NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; MAR 1967. Other requests shall be referred to Department of the Army, Fort Detrick, Attn: Technical Releases Branch, Frederick, MD 21701.

AUTHORITY
Army Biological Defense Research Lab ltr
dtd 28 Sep 1971

THIS PAGE IS UNCLASSIFIED
TECHNICAL MANUSCRIPT 356

INFLUENCE OF UNSATURATION
ON FIBRINOLYTIC ACTIVITY OF FATTY ACIDS

Michael J. Surgalla
Earl D. Beesley
Robert R. Brubaker

MARCH 1967

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Reproduction of this publication in whole or in part is prohibited except with permission of the Commanding Officer, Fort Detrick, ATTN: Technical Releases Branch, Technical Information Division, Fort Detrick, Frederick, Maryland, 21701. However, DDC is authorized to reproduce the publication for United States Government purposes.

DDC AVAILABILITY NOTICES

Qualified requesters may obtain copies of this publication from DDC.

Foreign announcement and dissemination of this publication by DDC is not authorized.

Release or announcement to the public is not authorized.

DISPOSITION INSTRUCTIONS

Destroy this publication when it is no longer needed. Do not return it to the originator.

The findings in this publication are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland 21701

TECHNICAL MANUSCRIPT 356

INFLUENCE OF UNSATURATION ON FIBRINOLYTIC ACTIVITY
OF FATTY ACIDS

Michael J. Surgalla
Earl D. Beesley
Robert R. Brubaker

Medical Bacteriology Division
BIOLOGICAL SCIENCES LABORATORY

Project 1C014501B71A

March 1967
INFLUENCE OF UNSATURATION ON FIBRINOLYTIC ACTIVITY OF FATTY ACIDS

ABSTRACT

Long-chain saturated fatty acids are known to accelerate blood clotting and artificial thrombus formation in vitro, and to produce massive thrombosis and death in dogs and mice. We have found that some long-chain fatty acids induce fibrinolytic activity on bovine fibrin films, with some indication that unsaturated acids were most active. Twofold dilutions of the potassium salts of fatty acids were tested in 0.02-ml amounts for ability to lyse unheated bovine fibrin films. An attempt was made to establish the influence of unsaturation and chain length on fibrinolytic activity. The presence of one unsaturated bond appears to make little difference in activity of C16 fatty acids. In C18 and C20 acids, it increases activity roughly tenfold. In C22 and C24 acids it increases activity more than 100-fold. A possible role of fatty acids in regulation of fibrin formation and digestion is suggested.

Long-chain fatty acids have been reported to accelerate blood clotting and artificial thrombus formation in vitro and to cause massive thrombosis and death in dogs. Unsaturated fatty acids are relatively inactive. We have found recently that long-chain fatty acids can induce fibrinolysis on fibrin plates, and in this case it appeared that the unsaturated acids were more active than the saturated. These preliminary findings are confirmed and extended here.

Fibrinolysis was assayed on a modified Astrup plate prepared in the following manner. Fibrin films were prepared by dissolving Armour bovine fibrinogen (2.5 mg/ml) and Parke, Davis bovine thrombin, topical (50 NIH units/ml) in sodium borate buffer pH 7.7. Fibrinogen solutions were sterilized by filtration and 10-ml volumes were added to 8.5-cm petri dishes. With the plates on a level surface, 0.5 ml of thrombin solution was added dropwise to the fibrinogen while the mixture was gently swirled to assure thorough distribution. Twofold dilutions of potassium salts of fatty acids were placed on fibrin films in 0.02-ml amounts. The lowest concentration that caused complete perforation of the fibrin film after incubation at 37°C for at least 4 hours was taken as the end point. Figure 1 shows the activity of twofold dilutions of sodium myristate. At concentrations of 20, 10, 5, 2.5, and 1.25 mM, 0.02-ml amounts placed on the fibrin film caused its complete perforation.
Saturated fatty acids having 16, 18, 20, 22, and 24 carbons were compared with acids with one unsaturated bond (Table 1).
TABLE 1. INFLUENCE OF UNSATURATION ON FIBRINOLYTIC ACTIVITY

<table>
<thead>
<tr>
<th>Active Concentration, mM</th>
<th>Test Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Palmitic C16:0</td>
<td>5</td>
</tr>
<tr>
<td>Palmitoleic C16:1</td>
<td>0.5</td>
</tr>
<tr>
<td>Stearic C18:0</td>
<td>0.6</td>
</tr>
<tr>
<td>Oleic C18:1</td>
<td>0.2</td>
</tr>
<tr>
<td>Elaidic C18:1</td>
<td>0.06</td>
</tr>
<tr>
<td>Arachidic C20:0</td>
<td>1</td>
</tr>
<tr>
<td>Eicosenoic C20:1</td>
<td>0.08</td>
</tr>
<tr>
<td>Behenic C22:0</td>
<td>>10</td>
</tr>
<tr>
<td>Erucic C22:1</td>
<td>0.03</td>
</tr>
<tr>
<td>Lignoceric C24:0</td>
<td>>10</td>
</tr>
<tr>
<td>Nervonic C24:1</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Palmitic and palmitoleic acids appear to be equally active. Presence of one unsaturated bond in C18 and C20 acids increases activity roughly tenfold. Presence of one unsaturated bond in C22 and C24 acids increases activity well over 100-fold.

The data in Table 2 suggest that although one unsaturated bond increases activity, polyunsaturation may decrease it. The fourth test of linoleic acid illustrates the frustrations encountered occasionally with the assay method.
Table 2. Influence of Polyunsaturation

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Active Concentration, mM</th>
<th>Test Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Oleic</td>
<td>C18:1</td>
<td>0.2</td>
</tr>
<tr>
<td>Elaidic</td>
<td>C18:1</td>
<td>0.06</td>
</tr>
<tr>
<td>Linoleic</td>
<td>C18:2</td>
<td>0.2</td>
</tr>
<tr>
<td>Linolenic</td>
<td>C18:3</td>
<td>0.1</td>
</tr>
<tr>
<td>Eicosenoic</td>
<td>C20:1</td>
<td>0.08</td>
</tr>
<tr>
<td>Arachidonic</td>
<td>C20:4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3 shows that saturated fatty acids of chain lengths 12 to 20 are fibrinolytic.

Table 3. Influence of Chain Length on Activity of Saturated Acids

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Active Concentration, mM</th>
<th>Test Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lauric</td>
<td>C12</td>
<td>5</td>
</tr>
<tr>
<td>Myristic</td>
<td>C14</td>
<td>1</td>
</tr>
<tr>
<td>Pentadecanoic</td>
<td>C15</td>
<td>1</td>
</tr>
<tr>
<td>Palmitic</td>
<td>C16</td>
<td>5</td>
</tr>
<tr>
<td>Stearic</td>
<td>C18</td>
<td>0.6</td>
</tr>
<tr>
<td>Nonadecanoic</td>
<td>C19</td>
<td>6</td>
</tr>
<tr>
<td>Arachidic</td>
<td>C20</td>
<td>1</td>
</tr>
<tr>
<td>Behenic</td>
<td>C22</td>
<td>>10</td>
</tr>
</tbody>
</table>
Gane et al. have suggested that plasminogen activator plays a role in preventing formation of thrombi because increased plasminogen activator occurs simultaneously with hypercoagulability following intravenous administration of endotoxin in dogs. Pig platelet aggregation induced by behenic acid is counteracted by linoleic or linolenic acids in vitro, and elevated thrombotic tendency (platelet adhesion) in human patients is reduced by ingestion of linolenic acid. Since fatty acids are non-fibrinolytic on fibrin films heated to destroy plasminogen, activation of plasminogen appears to be involved in fatty acid fibrinolytic activity. It appears, therefore, that attention should be given to the possible involvement of plasminogen activation in regulating early stages of thrombosis.
LITERATURE CITED

Influence of Unsaturation on Fibrinolytic Activity of Fatty Acids

Long-chain saturated fatty acids are known to accelerate blood clotting and artificial thrombus formation in vitro, and to produce massive thrombosis and death in dogs and mice. We have found that some long-chain fatty acids induce fibrinolytic activity on bovine fibrin films, with some indication that unsaturated acids were most active. Twofold dilutions of the potassium salts of fatty acids were tested in 0.02-ml amounts for ability to lyse unheated bovine fibrin films. An attempt was made to establish the influence of unsaturation and chain length on fibrinolytic activity. The presence of one unsaturated bond appears to make little difference in activity of C16 fatty acids. In C18 and C20 acids, it increases activity roughly tenfold. In C22 and C24 acids it increases activity more than 100-fold. A possible role of fatty acids in regulation of fibrin formation and digestion is suggested.

Key Words

- Fatty acids
- Fibrinolysis
- Unsaturated
- Fibrin
<table>
<thead>
<tr>
<th>ADDRESSEE</th>
<th>NUMBER OF COPIES</th>
<th>ADDRRESSEE</th>
<th>NUMBER OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Director</td>
<td>1</td>
<td>Chief, Product Development Division</td>
<td>1</td>
</tr>
<tr>
<td>Building 812</td>
<td></td>
<td>Building 469</td>
<td></td>
</tr>
<tr>
<td>Chief, Plans and Readiness Operations Office</td>
<td>1</td>
<td>Commanding Officer</td>
<td>1</td>
</tr>
<tr>
<td>Building 812</td>
<td></td>
<td>U.S. Army Pine Bluff Arsenal</td>
<td></td>
</tr>
<tr>
<td>Director, Biological Sciences Laboratory</td>
<td>1</td>
<td>ATTN: Director, Biological Operations</td>
<td></td>
</tr>
<tr>
<td>Building 560</td>
<td></td>
<td>Pine Bluff, Arkansas 71601</td>
<td></td>
</tr>
<tr>
<td>Chief, Physical Science Division</td>
<td>2</td>
<td>Liaison Representative</td>
<td>1</td>
</tr>
<tr>
<td>Building 568</td>
<td></td>
<td>Animal Disease Investigations</td>
<td></td>
</tr>
<tr>
<td>Chief, Virus and Rickettsia Division</td>
<td>1</td>
<td>Building 1301</td>
<td>12</td>
</tr>
<tr>
<td>Building 539</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief, Medical Investigation Division</td>
<td>1</td>
<td>Commanding Officer</td>
<td>3</td>
</tr>
<tr>
<td>Building 604</td>
<td></td>
<td>U.S. Naval Unit</td>
<td></td>
</tr>
<tr>
<td>Chief, Applied Aerobiology Division</td>
<td>1</td>
<td>Building 125</td>
<td>1</td>
</tr>
<tr>
<td>Building 568</td>
<td></td>
<td>U.S. Army Medical Unit</td>
<td></td>
</tr>
<tr>
<td>Chief, Test Sphere Branch</td>
<td>1</td>
<td>Director</td>
<td>1</td>
</tr>
<tr>
<td>Applied Aerobiology Division</td>
<td></td>
<td>U.S. Army Munitions Command Operations Group</td>
<td></td>
</tr>
<tr>
<td>Building 568</td>
<td></td>
<td>Edgewood Arsenal, Maryland 21010</td>
<td></td>
</tr>
<tr>
<td>Chief, Test Chamber Branch</td>
<td>1</td>
<td>Commanding Officer</td>
<td>2</td>
</tr>
<tr>
<td>Applied Aerobiology Division</td>
<td></td>
<td>U.S. Army Edgewood Arsenal</td>
<td></td>
</tr>
<tr>
<td>Building 1412</td>
<td></td>
<td>ATTN: SMUEA-TSTI (3)</td>
<td></td>
</tr>
<tr>
<td>Chief, Environmental Analysis Office</td>
<td>1</td>
<td>Edgewood Arsenal, Maryland 21010</td>
<td></td>
</tr>
<tr>
<td>Building 568</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief, Biomathematics Division</td>
<td>1</td>
<td>Commanding General</td>
<td>1</td>
</tr>
<tr>
<td>Building 1422</td>
<td></td>
<td>U.S. Army Munitions Command</td>
<td></td>
</tr>
<tr>
<td>Chief, Editorial Branch</td>
<td>1</td>
<td>ATTN: AMSMU-SS-CS</td>
<td></td>
</tr>
<tr>
<td>Technical Information Division</td>
<td></td>
<td>Dover, New Jersey 07801</td>
<td></td>
</tr>
<tr>
<td>Building 816</td>
<td></td>
<td>Commanding General</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Technical Library Branch</td>
<td>2</td>
<td>U.S. Army Munitions Command</td>
<td></td>
</tr>
<tr>
<td>Technical Information Division</td>
<td></td>
<td>ATTN: AMSMU-AE-RR</td>
<td></td>
</tr>
<tr>
<td>Building 426</td>
<td></td>
<td>Dover, New Jersey 07801</td>
<td></td>
</tr>
<tr>
<td>Chief, Technical Releases Branch</td>
<td>10</td>
<td>Commanding Officer</td>
<td>1</td>
</tr>
<tr>
<td>Technical Information Division</td>
<td></td>
<td>U.S. Army Dugway Proving Ground</td>
<td></td>
</tr>
<tr>
<td>Building 426</td>
<td></td>
<td>ATTN: Tech Plans & Evaluation</td>
<td></td>
</tr>
<tr>
<td>Chief, Process Development Division</td>
<td>1</td>
<td>Tech Info Division</td>
<td></td>
</tr>
<tr>
<td>Building 469</td>
<td></td>
<td>Dugway, Utah 84022</td>
<td></td>
</tr>
<tr>
<td>ADDRESSEE</td>
<td>NUMBER OF COPIES</td>
<td>ADDRESSEE</td>
<td>NUMBER OF COPIES</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Commanding General</td>
<td>2</td>
<td>Munitions/ TW</td>
<td>3</td>
</tr>
<tr>
<td>Deseret Test Center</td>
<td></td>
<td>Defence Research Staff</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
<td>British Embassy</td>
<td></td>
</tr>
<tr>
<td>Fort Douglas, Utah 84113</td>
<td></td>
<td>3100 Massachusetts Avenue, N.W.</td>
<td></td>
</tr>
<tr>
<td>Commanding General</td>
<td>1</td>
<td>Washington 8, D.C.</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Materiel Command</td>
<td></td>
<td>Canadian Liaison Office (CBR)</td>
<td>3</td>
</tr>
<tr>
<td>ATTN: AMCRC-RC</td>
<td></td>
<td>Building 5101</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20315</td>
<td></td>
<td>Edgewood Arsenal, Maryland 21010</td>
<td></td>
</tr>
<tr>
<td>Defense Documentation Center</td>
<td>20</td>
<td>Australian Embassy</td>
<td>2</td>
</tr>
<tr>
<td>Cameron Station Alexandria, Virginia 22314</td>
<td></td>
<td>ATTN: Lt. Col. Tonkin</td>
<td></td>
</tr>
<tr>
<td>Detachment 4, RTD (ATCB)</td>
<td>1</td>
<td>Australian Army Staff (W)</td>
<td></td>
</tr>
<tr>
<td>Eglin AFB, Florida 32542</td>
<td></td>
<td>2001 Connecticut Avenue, N.W.</td>
<td></td>
</tr>
<tr>
<td>APCG(PCPBPS-12)</td>
<td>1</td>
<td>Washington 7, D.C.</td>
<td></td>
</tr>
<tr>
<td>Eglin AFB, Florida 32542</td>
<td></td>
<td>University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>USAF EL</td>
<td>1</td>
<td>Institute for Cooperative Research</td>
<td></td>
</tr>
<tr>
<td>Lackland AFB, Texas 78236</td>
<td></td>
<td>Project Summit</td>
<td></td>
</tr>
<tr>
<td>Scientific Director</td>
<td>1</td>
<td>3634 Walnut Street</td>
<td></td>
</tr>
<tr>
<td>Naval Biological Laboratory</td>
<td></td>
<td>Philadelphia, Pennsylvania 19104</td>
<td></td>
</tr>
<tr>
<td>Naval Supply Center</td>
<td></td>
<td>University of Pennsylvania Reference Center</td>
<td></td>
</tr>
<tr>
<td>Oakland, California 94614</td>
<td></td>
<td>P.O. Box 1867</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer and Director</td>
<td>1</td>
<td>Eglin AFB, Florida 32542</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Applied Science Laboratory</td>
<td></td>
<td>Oak Ridge National Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 9440</td>
<td></td>
<td>ATTN: Librarian, Civil Defense Group</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Base, Brooklyn, N.Y. 11251</td>
<td></td>
<td>Oak Ridge, Tennessee 37831</td>
<td></td>
</tr>
<tr>
<td>Medical Director</td>
<td>2</td>
<td>Chief, Medical Bacteriology Division</td>
<td>10</td>
</tr>
<tr>
<td>Naval Ammunition Depot</td>
<td></td>
<td>Building 560</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Standardization Group - Canada</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office, Senior Standardization Rep.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c/o Director of Equipment Policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadian Army Headquarters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottawa 4, Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>