THE EFFECT OF INTRINSIC AND EXTRINSIC REINFORCEMENT CONTINGENCIES ON LEARNER PERFORMANCE

HOWARD J. SULLIVAN
ROBERT L. BAKER
RICHARD E. SCHUTZ
ARIZONA STATE UNIVERSITY

SEPTEMBER 1966

Distribution of this document is unlimited

AEROSPACE MEDICAL RESEARCH LABORATORIES
AEROSPACE MEDICAL DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO
NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Requests for copies of this report should be directed to either of the addressees listed below, as applicable:

Federal Government agencies and their contractors registered with Defense Documentation Center (DDC):

DDC
Cameron Station
Alexandria, Virginia 22314

Non-DDC users (stock quantities are available for sale from):

Chief, Storage and Dissemination Section
Clearinghouse for Federal Scientific & Technical Information (CFSTI)
Sills Building
5285 Port Royal Road
Springfield, Virginia 22151

Organizations and individuals receiving reports via the Aerospace Medical Research Laboratories' automatic mailing lists should submit the addressograph plate stamp on the report envelope or refer to the code number when corresponding about change of address or cancellation.

Do not return this copy. Retain or destroy.
THE EFFECT OF INTRINSIC AND EXTRINSIC REINFORCEMENT CONTINGENCIES ON LEARNER PERFORMANCE

HOWARD J. SULLIVAN
ROBERT L. BAKER
RICHARD E. SCHUTZ

Distribution of this document is unlimited
FOREWORD

This report represents a portion of the exploratory development program of the Technical Training Branch, Training Research Division of the Behavioral Sciences Laboratory. The effort was documented under Project 1710, "Human Factors in the Design of Training Systems," 171007, "Automated Training and Programmed Instruction." Dr. Gordon A. Eckstrand was Project Scientist and Dr. Ross L. Morgan was Task Scientist. The report represents a portion of the effort under Contract AF 33 (615)-1507 with the Arizona State University, Tempe, Arizona. Principal Investigators under the contract were Dr. Robert L. Baker and Dr. Richard E. Schutz. The contract was initiated by Dr. John S. Abma. Dr. Ross L. Morgan served as the Air Force technical monitor during most of the period of the contract. The research was initiated in February, 1964, and completed in February, 1966.

Included among the many contributors to this research were:

- Air Force Reserve Officers' Training Corps
- Lt. Col. Robert W. Edwards, Commanding Officer
- Arizona State University

Robert J. Berger
Everett E. Davis
Beverly Y. Kooi
Research Assistants
Arizona State University

This technical report has been reviewed and is approved.

WALTER F. GREther, Ph.D.
Technical Director
Behavioral Sciences Laboratory
Aerospace Medical Research Laboratories
Seventy-six AFROTC Cadets studied a revised version of the text, *The Military Justice System*, for four 50-minute class periods distributed over 2 weeks. Unit-mastery tests of about 12 multiple-choice items each were administered at 11 points throughout the text. Half of the subjects (Cadets) received no knowledge of the correctness of their responses on the unit-mastery test. The other half of the subjects used chemically treated answer sheets which immediately indicated whether or not the subject's answer was correct. A 100-item multiple-choice test over the text was administered to all subjects 2 days after the final instruction period. All subjects had been informed of the final test. Half of the subjects in each of the above groups had been assured payment of $2.50 for participation in the study. Each student in the other half had been told that he would receive $4.00 if he scored 80% or higher on the final test, $2.00 if he scored from 50 to 79% and nothing if he scored below 50%. Compared with other subjects, students using the chemically treated answer sheets completed the study of the text in less time and appeared to depend on the mastery tests for additional instruction. They performed significantly poorer on the unit-mastery tests. On the final criterion test, however, none of the groups differed significantly. Rather complex factors must be considered in specifying the optimal conditions of reinforcement and incentives.
SECTION I
INTRODUCTION

The facilitating effect of reinforcement on student learning is well recognized. Yet, in studies of applied learning the term "reinforcement" frequently has been used to describe a variety of stimulus conditions without specifying the possible differential effects related to these diverse conditions. For example, in many studies knowledge of results for student responses to enroute test items over the instructional materials has been treated as reinforcement. Reinforcement in these studies is a condition that is intrinsic to (i.e., built into) the learning materials. In other studies reinforcement is a stimulus condition extrinsic to the learning materials. Here, the presentation of reinforcement is contingent upon level of performance on the instructional material, but the reinforcement is not a condition built directly into the material. Gold stars, course grades, and special awards for performance serve as examples of extrinsic reinforcement.

The present study sought to investigate the effects of both intrinsic and extrinsic reinforcement on student performance when both conditions were employed in the same instructional program. The intrinsic reinforcement condition included variations in the knowledge of results provided for student responses to sets of mastery items inserted at various points in the instructional material. The extrinsic reinforcement condition consisted of variations in the amount of money that could be earned by subjects for acceptable performance on a final criterion test over the material.

SECTION II
METHOD

Subjects. The subjects were 76 Air Force Reserve Officers Training Corps cadets who were second semester freshmen enrolled in the AFROTC program at Arizona State University. Subjects were selected at random from among approximately 100 cadets who volunteered to participate in the experiment during the time when they normally attended AFROTC classes and drill periods.

Design. The study employed a 2x2 factorial design. The variations in intrinsic reinforcement conditions served as one factor in the design. The variations in extrinsic conditions served as the second factor.
Procedures. Subjects attended four 50-minute class periods on a twice-a-week basis to read the instructional material and answer the mastery items. Each subject was randomly assigned either to a room in which knowledge of results was provided for responses to mastery items or to a room in which no knowledge of results was provided. The extrinsic reinforcement conditions were randomized within both the "feedback" and "no feedback" rooms. Printed instructions explaining the appropriate extrinsic reinforcement contingency and specifying the time schedule for the experiment were given to each subject at the beginning of the first class meeting. The final criterion test was administered to all subjects at a fifth session 2 days after the final instruction period.

Subjects read the instructional material and responded to the mastery tests at their own pace. The "feedback" group received immediate feedback on their responses to each mastery item as a function of chemically treated answer blanks. Individuals in this group used special pens to mark their responses to the mastery items. When the subject marked the correct response blank, the blank turned red; when he marked an incorrect blank, it turned yellow. Subjects in this group were told that if their first response to an item was incorrect, they were to continue responding to the item until they answered it correctly. The "no feedback" group received no knowledge of results on their responses to the mastery items.

Two levels of extrinsic reinforcement were included in the study. Instructions for subjects under the Contingent Reinforcement condition stated that the subject would be paid $4.00 if he scored 80% or higher on the final test over the instructional material, $2.00 if he scored from 50 to 79%, and nothing if he scored below 50%. Individuals in the Assured Reinforcement group stated that there would be a final test over the instructional material, but the instructions did not relate the test to the $2.50 in any way. Thus, no extrinsic reinforcement based upon level of performance on the criterion test was available to the Assured Reinforcement group.

Materials. The textual material used in the experiment was a revised edition of the Air Force manual, The Military Justice System (AFROTC, 1962). This text was originally selected for revision because it included sufficient concept complexity and developmental continuity directly applicable to Air Force and ROTC curriculum. After subjecting the original version of the text to a logical analysis of objectives, a final list of 69 specific behavioral objectives was compiled. The Instructional Specification strategy (Schutz, Baker, and Gerlach, 1964; Schutz, Baker, Sullivan, and Gerlach, 1966) was then employed to specify the stimulus conditions required for the attainment of these objectives. The materials were revised on the basis of these specified conditions, item analyses of the performance of cadets from earlier studies on the final criterion test, analyses of interview data from individual cadets
who had read the materials, and application of the gap and mastery principles of programed instruction (Silberman, 1964).

A set of 131 mastery items was developed pertaining to the behavioral objectives specified for the instructional materials. These items were grouped into eleven unit-mastery tests and inserted at appropriate points in the 60-page revised text. Each mastery test contained items covering only the material from the section of the text immediately preceding the test. Determination of the place in the text where each mastery test was inserted was a function of optimum length or logical determination of appropriate homogeneous blocks of content.

A final criterion test of 100 three- and four-choice multiple-choice items was developed from an original pool of 200 items. Only items with a difficulty index of .75 or lower for a sample of 50 subjects who had read the original text were included in the final 100-item test. The reliability coefficient for the criterion test, computed by the KR-20 formula on a sample of 76 subjects who had read the revised text, was .86.

SECTION III
RESULTS

The mean score for each group on the 100-item criterion test is shown in Table I. It is apparent from the table that the Contingent Reinforcement group scored slightly more than three points higher than the Assured Reinforcement group. However, as shown in Table II, none of the F-ratios for criterion-test performance was statistically significant.

Analyses of performance on the mastery tests, however, did reveal important differences between the treatment groups. Only 3 of the 38 subjects in the "feedback" group failed to complete all 11 mastery tests during the four periods of the instructional program. In the "no feedback" treatment, however, 15 of the 38 individuals completed only 10 or fewer tests and failed to reach the final mastery test. Clearly, the "no feedback" group was spending more time studying either the textual material or the mastery items than was the "feedback" group.

Descriptive statistics relating to the mean standard score on unit-mastery tests completed by each subject are shown in Table III. Since data on mastery-test scores were not available on 4 subjects from the contingent-reinforcement-plus-feedback cell when the statistical analyses were performed, these subjects were assigned the computed mean
standard score for their cell on mastery-test performance. This accounts for the slight variation of the grand mean score (49.85) from a grand mean of 50.00. The results of the analysis of variance on these data are presented in Table IV.

The data in Tables III and IV reveal that the "no feedback" subjects performed considerably better on the mastery items than did the "feedback" subjects. The mean standard score for mastery-test performance is 5.52 standard score points higher for the "no feedback" group. This effect is significant at the .001 level of significance. Neither the extrinsic reinforcement contingency effect nor the interaction between intrinsic and extrinsic reinforcement approached statistical significance.

Table I

CRITERION TEST MEAN SCORES

<table>
<thead>
<tr>
<th>Extrinsic Reinforcement</th>
<th>Intrinsic Reinforcement</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feedback</td>
<td>No Feedback</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Score</td>
</tr>
<tr>
<td>Contingent ($4 - $2 -0)</td>
<td>19</td>
<td>61.37</td>
</tr>
<tr>
<td>Assured ($2.50)</td>
<td>19</td>
<td>57.00</td>
</tr>
<tr>
<td>Totals</td>
<td>38</td>
<td>59.18</td>
</tr>
</tbody>
</table>

Table II

ANALYSIS OF VARIANCE FOR CRITERION TEST SCORES

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrinsic</td>
<td>1</td>
<td>174</td>
<td>174</td>
<td>2.69</td>
</tr>
<tr>
<td>Intrinsic</td>
<td>1</td>
<td>32</td>
<td>32</td>
<td>.50</td>
</tr>
<tr>
<td>E x I</td>
<td>1</td>
<td>34</td>
<td>34</td>
<td>.53</td>
</tr>
<tr>
<td>Within</td>
<td>72</td>
<td>4653</td>
<td>64.6</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>75</td>
<td>4893</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table III

MASTERY TEST MEAN STANDARD SCORES

<table>
<thead>
<tr>
<th>Extrinsic Reinforcement</th>
<th>Intrinsic Reinforcement</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feedback</td>
<td>No Feedback</td>
</tr>
<tr>
<td></td>
<td>N Standard Score</td>
<td>N Standard Score</td>
</tr>
<tr>
<td>Contingent</td>
<td>19 47.10</td>
<td>19 53.24</td>
</tr>
<tr>
<td>Assured</td>
<td>19 47.07</td>
<td>19 51.97</td>
</tr>
<tr>
<td>Totals</td>
<td>38 47.09</td>
<td>38 52.61</td>
</tr>
</tbody>
</table>

Table IV

ANALYSIS OF VARIANCE FOR MASTERY TEST PERFORMANCE

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrinsic</td>
<td>1</td>
<td>8.08</td>
<td>8.08</td>
<td>.31</td>
</tr>
<tr>
<td>Intrinsic</td>
<td>1</td>
<td>577.94</td>
<td>577.94</td>
<td>22.08*</td>
</tr>
<tr>
<td>E x I</td>
<td>1</td>
<td>7.40</td>
<td>7.40</td>
<td>.28</td>
</tr>
<tr>
<td>Within</td>
<td>72</td>
<td>1884.07</td>
<td>26.17</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>75</td>
<td>2477.49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < .001
SECTION IV

DISCUSSION

The results of the study suggest that there were important differences between the "feedback" and "no feedback" treatment groups in the strategies that they employed to learn the instructional material. The better performance of the "no feedback" group on the mastery tests and the failure of 15 subjects from this group to finish the instructional program indicate that the "no feedback" subjects expended more time and effort attempting to learn from the prose textual material. For these individuals, of course, this is the only instructional material in the text. The "feedback" subjects, on the other hand, apparently neglected the textual material to some degree and used the instructional value of the immediate feedback to their mastery-item responses. Such a procedure would account for their greater speed in working through the textual material and their inferior performance on the mastery items. That the "feedback" subjects were successful in learning from the immediate feedback to their mastery-test responses is demonstrated by their subsequent performance on the criterion test. This criterion-test performance was comparable to that of the "no feedback" group, even though their mastery-test performance was significantly inferior.

An interesting phenomenon to note here is the apparent sensitivity of the learner to subtle procedural cues implicit in the instructional material. For example, one might predict that both the "feedback" and "no feedback" groups would study equally hard on the textual material and that no difference would occur in mastery-test performance between the two groups. Since feedback is not received until after the learner responds to a mastery item, one would expect that on subsequent items over the same material (e.g., the criterion test) the feedback would result in an advantage for the individuals receiving it. However, it appears that "feedback" subjects quickly observe that they need not labor over the textual materials to learn the material to be covered on the criterion test. Where individuals in the "no feedback" group may choose to look on the preceding pages for the correct answer to a puzzling mastery item, a subject in the "feedback" group can employ the easier and simpler expedient of marking in succession his highest-order response choice until the feedback indicates a correct response.

How can one capitalize upon the advantages of the intrinsic reinforcement involved in the immediate feedback procedure on the mastery items while at the same time maintaining the control of the textual material over the reader's learning? One possible procedure would be to provide the learner with extrinsic reinforcement for acceptable performance on the mastery items, as well as for acceptable performance on the criterion test. Thus, performance of the "feedback" subjects on the mastery tests should be improved because of the extrinsic reinforcement associated with good mastery performance. The immediate feedback on these items should still serve to facilitate subsequent performance on the criterion test.
A final word should be said concerning the effect of extrinsic reinforcement in using instructional materials. The differences in the levels of the monetary reinforcement contingency employed in the present study were not of sufficient strength to significantly affect student performance. However, there is little doubt that extrinsic reinforcement is required in the learning task to maintain control of the instructional material over student responses. In the military setting such reinforcers as passes, coffee or cigarette breaks, and preferential assignments may be employed to develop and maintain desired learner responses to learning materials. The use of these and other available reinforcers by the military instructor is an essential technique for maximizing the effectiveness of instructional materials. No matter how excellent the quality of the material, the student will not learn it well unless he is provided with an incentive for doing so.

REFERENCES

Seventy-six AFROTC Cadets studied a revised version of the text, *The Military Justice System*, for four 50-minute class periods distributed over 2 weeks. Unit-mastery tests of about 12 multiple-choice items each were administered at 11 points throughout the text. Half of the subjects (Cadets) received no knowledge of the correctness of their responses on the unit-mastery test. The other half of the subjects used chemically treated answer sheets which immediately indicated whether or not the subject’s answer was correct. A 100-item multiple-choice test over the text was administered to all subjects 2 days after the final instruction period. All subjects had been informed of the final test. Half of the subjects in each of the above groups had been assured payment of $2.50 for participation in the study. Each student in the other half had been told that he would receive $4.00 if he scored 80% or higher on the final test, $2.00 if he scored from 50 to 79% and nothing if he scored below 50%. Compared with other subjects using the chemically treated answer sheets completed the study of the text in less time and appeared to depend on the mastery test for additional instruction. They performed significantly poorer on the Unit-Mastery tests. On the final criterion test, however, none of the groups differed significantly. Rather complex factors must be considered in specifying the optimal conditions of reinforcement and incentives.
1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ______________________."

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ______________________."

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through ______________________."

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.