UNCLASSIFIED

AD NUMBER

AD841866

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies and their contractors; Foreign Government Information; JUL 1968. Other requests shall be referred to Department of the Army, Fort Detrick, MD 21701.

AUTHORITY

SMUFD D/A ltr, 4 Feb 1972

THIS PAGE IS UNCLASSIFIED
DDC AVAILABILITY NOTICE

Reproduction of this publication in whole or in part is prohibited. However, DDC is authorized to reproduce the publication for United States Government purposes.

STATEMENT #2 UNCLASSIFIED

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Dept. of Army, Fort Detrick, ATTN: Technical Release Branch/TID, Frederick, Maryland 21701

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland
When one places in a tube a layer high enough of a solution rather concentrated of an antigen above a layer of homologous rabbit immune serum (1). We take for instance in this study the immune serum of the rabbit because its precipitation is not inhibited by an excess of antibodies, as is the case with horse antiproteids) previously gelled by means of gelatin or better agar, and, if one keeps this tube at a constant temperature, there appears in the layer of immune serum an opaque zone progressively more noticeable toward the top (inhibition by excess of antigens) (2). We present here only the first of these techniques that we have considered, the two others being: a, gelled antigen surmounted by a layer of immune serum; b, antigen and immune serum placed on either side of a column of gel; in the case of the ovallum ina and probably in the case of the mono dispersed antigens or haptens, this area is limited toward the bottom in a clear manner; in the case of the polye side or pneumococcus (type VIII), and probably in the case of the antigens or polydisperse haptens, the lower limit progressively diminishes.

This opaque area, whose opacity is a function of the richness of the layer with fewer antibodies, **maximally** shifts, and the relation of this shift \(h \) (easily measured when the lower limit is clear) with the square root of the time \(t \) appears constant in a quite satisfactory manner, in accordance with the law of Fick. The relation \(h/t \) increases, if without changing the other conditions of the experiment, the concentration of the antigen is increased or if the antibodies are diluted (3). There is a need to pin down the laws of these phenomena. The method will apply perhaps (alors?) to quantitative data concerning the diffusion of the antigens studied.) These phenomenon will permit, by comparison with the standards, a quantitative evaluation either of the antibodies or of the antigen of a precipitant system.

If one studies in one same tube the two separate precipitant systems as examples, respective homologous by mixing ovallumine and "polyoside" in the higher layer, and the two immune serums in the lower gelled layer, the two areas opaque areas each form by themselves and the would tube appears as to these layers, as the superposition of two separate proofs.

Further, when one uses, as an antigen in the higher layer, a biologically antigenic
the same biological liquid, if one observes in the lower layer many opaque areas, one
could conclude that the liquid being studied contained at least at many different anti-
genic substances as there were different opaque areas not found in the controls. While
studying in this manner the reaction of a normal horse serum with a mixture of serums of
rabbits immunized for a long time intravenously against the horse serum, we have observed,
in the lower layer of gelled antiserum, five opaque areas or, to state it better, five
clearly differentiated regions. A picture of them could be placed on a sensitive plate
if one used in place of a tube, a well (tank) with parallel sides. We will call these
areas for the time being from the faster to the slower: A, B, C, D, E; a careful examination
at different times of the tubes in which the concentration of the antiserum was varied,
would cause one to say that many of these opaque areas are not distinct units in themselves
("simple"), but result from the superposition or juxtaposition of more different (i.e., self-
contained) areas. These five opaque areas are subdivided thus: A, B1, B2, C1, C2, C3,
D, E. The horse serum under study contains then at least eight distinct antigenic sub-
stances (of which five or less are of more or less different specifications). These figures
are minimums, not so much because of the possibility that two opaque areas might be hidden
by each other, by because the very rare substances in the serum studied or the very weak
antigens are not manifested; they probably would increase by use of certain modification of
the technique or by the use of immune serums provided by other animals.

This method of analysis permits further the identification of the antigen responsible
for a given zone by means of an antigen contained in a more or less pure state in a portion
of the same biological liquid: 1) if one draws out the immune serum by an antigen contained
would in the portion, the opaque area caused by this antigen does not appear; 2) if one should
enrich the biological liquid by adding to it the portion in sufficient quantity, each opaque
area whose swiftness of progression is increased in relation to the control corresponds to
an antigen contained in this portion. The harmonious results of the two techniques have
shown us for example that, in the multiple precipitant system given above, area
A corresponds to an antigen contained in crystallised serum albumin.
The results of the enumerations obtained by this method, working only with very sensitive biological reactants, should be compared with those of already existing methods, such as ultra-centrifugation, ultrafiltration, electrophoresis, which furnish, by totally different means, an enumeration (differentiation) of the large molecule substances contained in a mixture.

At ... L.B.