52; H, 4.27; N, 6.90; P, 4.29; Cl, 5.55.}
\end{align*}
\]

IR(KBr) 1070cm\(^{-1}\), 1032, 1010, 900, 790, 752, 700, 685.

Pmr (CDCl\(_3\)) 7.77ppm (m,m,p—H), 8.0 (m, o—H), 8.92 (d, s—H).

Results and Discussion:

Physical characterization: Both \(II \) and \(III \) could be precipitated from methanol solutions by the addition of aqueous sodium perchlorate. This strongly indicated that both could be formulated as cationic complexes. This was supported by the solution molecular weight data which suggested that \(II \) ionized in ethanol giving an apparent molecular weight approximately one half of the theoretical value.

The electronic spectra (Fig.1) of both \(II \) and \(III \) are consistent with a phosphorus (V) species in the plane of the porphyrin macrocycle.
Calculations by Gouterman et al. have shown that phosphorus (III) species are expected to be out of the porphyrin plane and to possess a "hyper" spectra. The phosphorus (V) species are apparently in plane and have a "normal" metalloporphyrin spectra. However, in the TPP complexes substitution of a chlorine for a hydroxyl ligand results in a 10 nm shift in the position of the Soret band. This is significantly more than the 4 nm shift observed by Gouterman in the presumed replacement of both hydroxyl ligands by fluoride ion. This may be a result of the change from formally D4h symmetry to C4v symmetry in going from \(\text{III} \) to \(\text{II} \).

The infrared spectra of both \(\text{II} \) and \(\text{III} \) are consistent with a phosphorus bound to a TPP macrocycle. The bands between 895-900 cm\(^{-1}\) are assigned as P-O stretching vibrations, based on analogy with other phosphorus complexes. The intensity of this band in \(\text{III} \) is approximately twice that in \(\text{II} \) as expected. In addition a shift in the three bands at 980 cm\(^{-1}\), 976 cm\(^{-1}\), and 962 cm\(^{-1}\) in TPP to 1070 cm\(^{-1}\), 1032 cm\(^{-1}\), and 1010 cm\(^{-1}\) in both \(\text{II} \) and \(\text{III} \) is consistent with "metal" insertion into the porphyrin ring. Broad weak OH bands are also observed at about 3400 cm\(^{-1}\).

NMR: The nmr spectra of \(\text{II} \) and \(\text{III} \) are most unexpected and deserve special comment. In CDCl\(_3\) \(\text{III} \) shows an unsymmetrical doublet-of-doublets for the \(\beta \)-pyrrole hydrogens at 8.90 ppm and 9.16 ppm in a ratio of 2:6. The peak centered at 9.16 ppm is split by 4.2 Hz and that at 8.9 ppm by 3.0 Hz. This splitting is apparently the \(^{31}\text{P} - ^{1}\text{H} \) coupling. Such coupling with the relatively remote \(\beta \) hydrogens is not unusual and indeed is expected. A variety of metalloporphyrins have been shown to have extensive coupling between a metal center and the \(\beta \)-hydrogens.

Freshly prepared \(\text{III} \) in CDCl\(_3\) shows only one doublet in the \(\beta \)-H
region of the nmr. It is centered at 8.92 ppm with $J(31\text{P}-1\text{H})$, 3.0 Hz. However, if III is allowed to stand in CDCl$_3$ for any period of time a new doublet centered at 9.16 ppm, $J(31\text{P}-1\text{H})$, 4.2 Hz, appears and gradually grows in intensity (Fig. 2). If this proceeds long enough, III is generated. Thus it appears that III either has the remarkable ability (shared with several other metalloporphyrins) to abstract a Cl$^-$ from the solvent or is undergoing intra- or inter-molecular ligand exchange. Compound III is stable indefinitely in d^6-DMSO and shows only a single doublet $J(31\text{P}-1\text{H})$ = 3.0 Hz, at 8.9 ppm.

In addition, while III shows the expected two multiplets for the O-H and the m, p-H (ratio 2:3) of the meso phenyl rings, III gives an unexpected triplet. The peaks at 7.58 ppm, 7.75 ppm, and 7.92 ppm are assigned as the para, meta, and ortho hydrogens respectively (ratios 1:2:2). These peaks appear as a single broad peak, unresolved on the T-60 but clearly resolved on the 100M Hz instrument. In a coordinating solvent such as DMSO, the two multiplets of the phenyl hydrogens in III collapse to form one broad single peak which is unresolvable on the T-60.

The nonequivalence of the β-hydrogens indicates that, in solution at least, the phosphorus may be asymmetrically coordinated to the porphyrin ring or may have an out-of-plane structure. This is further supported by the non-equivalence of the meta and para meso phenyl hydrogens. The fact that a change of solvent from non-coordinating CDCl$_3$ to coordinating DMSO changes the spectra indicates that the solvent plays a strong role in the solution structure of both II and III. This may be due to dimerization of II and III in chloroform solutions which can be reversed upon coordination by DMSO. The analysis of this phenomena is complicated by the apparent reaction of III in chlorinated
solvents. Further work in this area may help elucidate the structures of \(II \) and \(III \) in solution.

Chemistry

The same synthetic method that produced \(II \) and \(III \) also resulted in some unidentified products. \(III \) is prepared from \(II \) by reaction with water in pyridine as in equation 1.

\[
\text{TPP P(V)OHCl}^+ + \text{H}_2\text{O} \xrightarrow{\text{pyridine}} \text{TPP P(\dot{\text{V}})(OH)}_2^+ + \text{HCl}
\]

The pyridine scavenges the HCl produced and drives the reaction forward. If water instead of methanol is used to hydrolyze the initial reaction mixture the only isolatable product appears to be \(I \) although it has proven to be very difficult to purify.

\(I \) appears to be identical with \(III \) based on visible spectra and IR. Another product which appears identical to \(I \) in the visible spectra can also be isolated under some conditions. It has no band at 900 cm\(^{-1}\) in the IR and has a Cl/N indicative of 3-4 chlorines per mole of porphyrin. Its identity is unknown but may be the dichloro derivative of \(III \).

Both \(II \) and \(III \) proved to be extremely stable towards demetallation. Whereas the OEP complexes were demetallated by CH\(_2\)Cl\(_2\)/HCl the TPP complexes proved to be resistant. Indeed these compounds were not demetallated by 100% trifluoroacetic acid even after several hours. Both complexes appeared to be stable to the action of oxidizing agents such as H\(_2\)O\(_2\) (although gradual ring oxidation seems to occur), but not
to reducing agents. The two complexes could be demetallated without
decomposition by reduction with aqueous hydrazine. Treatment of ΛΛ or
ΛΛΛ with 64% aqueous NH₂NH₂ results in changes which are visible in the
electronic spectra. The complexes appear to pass through several
intermediates and within 48 hours are quantitatively demetallated forming
free TPP and an unidentified phosphorus species. Presumably the
phosphorus is reduced from P VΠP VΠΠΠ. Thallium (III) porphyrins also
show this susceptibility to reductive demetallation.8

It might be useful here to point out the rather substantial differ-
ences between the P(V) OEP complexes and those of TPP reported here.
1. Although all the complexes appear to be cationic, the TPP species
are completely insoluble in water.
2. The replacement of a hydroxyl ligand by a chloride ligand in the
TPP species results in a much greater shift to the red than in the analogous
OEP complexes.
3. While the OEP chelate shows the expected nmr pattern the various
TPP analogs show abnormal spectra with non-equivalence of the β-hydrogens.
4. No 31P-1H coupling is observed in the OEP derivatives.
5. Finally, the TPP compounds are much more stable towards de-
metallation than the OEP complexes. This is represented by the fact that
while the OEP chelate is demetallated rapidly by CH₂Cl₂/HCl the TPP
compound is stable toward 100% trifluoroacetic acid (TFA) for several
hours. The use of the stability index (S_I) predicts that P(V) should be
an extremely stable species in a porphyrin complex.4 Using values of r_I
(ionic radii) = 34 pm and EN (Pauling electronegativity) = 2.1 we find a
stability index of 30.88. Buchler has found reasonable agreement between this quantity and stability orders. Other group VA metals have stability indexes of 21.8 and 16.8 for As and Sb respectively. As porphyrin complexes, both of these have been found to belong to stability order I as described by Faulk.11 Since the S_4 for P(V) is even larger it not unexpectedly also falls into this class for the TPP complex. It is quite interesting to find that the OEP complex belongs to class III in variance with its calculated S_4. This may be due to an intrinsic thermal lability as the tervalent As, Sb and Bi OEP complexes are decomposed by heating to 60°C in solvent.8 There is no information available for the corresponding TPP compounds. It is difficult to assign a reason for the discrepancy between the TPP and OEP P (V) complexes but it may be related to the steric bulk of the meso phenyl rings, or the reduced basicity of the central nitrogen atoms relative to OEP.

Structure: An unambiguous structure for the P(V) porphyrin complexes has not yet been reported. The calculations of Gouterman et al. indicate an in plane structure with axial ligands.2 However, the unusual nmr spectra may be due to either a dimerization reaction of solvent effects on the conformation of the phenyl rings in solution.

We have succeeded in growing crystals of P(V) from aqueous solvents but such crystals do not diffract x-rays sufficiently for a crystal structure. However, we have grown crystals from non-aqueous solvents, and hopefully these will soon permit a crystal structure determination.
Acknowledgments:

We wish to acknowledge the Office of Naval Research for support of this work. We also wish to thank Mr. Chris Christensen (Dow Chemical Co.) for help in obtaining the HA-100 nmr spectra.
References

2) P. Sayer, M. Gouterman and C. R. Connell, private communication.

3) The complex apparently contains some unremoved chloride ion which results in a high chlorine analysis.

Figure Captions:

Figure 1. Absorption spectrum of \({\text{II}} \) (dihydroxy)(tetraphenylporphinato)-phosphorus (V) chloride in methanol.

Figure 2. T-60 nuclear magnetic resonance spectra of various phosphorus tetraphenylporphine chelates in CDCl\(_3\). (a) Freshly prepared \({\text{III}} \) (ratio of 8.9 ppm \(\delta \)-hydrogen peak to that of 9.16 is 8:0). (b) \({\text{III}} \) after several hours (ratio 6:2). (c) \({\text{II}} \) after 24 hours (ratio 4:4). (d) \({\text{II}} \) (ratio 2:6). The peak at about 7.2 ppm is residual CHCl\(_3\) from the deuterated solvent. Note also the collapse of the ortho and meta-para meso phenyl hydrogen peaks from two peaks in (a) to one broad peak in (d). The broad peak in (d) is resolvable on a 100 Mhz instrument and appears as a triplet (see text).