Investigation of Accelerated Methods for the Determination of Available Alkali in Pozzolans

Army Engineer Waterways Experiment Station Vicksburg Miss

Feb 74
BEST SELLERS
FROM NATIONAL TECHNICAL INFORMATION SERVICE

Product Liability Insurance: Assessment of Related Problems and Issues. Staff Study
PB-252 204/PAT 181 p PC$9.50/MFS$3.00

Evaluation of Home Solar Heating System
UCRL-51 711/PAT 154 p PC$6.75/MFS$3.00

Developing Noise Exposure Contours for General Aviation Airports
ADA-023 429/PAT 205 p PC$7.75/MFS$3.00

Cooling Tower Environment, 1974. Proceedings of a Symposium Held at the University of Maryland
Adult Education Center on Mar. 4-6, 1974
CONF-74 0302/PAT 648 p PC$13.60/MFS$3.00

Biological Services Program. Fiscal Year 1975
PB-251 738/PAT 52 p PC$4.50/MFS$3.00

An Atlas of Radiation Histopathology
TID-26-676/PAT 234 p PC$7.60/MFS$3.00

Federal Funding of Civilian Research and Development. Vol. 1. Summary
PB-251 266/PAT 61 p PC$4.50/MFS$3.00

Federal Funding of Civilian Research and Development. Vol. 2. Case Studies
PB-251 683/PAT 336 p PC$10.00/MFS$3.00

Handbook on Aerosols Through 1985
TID-26-608/PAT 141 p PC$1.00/MFS$3.00

for the Assessment of Ocean Outfalls
ADA-023 514/PAT 44 p PC$4.60/MFS$3.00

Guidelines for Documentation of Computer Programs and Automated Data Systems
PB-250 867/PAT 54 p PC$4.50/MFS$3.00

NOx Abatement for Stationary Sources in Japan
PB-250 586/PAT 116 p PC$5.50/MFS$3.00

U.S. Coal Resources and Reserves
PB-252 752/PAT 16 p PC$3.50/MFS$3.00

PB-252 416/PAT 169 p PC$3.60/MFS$0.00

Biological Services Program. Fiscal Year 1976
PB-251 416/PAT 70 p PC$4.50/MFS$3.00

An Atlas of Radiation Histopathology
TID-26-676/PAT 234 p PC$7.60/MFS$3.00

Federal Funding of Civilian Research and Development. Phase I Report
PB-249 344/PAT 223 p PC$7.75/MFS$3.00

Technical and Economic Study of an Underground Mining, Roodlibization, and In Situ Retorting System
PB-251 683/PAT 61 p PC$4.50/MFS$3.00

A Preliminary Forecast of Energy Consumption Through 1985
PB-251 445/PAT 697 p PC$4.50/MFS$3.00

HOW TO ORDER

When you indicate the method of payment, please note if a purchase order is not accompanied by payment, you will be billed an additional $5.00 ship and bill charge. Please include the card expiration date when using American Express.

Normal delivery time takes three to five weeks. It is vital that you order by number or your order will be manually filled, insuring a delay. You can opt for airmailed delivery for a $2.00 charge per item. Just check the Airmail Service box. If you're really pressed for time, call the NTIS Rush Order Service. (703) 557-4700. For a $10.00 charge per item, your order will be airmailed within 48 hours. Or, you can pick up, your order in the Washington Information Center & Bookstore or at our Springfield Operations Center within 24 hours for a $6.00 per item charge.

You may also place your order by telephone or TELEX. The order desk number is (703) 557-4650 and the TELEX number is 89-9405.

Whenever a foreign sales price is NOT specified in the listings, all foreign buyers must add the following charges to each order: $2.50 for each paper copy; $1.50 for each microfiche; and $10.00 for each published search. Thank you for your interest in NTIS. We appreciate your order.

METHOD OF PAYMENT

☐ Charge my NTIS deposit account no.
☐ Purchase order no.
☐ Check enclosed for $__________
☐ Charge to my American Express Card account number

Card expiration date________________________ Signature ____________________________

☐ Airmail Service requested

Clip and mail to:
National Technical Information Service
U.S. DEPARTMENT OF COMMERCE
Springfield, Va. 22161
(703) 557-4650 TELEX 89-9405

NTIS

All Prices Subject to Change

11/76

Enter Grand Total

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Copy</td>
<td>Microfiche</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub Total

Additional Charge

Enter Grand Total
INVESTIGATION OF ACCELERATED METHODS FOR THE DETERMINATION OF AVAILABLE ALKALI IN POZZOLANS

W. G. Miller

Sponsored by Office, Chief of Engineers, U. S. Army

Conducted by U. S. Army Engineer Waterways Experiment Station
Concrete Laboratory
Vicksburg, Mississippi

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
INVESTIGATION OF ACCELERATED METHODS FOR THE DETERMINATION OF AVAILABLE ALKALI IN POZZOLANS

The procedure specified in acceptance testing of pozzolan for the determination of the available alkali released by a pozzolan requires the lime-pozzolan paste to be stored for a period of 28 days prior to test. In order to investigate the possibility of reducing the storage time of the paste prior to test, six pozzolans were tested for an 'available alkali release rate' by subjecting the paste to three conditions of storage time and/or temperature. The three conditions were as follows: a. Condition 1, Standard Condition, 28 days at 28°C; b. Condition 2, seven days at 38°C; c. Condition 3, seven days at 65.5°C. The results of these tests are as follows: a. The highest available alkali values for all pozzolans were obtained under Storage Condition 1. b. All pozzolans, except calcined tuff, produced higher values for Condition 3 than for Condition 2. c. All pozzolans, except calcined tuff, produced available alkali values for Condition 3 that were in excess of two-thirds of the values produced for Condition 1. Results of this study indicate that if the available alkali value of a pozzolan is 1.0 percent or less when the paste is stored at 65.5°C for seven days, the maximum specification limit of 1.5 percent will not be exceeded when the pozzolan is evaluated by the present Standard Condition, 28 days at 38°C. In order to reduce the storage time of the lime-pozzolan paste to seven days, storage Condition 3 with a maximum limit of 1.0 percent available alkali is recommended as an optimal method for the acceptance testing of pozzolan.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lime Pozzolans Paste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pozzolans</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MISCELLANEOUS PAPER C-74-1

INVESTIGATION OF ACCELERATED METHODS FOR THE DETERMINATION OF AVAILABLE ALKALI IN POZZOLANS

by

W. G. Miller

February 1974

Sponsored by Office, Chief of Engineers, U. S. Army

Conducted by U. S. Army Engineer Waterways Experiment Station

Concrete Laboratory

Vicksburg, Mississippi

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
Foreword

The investigation reported herein was authorized by the Office, Chief of Engineers (OCE), by the first indorsement, dated 30 March 1970, to a letter from OCE to the U. S. Army Engineer Waterways Experiment Station (WES), dated 25 February 1970, subject: "Project Plan for Investigation of Accelerated Methods for the Determination of Available Alkali in Pozzolans."

The work was conducted by the Concrete Laboratory, WES, under the direction of Mr. Bryant Mather and under the supervision of Mr. R. V. Tye, Jr. This report was prepared by Mr. W. G. Miller.

E. D. Peixotto, CE, and COL G. H. Hilt, CE, were Directors of WES during the preparation and publication of the report. Mr. F. R. Brown was Technical Director.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>Summary</td>
<td>vii</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Purpose and Scope of Investigation</td>
<td>1</td>
</tr>
<tr>
<td>Materials and Test Methods</td>
<td>2</td>
</tr>
<tr>
<td>Presentation and Analyses of Test Results</td>
<td>3</td>
</tr>
<tr>
<td>Conclusions</td>
<td>5</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>6</td>
</tr>
<tr>
<td>Tables 1-3</td>
<td></td>
</tr>
</tbody>
</table>
Summary

The procedure specified in acceptance testing of pozzolans for the determination of the available alkali released by a pozzolan requires the lime-pozzolan paste to be stored for a period of 28 days prior to test. In order to investigate the possibility of reducing the storage time of the paste prior to test, six pozzolans were tested for available alkali release rate by subjecting the paste to three conditions of storage time and/or temperature. The three conditions were as follows:

a. Condition 1, Standard Condition, 28 days at 38 C.
b. Condition 2, seven days at 38 C.
c. Condition 3, seven days at 65.5 C.

The results of these tests are as follows:

a. The highest available alkali values for all pozzolans were obtained under Storage Condition 1.
b. All pozzolans, except calcined tuff, produced higher values for Condition 3 than for Condition 2.
c. All pozzolans, except calcined tuff, produced available alkali values for Condition 3 that were in excess of two-thirds of the values produced for Condition 1.

Results of this study indicate that if the available alkali value of a pozzolan is 1.0 percent or less when the paste is stored at 65.5 C for seven days, the maximum specification limit of 1.5 percent will not be exceeded when the pozzolan is evaluated by the present Standard Condition, 28 days at 38 C.

In order to reduce the storage time of the lime-pozzolan paste to seven days, storage Condition 3 with a maximum limit of 1.0 percent available alkali is recommended as an optional method for the acceptance testing of pozzolan.
INVESTIGATION OF ACCELERATED METHODS FOR THE DETERMINATION OF AVAILABLE ALKALI IN POZZOLANS

Background

1. The Corps of Engineers Standard Guide Specification for Concrete, CE 1401.01, requires the following conditions for release for shipment and approval for use of tested pozzolans: "Release for shipment and approval for use will be based on compliance with seven-day lime-pozzolan strength requirements and other physical and chemical and formity requirements for which test can be completed by the time the seven-day lime-pozzolan strength test is completed. Release for shipment and approval for use on the above basis will be contingent on continuing compliance with the other requirements of the specifications." The applicable portion of CRD-C 263, Corps of Engineers Method for Sampling and Testing Pozzolan for Use in Portland Cement Concrete, for the determination of available alkali requires 23 days storage of the lime-pozzolan paste. Under current shipping and construction practices, most tested pozzolan is incorporated in the project construction prior to the completion of the above test.

2. This investigation was conducted as part of the responsibility assigned to the Waterways Experiment Station (WES) for the technical surveillance of cement and pozzolan procurement acceptance testing function of the Corps of Engineers as outlined in ER 1110-1-8100.

Purpose and Scope of Investigation

3. The investigation reported herein was undertaken to determine the alkali release rate of pozzolans and was confined to the effect of
storage time and temperature conditions on the available alkali released by lime-pozzolan paste prepared with pozzolans meeting the requirements of CRD-C 262, Corps of Engineers Specifications for Pozzolan for Use in Portland Cement Concrete.

4. This report describes the materials tested, test methods used, results obtained, and conclusions derived therefrom.

Materials and Test Methods

Materials

5. **Pozzolans.** From the many pozzolans available for use, six (four natural and two fly ash) were selected and identified as follows:

a. Volcanic cinders (Vol C)
b. Calcined Keasey Shale (CK Sh)
c. Calcined Diatomaceous Shale (CD Sh)
d. Calcined Tuff (CT)
e. Fly Ash (FA I)
f. Fly Ash (FA II)

6. Each pozzolan was blended in a one-quart blender for four hours. Approximately 150 grams of each material was placed in a sealed jar and retained for chemical analysis and preparation of lime-pozzolan paste for determination of available alkali. The remaining portion was placed in a plastic bag, sealed, and retained for use in the preparation of physical test specimens.

7. **Lime.** The lime conformed with the requirements of ASTM Designation C6-49, "Standard Specifications for Normal Finishing Hydrated Lime."
8. **Cement.** The cement conformed with the requirements of CRD-C 200, "Federal Specification Cement, Portland."²

Test Methods

9. Tests conducted on each pozzolan were as follows:

 a. Evaluation of each material for compliance with the requirements of CRD-C 262.²

 b. Determination of the total acid soluble alkali in accordance with the procedure outlined in CRD-C 209, Method 1401.1 para 4.1.²

 c. Determination of water soluble alkali in accordance with the procedure outlined in ASTM C 114, "Chemical Analysis of Hydraulic Cement."³

 d. The available alkali of lime-pozzolan paste was determined in accordance with the procedure outlined in CRD-C 263. Three rounds of test were conducted, a round consisting of the determination of the available alkali of each lime-pozzolan paste after exposure to the following storage conditions:

 Condition 1, 28 days @ 38 C (Standard Condition)
 Condition 2, 14 days @ 38 C
 Condition 3, 7 days @ 65.5 C

Presentation and Analyses of Test Results

10. The results of tests for compliance with CRD-C 262, acid soluble alkali,* and water soluble alkali are shown in table 1. /n

 a. All the pozzolans, except the CK Sh and CT, met the requirements of CRD-C 262. The CK Sh and CT failed to comply with the minimum 75 percent of control for pozzolanic strength of cement-pozzolan mortar at 28 days.

 * The method used was that used for cement. In order to determine the total alkali content of a pozzolan, the material must be rendered soluble by fusion with ammonium chloride and calcium carbonate or some other appropriate material.
progress of the pozzolanic reaction or the additional exchange of calcium for potassium and sodium. At 65.5°C storage temperature the diffusion rates are more rapid and this is particularly true for the monovalent cations which have larger diffusion rates. Thus if the early calcium for potassium and sodium exchange takes place, the reverse exchange takes place to a more complete extent and less water-soluble alkali is available at seven days.

Conclusions

13. Most pozzolans that produce an available alkali content of less than 1.0 percent when stored under Condition 3 would be expected to meet the specification requirement of 1.5 percent maximum when stored under Condition 1. Method 3 allows the completion of the test for available alkali in seven days and is recommended as an optional method in the acceptance testing of fly ash pozzolans. Method 3 is also recommended as an optional method for testing natural pozzolans which have been shown not to contain a zeolite.
Literature Cited

2. U. S. Army Engineer Waterways Experiment Station, CE, Handbook for Concrete and Cement, August 1949 (with Quarterly Supplements), Vicksburg, Miss.

3. Department of the Army, Office, Chief of Engineers, ER 1110-1-8100, "Laboratory Investigation and Material Testing for Military and Civil Works Construction Projects."

TABLE 1

Results of Chemical Tests of Pozzolans, Percent

<table>
<thead>
<tr>
<th>Sample</th>
<th>Loss on Ignition</th>
<th>Moisture</th>
<th>SO₂</th>
<th>SiO₂</th>
<th>R₂O₃</th>
<th>SiO₂ + R₂O₃</th>
<th>CaO</th>
<th>MnO</th>
<th>Acid Sol. Alkali Total as Na₂O</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Water Sol. Alk. Total as Na₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. C</td>
<td>1.69</td>
<td>0.29</td>
<td>0.38</td>
<td>54.2</td>
<td>22.6</td>
<td>76.8</td>
<td>9.9</td>
<td>3.1</td>
<td>0.52</td>
<td>0.43</td>
<td>0.14</td>
<td>0.016</td>
</tr>
<tr>
<td>CK Sh</td>
<td>1.28</td>
<td>0.62</td>
<td>0.17</td>
<td>61.7</td>
<td>26.2</td>
<td>87.9</td>
<td>5.0</td>
<td>2.9</td>
<td>0.42</td>
<td>0.25</td>
<td>0.26</td>
<td>0.019</td>
</tr>
<tr>
<td>CD Sh</td>
<td>1.76</td>
<td>0.33</td>
<td>2.88</td>
<td>60.1</td>
<td>22.9</td>
<td>83.0</td>
<td>8.1</td>
<td>2.5</td>
<td>0.32</td>
<td>0.17</td>
<td>0.23</td>
<td>0.009</td>
</tr>
<tr>
<td>CT</td>
<td>2.11</td>
<td>1.99</td>
<td>0.04</td>
<td>71.3</td>
<td>16.2</td>
<td>87.5</td>
<td>3.1</td>
<td>0.2</td>
<td>1.89</td>
<td>0.44</td>
<td>2.20</td>
<td>0.032</td>
</tr>
<tr>
<td>FA I</td>
<td>3.56</td>
<td>0.13</td>
<td>0.85</td>
<td>51.3</td>
<td>35.6</td>
<td>86.9</td>
<td>2.9</td>
<td>1.3</td>
<td>0.17</td>
<td>0.07</td>
<td>0.15</td>
<td>0.012</td>
</tr>
<tr>
<td>FA II</td>
<td>1.38</td>
<td>0.13</td>
<td>2.02</td>
<td>49.3</td>
<td>38.4</td>
<td>87.7</td>
<td>7.3</td>
<td>1.1</td>
<td>0.45</td>
<td>0.28</td>
<td>0.26</td>
<td>0.063</td>
</tr>
</tbody>
</table>
TABLE 2

Results of Physical Tests of Pozzolans

<table>
<thead>
<tr>
<th>Sample</th>
<th>Specific Gravity</th>
<th>Fineness Sq cm/cc</th>
<th>Water-Req. Increase in Flow %</th>
<th>Lime-Pozz Strength, psi*</th>
<th>Soundness Autoclave Exp., %</th>
<th>Pozz Activity % of Control</th>
<th>Incr. in Drying Shrinkage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol C</td>
<td>2.71</td>
<td>20,135</td>
<td>32</td>
<td>1095</td>
<td>-0.01</td>
<td>86</td>
<td>0.004</td>
</tr>
<tr>
<td>CK Sh</td>
<td>2.52</td>
<td>24,075</td>
<td>3</td>
<td>1300</td>
<td>-0.02</td>
<td>74**</td>
<td>0.006</td>
</tr>
<tr>
<td>CD Sh</td>
<td>2.61</td>
<td>29,825</td>
<td>17</td>
<td>1830</td>
<td>-0.03</td>
<td>87</td>
<td>0.008</td>
</tr>
<tr>
<td>CT</td>
<td>2.34</td>
<td>28,190</td>
<td>8</td>
<td>930</td>
<td>0.02</td>
<td>73**</td>
<td>0.018</td>
</tr>
<tr>
<td>FA I</td>
<td>2.23</td>
<td>8,240</td>
<td>21</td>
<td>1330</td>
<td>0.01</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>FA II</td>
<td>2.52</td>
<td>7,935</td>
<td>23</td>
<td>1155</td>
<td>0.01</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

* psi x 0.006894757 = MPa
** Failed to meet the minimum requirement of 75 percent.
TABLE 3

Results of Tests for Available Alkali of Pozzolans

<table>
<thead>
<tr>
<th>Sample Symbol</th>
<th>Storage Conditions of Lime-Pozzolan Paste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Condition #1</td>
</tr>
<tr>
<td></td>
<td>28 days at 38 C</td>
</tr>
<tr>
<td></td>
<td>Av. % Std. Dev.</td>
</tr>
<tr>
<td>Vol C</td>
<td>1.43 0.065</td>
</tr>
<tr>
<td>CK Sh</td>
<td>0.57 0.035</td>
</tr>
<tr>
<td>CD Sh</td>
<td>0.73 0.035</td>
</tr>
<tr>
<td>CT</td>
<td>0.93 0.024</td>
</tr>
<tr>
<td>FA I</td>
<td>0.81 0.120</td>
</tr>
<tr>
<td>FA II</td>
<td>1.13 0.071</td>
</tr>
</tbody>
</table>
In accordance with 2R 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below.

Miller, William G
1 v. (various pagings) illus. 27 cm. (U. S. Waterways Experiment Station. Miscellaneous paper C-74-1)
Sponsored by Office, Chief of Engineers, U. S. Army.
Includes bibliography.

1. Acceptance tests. 2. Alkalies. 3. Lime-pozzolan pastes. 4. Pozzolans. 5. U. S. Army. Corps of Engineers. (Series: U. S. Waterways Experiment Station, Vicksburg, Miss. Miscellaneous paper C-74-1) TAY.434m no.C-74-1