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1 Summary 
 
Development of the equations to predict the species (H + , CH 3 OH, H 2 O) molar fluxes 

and ionic current density through the PEM of a DMFC is described.  In the Transport Set 

I section of this report, the equations are based on the extension of moderately dilute 

solution theory.  These equations involve the Fick’s law type diffusivities that are 

strongly dependent on the species concentrations.  In the Transport Sets II and III 

sections of this report, the developments are valid for dilute to very strong solutions.  The 

transport set II is the application of the generalized Maxwell-Stefan equations for the 

species transport through the PEM.  The transport through set III is the result of the 

application of the Lars Onsager’s irreversible thermodynamic approach to transport 

processes. 

 

2 Introduction 
 
Modeling activity in conjunction with the experimental work is deemed to economically 

aid in the development of an optimal design of a direct methanol fuel cell (DMFC) for 

aerospace and ground transportation vehicle applications.  To this end, research/ 

development activity by the principal investigator (P.I.), Sarwan S. Sandhu is given 

below. 

 

The principal investigator (P.I.) developed a theoretical scheme (see Volume 1 of this 

report) to predict the reversible cell voltage in the absence of electrode poisoning and 

methanol crossover through a polymer electrolyte membrane of a DMFC, for example, 

Nafion® perfluorosulfonic acid polymer and polybenzoxazole or polybenzimidazole 

based electrolyte membranes.  The scheme based on the application of thermodynamic 

fundamentals of the phase and electrochemical reaction equilibria predicts the reversible 

voltage at any fuel cell temperature.  The effect of nonideal behavior of fluid phases in 

the anodic and cathodic fluid compartments of a fuel cell on the reversible voltage is 

accounted for.  The simulation is capable of predicting the reversible cell voltage as 
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function of reactant feed composition and different total pressures in the anode and 

cathode plenums.  The developed reversible voltage equation reduces to the Nernst type 

equation for the ideal fluid phase behavior of the fuel and oxidant feeds.  The predicted 

reversible cell voltage can be used as an ideal standard to which the actual voltage of a 

direct methanol fuel cell operating at a given set of reactant feed composition, 

temperature, and pressure conditions can be compared to evaluate the fuel cell 

performance. 

 

A senior year undergraduate student, Mr. R. Owen Crowther, typed the entire theoretical 

development by the P.I. for the reversible cell voltage prediction.  The P.I. guided Owen 

to develop a computer code to simulate the entire set of mathematical equations to 

generate the reversible cell voltage data as function of temperature, fuel feed 

composition, and anode and cathode side total pressures. 

 

The actual theoretical development, the computer code, and the code generated numerical 

data in the form of tables and plots are presented in Report #1 entitled:  “Fuel Cell 

Project: Direct Methanol Fuel Cell: Theoretical Formulation of Reversible, Open-Circuit 

Voltage for a Direct Methanol Fuel Cell” by Sarwan S. Sandhu, Department of Chemical 

& Materials Engineering, The University of Dayton, Dayton, Ohio  45469-0246. 

 

Presented in this report volume, the P.I. has developed the mathematical equations to 

predict the ionic current density and the species (H+,CH3OH, H2O) molar fluxes for their 

transport through a solid polymer electrolyte or polymer-ceramic material composite 

membrane of a DMFC at the steady state, isothermal conditions by the application of 

fundamentals of transport phenomena.  The developed transport equations are presented 

in three sets.  In the transport set I, the equations are based on the extension of 

moderately dilute solution theory.  These equations involve the Fick’s law type mass 

diffusivities that are known to be strongly dependent on the species concentrations.  The 

transport equation sets II and III are valid for very strong solutions.  The transport 

equation set II is based on the application of the generalized Maxwell-Stefan equations.  

The transport equation set III is based on the application of the Lars Onsager’s 
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irreversible thermodynamic approach to transport processes.  The developed equations 

account for the effect of the voltage, pressure and the species concentration gradients on 

their transport fluxes.  These equations, describing species transport fluxes through a 

solid polymer electrolyte membrane are to be coupled with the equations, yet to be 

developed, describing mass transfer through the electrode porous backing layers and 

species mass transport with electrochemical/chemical kinetics in the porous electrode 

layers.  The coupled equations, describing the various phenomena occurring in a DMFC 

in operation, would be of immense significance in the evaluation of performance and 

design/development of a DMFC.  The usefulness of the developed transport equations 

may also be seen in that they can be employed to experimentally determine the transport 

properties of a membrane such as permeability of the fluid mixture and effective mass 

diffusivities of the species by designing appropriate fuel cell experiments. 

 

The developed transport equations by the P.I. were typed by Mr. Sarath Krishnan, a 

graduate student in the chemical engineering program at the University of Dayton.  Very 

recently, Mr. R. Owen Crowther (who is now a graduate student in our chemical 

engineering program) has been guided by the P.I. to simulate the first set of transport 

equations in the form of a computer code to generate numerical data on current density 

and species (H+, CH3OH, H2O) molar fluxes through a polymer electrolyte membrane of 

a DMFC.   He is expected to start developing the computer code in the near future.   

 

The actual theoretical development of the transport equations is presented in Report #2 

entitled:  “Fuel Cell Project:  Direct Methanol Fuel Cell: Theoretical Formulation of 

Transport Fluxes of species (H+, CH3OH, H2O) through a Solid Polymer Electrolyte 

Membrane (PEM) of a Direct Methanol Fuel Cell,” by Sarwan S. Sandhu, Department of 

Chemical & Materials Engineering, The University of Dayton, Dayton, Ohio  45469-

0246. 

 

The P.I. developed a set of equations to predict the reversible as well as irreversible or 

actual power production from a continuously fed DMFC operating at steady-state 

conditions.   This development is based on the fundamentals of classical thermodynamics 
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and the species and overall material balances.  The scheme requires the information on 

the reactant feed stream composition, temperature, and pressure conditions at the inlets of 

a DMFC, fractional conversion of methanol via electrochemical process for the 

production of electric power, its chemical oxidation at the catalytic surface of the 

cathode, and the amounts of methanol, water, and hydrogen ions transported through the 

solid polymer electrolyte membrane from the anode side to the cathode side of a DMFC.  

The development accounts for the nonideal behavior of the fluid phases.  This 

development is not in the typed form at the time of reporting.  Mr. Sarath Krishnan, a 

graduate student in the chemical engineering program at the University of Dayton has 

gladly accepted to understand the entire scheme of equations and to present them in the 

form of a typed report.  Also, he would develop a computer code under my direction to 

generate numerical data on the reversible and actual electric power production as function 

of input parameter values. 

 

The P.I. studied and carried out partial analysis of the open literature on the research/ 

development of direct methanol fuel cells depending on availability of time for this 

equally important activity.  Based on the information acquired from the literature on the 

direct methanol fuel cells and his knowledge of the basic and engineering sciences 

relevant to the research/development of a DMFC,  the P.I. developed an outline of a 

comprehensive research/development program to develop an efficient DFMC energy 

conversion system.  The outline has been entitled, “Direct Methanol Fuel Cell (DMFC) 

Research/Development - Theoretical and Experimental Integrated Approach”.  A copy of 

this outline was provided to Dr. J.P. Fellner of the Power Division of the WPAFB, Ohio. 

 

The effort by Sarwan S. Sandhu (P.I.), his students and Dr. J. P. Fellner on the 

research/development activity has resulted in the following presentations and proceedings 

publications: 

 “Direct Methanol Polymer Electrolyte Fuel Cell Modeling: Open-Circuit Voltage 

Equation” in the Proceedings of the 8th International Conference on Electrical and 

Electronic Products, Vol. 34 (2002), pp. 233-253, Product Safety Corporation, 
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Sissonville, West Virginia; The Conference held at the Greenbrier, White Sulphur 

Springs, West Virginia; January 14-16, 2002. 

 Direct Methanol Polymer Electrolyte Fuel Cell Modeling: Reversible Open 

Circuit Voltage Equation and Species Flux Equations”, presented at the 8th International 

Symposium on Polymer Electrolytes” held at the Eldorado Hotel, Santa Fe, New Mexico, 

May 19-24, 2002. 

 “Direct Methanol Polymer Electrolyte Fuel Cell Modeling,” presented at the 2002 

AIChE North Central Regional Student Conference.  “A Climate Change,” Chem-E-Car 

Competition, University of Michigan, February 7-9, 2002. 

 

3 Methods, Assumptions, and Procedures   
 
Presented in this report volume, the P.I. has developed the mathematical equations to 

predict the ionic current density and the species (H+,CH3OH, H2O) molar fluxes for their 

transport through a solid polymer electrolyte or polymer-ceramic material composite 

membrane of a DMFC at the steady state, isothermal conditions by the application of 

fundamentals of transport phenomena.  The developed transport equations are presented 

in three sets.  In the transport set I section, the equations are based on the extension of 

moderately dilute solution theory.  These equations involve the Fick’s law type mass 

diffusivities that are known to be strongly dependent on the species concentrations.  The 

transport equation sets II and III sections are valid for very strong solutions.  The 

transport equation set II section is based on the application of the generalized Maxwell-

Stefan equations.  The transport equation set III section is based on the application of the 

Lars Onsager’s irreversible thermodynamic approach to transport processes.  The 

developed equations account for the effect of the voltage, pressure and the species 

concentration gradients on their transport fluxes.  These equations, describing species 

transport fluxes through a solid polymer electrolyte membrane are to be coupled with the 

equations, yet to be developed, describing mass transfer through the electrode porous 

backing layers and species mass transport with electrochemical/chemical kinetics in the 

porous electrode layers.  The coupled equations, describing the various phenomena 

occurring in a DMFC in operation, would be of immense significance in the evaluation of 
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performance and design/development of a DMFC.  The usefulness of the developed 

transport equations may also be seen in that they can be employed to experimentally 

determine the transport properties of a membrane such as permeability of the fluid 

mixture and effective mass diffusivities of the species by designing appropriate fuel cell 

experiments. 

 

4 Results and Discussion 
 

4.1 Flux Equations for a Direct Methanol Fuel Cell Solid Polymer 
Electrolyte Membrane 

 
Derivation of the transport flux equations for a direct methanol fuel cell solid polymer 

electrolyte membrane using i) moderately dilute solution theory based on Fickian 

diffusion, ii) concentrated solution theory based on the generalized Stefan-Maxwell 

equations, and iii) concentrated solution theory based on the Onsager irreversible 

thermodynamics approach to transport processes are given below. 

 

4.1.1 Transport Set I – Flux Equations using Moderately Dilute Solution 
Theory 

 

4.1.1.1 Introduction 
 

The transport equations given below are quite general in that they can be applied to any 

type of membrane (e.g. acid doped polybenzimidazole, ®Nafion - DuPont, a ceramic 

(clay: Al2O3.2SiO2.2H2O)- ®Nafion or PVDF ( polyvinylidene floride) composite) with 

some adjustments if required.  The developed equations are presented in the form such 

that transport and solubility/permeability data either can be obtained from experimental 

work or available literature.  It is assumed here that the geometrical configuration of the 

membrane is invariant during the isothermal, steady state operation of DMFC. 
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4.1.1.2 Mathematical Derivation 
 
In general, transport of H +  through membrane can be considered via diffusion, migration 

due to electric field and convection dependent upon the pressure difference across the 

membrane and permeability of the membrane to the fluid mixture of CH3OH, H2O, H+, 

etc., noting that the membrane permeability is function of its molecular structure and void 

fraction, ∈ , defined as the ratio of the volume of the interstices between the atoms / 

functional groups and nanometer /micrometer pores to the total membrane occupied 

volume. 

 

If the gradient of the H+ electrochemical potential is used as the driving force for 

diffusion through membrane in the presence of water or water-methanol mixture, the flux 

of H+ per unit area of the membrane perpendicular to the direction of transport of H+ can 

be expressed as: 

                          +HN = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∈ +

τ
H

u
+H

c [ ]+∇−
H

μ   + +H
c ov                                               (1) 

where +H
u  = mobility of H+ in water or in water-methanol mixture present in the 

membrane,  [(m2/s)/ (J/mol)]; 

 τ  = tortuosity factor to account for the zigzag path ways for the species transport 

through the membrane; 

 ∈  = void fraction of interstices, nanometer/micrometer size pores acting as 

pathways for the permeation of H+, water, and methanol, if methanol crossover is 

occurring through the membrane; 

 +H
c = fluid phase concentration of H+, [ mol/mf

3]; 

 +H
μ = ch

H +μ + +H
z FΦ  = electrochemical potential of H+ in the fluid phase, [ 

J/mol]; 

 ov = superficial fluid phase velocity, [m/s]; 

 ch
H +μ = chemical potential of H+ in the fluid phase in the presence of membrane 

material [J/mol]; 

 +H
z = number of protonic charges on H+= +1; 
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 F = Faraday’s constant, e.g., charge on 1 g-mol of charged H+ ions = 96487 

[coulomb/mol]; 

 Φ  = electrical potential,[ V ]. 

In the first term on the right hand side of Eq. (1), ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∈ +

τ
H

u
 is the effective mobility of H+.  

This multiplied with ( )+∇−
H

μ  results in the effective velocity for diffusion and 

migration via electric field, and multiplication by the concentration +H
c  results in the 

contribution to the net flux +HN .  The second term on the right hand side is the 

contribution to the flux via convective motion of the fluid phase. 

 

The Nernst-Einstein relation is used to express +H
u  in terms of +H

D  [diffusivity of H+], 

                                 +H
u = 

RT
D

H +

                                                              (2) 

where, +H
D  = H+ ion diffusivity in the fluid phase (in water or water-methanol 

mixture) in the membrane, [m2/s]; 

T   = temperature, [K]; 

 R  = universal gas constant, [ ]KmolJ −/314.8 . 

 Replacing +H
u , in terms of +H

D , in Eq. (1) leads to 

                    +HN  = τ
+∈

H
D

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

RT
c

H [ ]+∇−
H

μ    + +H
c ov                                         (3) 

                   +HN   =  
effH

D
,+ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

RT
c

H [ ]+∇−
H

μ    + +H
c ov                                          (3a) 

 where 
effH

D
,+  = 

τ
+∈

H
D

 = effective diffusivity of H+ in the fluid phase present in 

the membrane, [m2/s]. 

 

If the hydrogen ion is chosen to define the electric potential, Φ ; 

Then, +H
μ  = RT ln ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

o

H

c
c

 + +H
z FΦ                                                                          (4) 
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The gradient of the electrochemical potential of any other ionic species i can be written 

as: 

                 iμ∇  = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∇

+

+

H

Hi
i z

z μ
μ    + 

+

+∇

H

Hi

z
z μ

                                                        (5) 

Note that in the first term on the right hand side of Eq. (5) the expression within the 

parentheses is independent of electric potential according to the reference [J.S. Newman, 

Electrochemical systems, Prentice Hall, 1991]. 

 

               
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− +

+
H

H

i
i z

z
μμ  = RTln iλ -

+H

i

z
z

RTln +H
λ                                                  (6) 

 where iλ  is the absolute activity of species i; iz , the number of unitary charges on 

species i.                                                   

               iλ = θ
ia ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

o

i

c
c

if                                                                                                (6a) 

 where θ
ia =  a proportionality constant, independent of composition and electrical 

state; function of the nature of solute and solvent and dependent on temperature and 

pressure; for condensed phases the pressure dependence is ignored; 

 ic  =  molar concentration of species i, [mol/liter]; 

 co =  1 mol/liter; is introduced here to make ,θ
ia [a dimensionless quantity];        

 if   =  activity coefficient of species, i, to account for non-ideal behavior of  

species i in the fluid phase present in the membrane, [dimensionless]. 

Similarly, +H
λ = θ

+Ha ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

o

H

c
c

+H
f                                                                                   (6b) 

Substituting for iλ  and +Hλ  from Eqs. (6a) and (6b) into (6), one obtains:   

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− +

+
H

H

i
i z

z
μμ =  RT

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+

+

+
H

o

H
H

H

i
i

o

i
i f

c
c

a
z
z

f
c
c

a θθ lnln  

                           = RT (ln θ
ia ln

+

−
H

i

z
z θ

+Ha ) + RT ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+

+ o

H

H

i

o

i

c
c

z
z

c
c

lnln +  
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       RT ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− +

+
H

H

i
i f

z
z

f lnln                                                                 (6c) 

In general for any ionic species, i, the flux equation can be written similar to Eq. (3a). 

 iN   = effiD ,
⎟
⎠
⎞

⎜
⎝
⎛

RT
ci ( )iμ∇−    + ic  ov                                                  (7) 

iμ∇ using Eqs. (4), (5), and (6c) is: 

   iμ∇  = ∇

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+

+

+

+

+

+

                      lnlnRT    

 + lnlnRT + ) ln-ln  (RT

H
H

i
i

o

H

H

i

o

i
H

H

i
i

f
z
z

f

c
c

z
z

c
c

a
z
z

a θθ

+
+H

i

z
z

+∇ Hμ       (7a) 

           = ∇

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+

+

+

+

+

+

                      lnlnRT    

 + lnlnRT + ) ln-ln  (RT

H
H

i
i

o

H

H

i

o

i
H

H

i
i

f
z
z

f

c
c

z
z

c
c

a
z
z

a θθ

 

                +
+H

i

z
z

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ+∇ +

+

Fz
c
c

RT H
o

Hln        

      iμ∇  = ∇
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

+

                    

  ) ln-ln  (RT θθ
H

H

i
i a

z
z

a
 + ∇  lnRT ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

o

i

c
c

              

         +∇ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− +

+
H

H

i
i f

z
z

fRT lnln + Fzi ∇ Φ                               (7b) 

For the condition of constant temperature, Eq. (7b) becomes 

iμ∇    = RT ∇ ln (
o

i

c
c

) + Fzi ∇ Φ  + RT∇ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− +

+
H

H

i
i f

z
z

f lnln                             (7c) 

Then, the flux Eq. (7) for the constant temperature, can be written as 

iN = - effiD , −Φ∇i
i c

RT
Fz

 effiD ,  ∇ic ln(
o

i

c
c

) 

          - effiD , ∇ic ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− +

+
H

H

i
i f

z
z

f lnln   + ic ov                                 (8)  
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Simplification of the second term on the right hand side of the Eq. (8) leads to  

 

iN   = - effiD , −Φ∇i
i c

RT
Fz

 effiD , ic∇   

          - effiD , ∇ic ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− +

+
H

H

i
i f

z
z

f lnln  + ic ov                                 (8a)  

        ln if  -
+H

i

z
z

ln +Hf  = ln if  - ln +
+
H

i

z
z

H
f                                                                     (8b) 

        ln if  -
+H

i

z
z

ln +H
f  = ln 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
+
H

i

z
z

H

i

f

f
                                                                         (8c) 

Using the above result in Eq. (8a), the following equation is obtained. 

iN   = - effiD , −Φ∇i
i c

RT
Fz

 effiD , ic∇  

          - effiD , ∇ic ln +Hif ,   + ic ov                                                      (8d) 

where +Hif ,  = 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
+
H

i

z
z

H

i

f

f
  .                             

Either from Eqs. (3a) and (4) or from Eq. (8d) directly with i = H+, one obtains the flux 

equation for H+ ions : 

+H
N   = - 

effH
D

,+ −Φ∇+
+

H
H c
RT

Fz
 

effH
D

,+ +∇
H

c  + +Hc ov                                            (9) 

Note that the activity coefficient if  of the charged species can be estimated following the 

procedure given in the literature (Ref. J.S. Newman, Electrochemical systems, pp 86-115, 

Prentice Hall, 1991 edition). 

 

The superficial velocity ov , in Eqs. (8d) and (9), is the volume rate of flow through a  

unit cross-sectional area of the solid membrane material plus fluid phase, here, composed 

of water, methanol and H+. It is averaged over a small region of the membrane facial area 
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perpendicular to the flow but large with regard to the interstitial micro size pores.  The 

velocity ov  can be described by: 

ov =  - 
( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ Φ∇−
−−∇

∑
ρ

ρρ
μ

i
ii

pfM
cFz

gp
k

                                                        (10) 

In this equation, μ  is the fluid viscosity [kg/ms];  pfMk , the fluid phase permeability 

through the membrane, [ ]2m .  The first term on the right side of Eq. (10) is the pressure 

gradient related force on the fluid phase, the gravitational force is the second term, and 

the third term is the net force per unit fluid phase volume due to electric field effect.  This 

term may be labeled as the driving force for the electro-osmotic transport of the fluid 

phase through the membrane.  Also note that ic  is the molar concentration of the ionic 

species, i (with the charge number iz ) in the fluid phase, with ρ  being the fluid phase 

mass density. 

 

For the transport of the fluid phase perpendicular to the direction of the gravitational 

field, or, in the situation of the second term on the right hand side of Eq. (10) being 

negligibly small relative to the first and the third terms; Eq. (10) is reduced to: 

              ov =  - ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Φ∇−−∇ ∑

i
ii

pfM cFzp
k
μ

                                                           (11) 

In the event, either ( )Φ∇−  electric field is negligibly small in the membrane space, or 

there is no electric field in action, then Eq. (11) becomes 

               ov   = - [ ]p
k pfM ∇
μ

                                                                                       (11a) 

Note that this is the usual Darcy’s law for the flow through a porous medium with the 

pressure gradient as the only driving force for the fluid movement.  In the case of the fuel 

cell, if p∇  is large because of the difference in the total pressures in the anode and the 

cathode compartments and the small thickness of the membrane, ov  may acquire a 

relatively significant value depending upon the value of pfMk  and μ  of the fluid phase 

mixture of water, methanol, and +H .  In the event, p∇  is negligible either due to equal 
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total pressures in the fuel cell anodic and cathodic compartments or due to a relatively 

thick membrane, then Eq. (11) becomes: 

              ov =   ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Φ∇−∑

i
ii

pfM cFz
k
μ

                                                                 (11a)                                      

                    = ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Φ∇− ∑

i
ii

pfM Fcz
k
μ

                                                                   (11b) 

if it is assumed that the fluid phase is electrically neutral, then,  

                                ∑
i

ii Fcz =0                                                                             (11c) 

Consequently, Eq. (11b) leads to: ov = 0 , i.e., there is no effect of the electric field on the 

fluid convective motion through the membrane.  This is not the valid conclusion because 

the literature does give evidence of the fluid transport through the membrane under the 

field effect.  Then, we have to accept that the membrane material to be charge neutral, but 

the fluid phase permeating through membrane phase is not charge neutral.  The net 

charge per unit fluid phase volume is ( Fcz HH ++ ).  Now, Eq. (11b) is written as: 

                 ov = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

 ( )Φ∇−  ( )Fcz HH ++                                                           (11d) 

Note that ov  may have relatively significant value depending on the values of ( )Φ∇−  

[electric field strength in the fluid phase in the membrane], +H
c  in the fluid phase in the 

membrane and pfMk . 

 

For the charge transport by the only H+ ions in the DMFC; Eq. (11) can be written as 

         ov =   - ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk ( )[ ]++ Φ∇−−∇

HH
cFzp                                                        (12) 

Substituting for ov from Eq. (12) into Eq. (9) and simplification leads to 

+H
N = ( )Φ∇−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++++

+ 2
, HH

pfM
HeffH

H Fcz
k

cD
RT

Fz
μ

 +  
effH

D
,+ ( )+∇−

H
c  + 

               ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

+Hc ( )p∇−                                                                                  (13) 
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Note the structure of the individual terms contributing to the flux of H+ ion through the 

membrane.  In the first term on the right hand side of the Eq. (13), ( )Φ∇− , the electric 

field is acting as the driving force and ( )+∇−
H

c  and ( )p∇−  are the concentration and 

pressure gradient driving forces in the second and third terms, respectively.   

Substitute for ov  from Eq. (12) into Eq. (8d) to obtain: 

iN = ( )Φ∇−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

++ iHH
pfM

ieffi
i cFcz

k
cD

RT
Fz

μ,  + effiD , ( )ic∇−  + 

                effiD , ic ( )+∇− Hif ,ln     + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

ic ( )p∇−                                (14) 

where +Hif ,  = 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
+
H

i

z
z

H

i

f

f
   .                                                                                     (14a) 

This equation is valid for any ionic and non-ionic species. 

 

Methanol and water are charge neutral species, i.e., 0
23
== OHOHCH zz , i.e., number of 

charges on each of these species is zero. 

 

Also, +Hif ,  = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
o

H

i

f
f

   = if  (activity coefficients of the charged neutral species i) 

Equation (14) is written for a charge neutral species i as: 

iN  = ( )Φ∇−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ iHH

pfM cFcz
k
μ

 + effiD , ( )ic∇−  + 

         effiD , ic ( )ifln∇−     + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

ic ( )p∇−                                                   (15) 

 For the situation where it is reasonable to assume that ( )ifln∇  = 0, i.e., variation of fi 

across the membrane is negligible; Eq. (15) becomes: 

iN = ( )Φ∇−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ iHH

pfM cFcz
k
μ

 + effiD ,  ( )ic∇−  + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

ic ( )p∇−                    (16) 
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where, i = CH3OH, H2O. 

 

Note that the first term on the right hand side of Eq. (16) involves ( )Φ∇− , electric field 

as the driving force even for a charge neutral species such as CH3OH, H2O, for example.  

Here this term is labeled as the electro-osmotic contribution to the flux of charge neutral 

species i through the membrane.  The second term on the right side is the diffusion 

contribution to the flux of species i and the third term accounts for the flux contribution 

by the fluid motion set up by ( )p∇− , the pressure gradient in the case of different total 

pressures in the anode and cathode compartments.  Note that the electro-osmotic flux 

contribution does depend on the fluid phase viscosity,μ , its permeability through 

membrane, kpfM, and H+ ion molar concentration in the fluid phase in the membrane 

matrix. 

 

4.1.1.3 One-Dimensional, Steady-State, and Isothermal 
 

We shall now concentrate on obtaining the equations for the transport of species H+, 

CH3OH, and H2O through the membrane under the steady state, isothermal conditions for 

the one-dimensional (x-) case. 

 

The x-components of Eqs. (13) and (16) are: 

 

xHN ,+ = ⎟
⎠
⎞

⎜
⎝
⎛

∂
Φ∂

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++++

+

x
Fcz

k
cD

RT
Fz

HH
pfM

HeffH
H 2

, μ
 + 

effH
D

,+ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

+

x
cH + 

                                  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

+H
c ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−
x
p                                                                   (17a) 

xiN , = iHH
pfM cFcz

k
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
μ

⎟
⎠
⎞

⎜
⎝
⎛

∂
Φ∂

−
x

 + effiD , ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
x
ci  + ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

ic  ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
x
p                 (17b) 

(molar flux for a charge neutral species, i = CH3OH, H2O) 

The current density per unit area, perpendicular to x-coordinate in the membrane, is 

given by: 
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                      xj  = ( )[ ]∑
=

=

3

1
,

i

i
xii NFz                                                                                (18) 

                           = +H
z F xHN ,+  + xOHCHOHCH NFz ,33

 + xOHOH NFz ,22
                           (18a) 

                           = +H
z F xHN ,+                                                                                                                              (18b) 

Note that the H+ ion is the only charge carrier through the membrane so that the 

transference number of the species H+ is one. 

Using Eq. (17a) for xHN ,+  in Eq. (18b), 

xj  = ⎟
⎠
⎞

⎜
⎝
⎛

∂
Φ∂

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++

+

x
cFz

k
cD

RT
Fz

HH
pfM

HeffH
H 222

,

22

μ
 + +H

z F
effH

D
,+  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

+

x
cH +   

                          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

+H
c +H

z F ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
x
p                                                               (19) 

       = ⎟
⎠
⎞

⎜
⎝
⎛

∂
Φ∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

∂
Φ∂

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++

+

x
cFz

k
x

cD
RT

Fz
HH

pfM
HeffH

H 222
,

22

μ
 + 

               +H
z F

effH
D

,+ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

+

x
cH + ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

+H
c +H

z F ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
x
p                                 (20)           

Equation (20) requires the explanation to various terms.  The first term on the right hand 

side expresses transport via H+ ion movement due to the action of the electric field in the 

x-direction.  The coefficient of ⎟
⎠
⎞

⎜
⎝
⎛

∂
Φ∂

−
x

 is here defined as the electric conductance of H+ 

through fluid phase present in the membrane matrix, i.e.,  

elecκ  = 22 FzH + ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +

RT

D
effH ,

+H
c  = 22 FzH + +H

u +H
c                                                         (20a) 

where +H
u ( ) ⎥

⎦

⎤
⎢
⎣

⎡
+ membranetheinpresentHandOHOHCH

ofcomposedfluidtheinmobilityion
,, 23

= 
,H eff

D
RT

+⎛ ⎞
⎜ ⎟
⎝ ⎠

        (20b) 

 

The second term on the right-hand side of the Eq. (20) explains the current density 

contribution associated with the fluid “bulk motion” created by the action of electric field 

on H+ ions present in the fluid.  Third term is the current density contribution because of 
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gradient in the H+ ion concentration. Fourth term is the contribution to the current density 

if the pressure gradient prevails for the different total pressures across the membrane in 

the electrode chambers. 

Equation (20) may now be written as 

 

xj   = elecκ ⎟
⎠
⎞

⎜
⎝
⎛

∂
Φ

−
x

d + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk ( )2

H
z ++ H

Fc ⎟
⎠
⎞

⎜
⎝
⎛

∂
Φ

−
x

d +  

                          
effHH

FDz
,++ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+

dx
dc

H + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

( ++ HH
Fcz ) ⎟

⎠
⎞

⎜
⎝
⎛

∂
−

x
dp                         (21) 

 

For the medium of assumed uniform dielectric constant (here that of water or of water-

methanol mixture present in the membrane), the Poisson equation is used to relate the 

Laplacian of the electric potential to the charge density in the fluid phase in the 

membrane: 

                     Φ∇ 2  = ∑∈
−

i
iiczF                                                                               (22) 

                                = [ ]++

∈
−

HH
czF ,                                                                          (22a)   

where ∈  = permittivity of the medium (here that of the fluid phase) 

         = (dielectric constant) 0(∈ , permittivity of the free space) 

         = (dielectric constant) ⎟
⎠
⎞

⎜
⎝
⎛

−
−

cmvolt
coulomb1410*8542.8  

        = (dielectric constant of the fluid phase) ⎟
⎠
⎞

⎜
⎝
⎛

−
−

mvolt
coulomb1210*8542.8         

           F = Faraday’s constant = 96487
chargesunitary of mole

coulomb       

For the one-dimensional (x-) case, Eq. (22a) becomes: 

                    2

2

dx
d Φ  = [ ]++

∈
−

HH
czF                                                                           (22b)   

The material balance or continuity equation for a component i for the steady state 

condition, with no reaction, is: 
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                      iN•∇  = 0                                                                                           (23) 

                     
dz
Nd

dy
Nd

dx
Nd ziyixi ,,, ++    = 0                                                                 (23a) 

For the one-dimensional component in the x-direction, 

                     
dx

dN xi,   = 0                                                                                           (23b) 

Using Eq. (17a), the following equation is obtained from Eq. (23b) under the assumption 

of constant ⎟
⎠
⎞

⎜
⎝
⎛ Φ

dx
d , ⎟

⎠
⎞

⎜
⎝
⎛

dx
dp , pfMk ,μ  and 

effH
D

,+  for the isothermal cell operation. 

⎟
⎠
⎞

⎜
⎝
⎛ Φ
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

++

+

+

+

dx
d

dx
dc

cFz
k

dx
dc

D
RT

Fz H
HH

pfMH
effH

H 2, μ
+ 

effH
D

,+  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+

2

2

dx
cd

H  

                                  + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

dx
dc

H +

⎟
⎠
⎞

⎜
⎝
⎛−

dx
dp  = 0                                                    (23c) 

The modified continuity equation for the fluid mixture of (H2O, CH3OH, and H+) through 

the nano/micro porous medium is applied for the permeation of fluid phase mixture 

through the electrolyte membrane at the steady state conditions. 

                    [ ]ovρ•∇   =  0,                                                                                      (24) 

where ρ = fluid-phase density. 

For the one-dimensional (x-component) case, Eq. (24) is written as: 

           ( )xov
dx
d

,ρ  = 0                                                                                                (24a) 

The solution of Eq. (24a) is 

( )
0@, =xxovρ   = ( )

Mxxov
δ

ρ
=@,  = om  = constant,                                                          (24b) 

where om  = superficial fluid mass flux permeating through the membrane along 

                     x-axis per unit time per unit area of the membrane perpendicular to the  

                     x-axis. 

The x-component of Eq. (12) is 

     xov ,  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Φ
−+⎟

⎠
⎞

⎜
⎝
⎛− ++ dx

dFcz
dx
dp

HH
                                                        (24c) 
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The fluid phase mass flux is related to the pressure and electrical gradients as follows: 

   om  = ρ  xov ,  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ

ρ pfMk
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Φ
−+⎟

⎠
⎞

⎜
⎝
⎛− ++ dx

dFcz
dx
dp

HH
                                           (24d) 

For the electric potential distribution, Eq. (22b) is written as 

              2

2

dx
d Φ  = [ ]++

∈
−

HH
czF ,                                                                                  (25) 

where +H
c  is the H+ ion average concentration defined as 

                   +H
c   =  

M

x

x

dx
M

δ

δ

∫
=

=

+

0
H

c
,                                                                                  (25a) 

where Mδ = thickness of the membrane.  In fact, one may approximate this quite 

reasonably by 

                         +H
c  =  

2

C
H

A
H

cc ++ +
                                                                               (26) 

where A
Hc +  is the H+ ion concentration in the fluid phase at the anode-membrane interface 

and C
H

c +  the concentration of H+ at the membrane-cathode interface on the membrane 

side.  For the situation of relatively fast electrode kinetics associated with the 

electrochemical reactions, especially fast kinetics at the cathode, the H+ ion concentration 

at the membrane-cathode interface, C
H

c +  may be approximately set equal to zero.  Thus,  

                                               +H
c  

2
cA

H+

≅                                                                   (26a) 

Equation (25) is solved using the following boundary conditions: 

At x = 0, AΦ=Φ  (electric potential in the fluid phase at the  

                               anode-membrane interface)                                                           (27a) 

At x = Mδ , CΦ=Φ  (electric potential in the fluid phase at the  

                                    cathode-membrane interface)                                                    (27b) 

The solution to Eq. (25) is 

   ( AΦ−Φ )  = ( AC Φ−Φ ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

M

x
δ

 + ( )2

2
xx

Fcz
M

HH −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

++

δ                                     (28) 
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Note: Here, ( AC Φ−Φ ) =  -(absolute value of the cell voltage) 

                                       = - AC Φ−Φ       

Note that Eq. (28) describes the electric potential in the fluid present in the interstices in 

the membrane matrix. 

From Eq. (28) one obtains 

        
dx
dΦ   =  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Φ−Φ

M

AC

δ
 + ( )x

Fcz
M

HH 2
2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

++

δ                                                     (29) 

                 = 
M

AC

δ

Φ−Φ
−  + ( )x

Fcz
M

HH 2
2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

++

δ                                                      (29a) 

The result in Eq. (29) is used in Eq. (24d) and the resultant equation is solved for the 

pressure distribution in the fluid phase in the membrane matrix to obtain 

( )Atpp ,− =  

- ( )
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⎟
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⎜
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⎛ ++

++

22

2 MM

MHH

M

AC
HH

MpfM

Mo xxFczxFczx
k

m
δδ

δ
δδρ

μδ
,   

(30)    

where ( AC Φ−Φ ) = -(absolute value of the cell voltage), 

                      Atp ,    = total pressure at the anode-membrane interface, 

     ρ  =  average fluid density = 
2

CA ρρ + , where Aρ  and Cρ  are the fluid densities at 

the anode-membrane and cathode-membrane interfaces, respectively. 

Using the boundary condition of p = pt, C (total pressure at the membrane-cathode 

interface) at x = Mδ , one obtains the following result from Eq. (30): 

om  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
ρpfMk

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Φ−Φ
+

−
++

M

AC

HH
M

CtAt

Fczpp
δδ

,,

                                                (31) 

 

This equation shows the effect of the pressure and electric potential differences on the 

permeation flux of the fluid phase through the membrane.  For the case of pt, A (total 

pressure at the anode) greater than pt, C (total pressure at the cathode), both of these 
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driving forces are seen to cause the fluid phase to move towards the cathode.  For the 

case pt, A< pt, C, the effect of these driving forces on om  is opposite.  For the case of pt, A = 

pt, C, Eq. (31) becomes: 

                om  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

M

pfMk
δμ
ρ ( )( )AC

HH
Fcz Φ−Φ++                                                    (32)                           

This simple result tells us that due to the electric field effect there is a flux of fluid 

mixture that permeates through the membrane.  For a membrane of given molecular 

configuration, one way to decrease om ; therefore, to decrease the flux of methanol is to 

increase the membrane thickness.  Other way  is to use a membrane of such a molecular 

structure/configuration that the permeability, kpfM, is decreased in such a way that 

permeation of methanol is selectively reduced more than water with either no or 

enhancement effect on the permeation of H+ ions. 

 

Using Eq. (15), one-dimensional molar fluxes of H2O and CH3OH through the membrane 

are 

 

   xOHCHN ,3
= ⎟

⎠
⎞

⎜
⎝
⎛ Φ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

dx
dFczc

k
HHOHCH

pfM )(
3μ

 + effOHCHD ,3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

dx
dc OHCH3  + 

                    (electro-osmotic transport)                 (diffusion transport) 

 

                + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

OHCHc
3

⎟
⎠
⎞

⎜
⎝
⎛−

dx
dp                                                                         (33) 

                  (pressure gradient transport) 
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= ⎟

⎠
⎞

⎜
⎝
⎛ Φ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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dx
dFczc

k
HHOH

pfM )(
2μ

 + effOHD ,2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

dx
dc OH2  + 

                    (electro-osmotic transport)                 (diffusion transport) 

 

                + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

OHc
2

⎟
⎠
⎞

⎜
⎝
⎛−

dx
dp                                                                            (34) 
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                  (pressure gradient transport) 

 

For the condition of the steady state, the local continuity equations for H2O and CH3OH 

are 

 

     ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

dx
Nd xOHCH ,3   =  0                                                                                            (35a) 

 

      ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

dx
Nd xOH ,2       =  0                                                                                          (35b)  

Substitution for xOHCHN ,3
 and xOHN ,2

 from Eqs. (33) and (34) into Eqs. (35a) and (35b), 

respectively, and simplification leads to 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Φ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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dx
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dx
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HHOHCH
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3μ
 + effOHCHD ,3 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
− 2

2
3

dx
cd OHCH  + 

                     

      + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

dx
dpc

dx
d

OHCH3
      = 0                                                               (36a)      
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⎛
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dx
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HHOH
pfM )(

2μ
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⎟
⎠

⎞
⎜
⎜
⎝

⎛
− 2

2
2

dx
cd OH  + 

 

      + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

dx
dpc

dx
d

OH2
           = 0                                                             (36b) 

 

From the Eq. (24d), with the assumption of constant ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
pfMk

 and constant fluid phase 

density ρ  in the membrane phase, the following equations are obtained: 
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⎥
⎦

⎤
⎢
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⎟
⎠
⎞

⎜
⎝
⎛ Φ
−⎟⎟
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                                             ⎥
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⎡
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⎞
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⎝
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⎠
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⎦
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⎝
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⎠
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⎠
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⎛
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2

2

μρ
              (37b)    

 

Substitutions are made from Eqs. (37a) and (37b) for  

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Φ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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HHOHCH
pfM )(

3μ
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⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Φ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

dx
dFczc

dx
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HHOH
pfM )(

2μ
 into 

Eqs.(36a) and (36b), respectively, to obtain, after simplification, the following results: 

 

dx
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D
m

dx
cd OHCH

effOHCH

oOHCH 3

3

3

,
2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ρ
  =    0                                                           (38a) 

 

dx
dc

D
m

dx
cd OH

effOH

oOH 2

2

2

,
2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ρ
      =  0                                                                    (38b) 

 

These ordinary differential equations are solved using the following boundary conditions: 

 

At x = 0 (membrane-anode interface);   

OHCHc
3

 = M
xOHCHc 0,3 = ,              OHc

2
 = M

xOHc 0,2 =                                                        (39a,b) 
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At x = Mδ  (membrane-cathode interface); 

OHCHc
3

 = M
xOHCH M

c δ=,3
,          OHc

2
 = M

xOH M
c δ=,2

                                                      (40a,b) 

 

The solution of the differential Eqs. (38a) and (38b) based on the boundary conditions 

Eqs. (39) and (40), is 

 

 OHCHc
3

 = M
xOHCH M

c δ=,3
+ ( M

xOHCHc 0,3 =  - M
xOHCH M

c δ=,3
) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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M

M

e
ee x
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δαα

1
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1
,                          (41) 

where 
effOHCH

o

D
m

,
1

3
ρ

α = .                                                                                     (41a) 

 

OHc
2

 = M
xOH M

c δ=,2
+ ( M

xOHc 0,2 =  - M
xOH M

c δ=,2
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⎞
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⎝

⎛
−
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e
ee x

δα

δαα

2

22

1
                                     (42) 

where 
effOH

o

D
m

,
2

2
ρ

α = .                                                                                        (42a) 

 

Methanol and water concentrations in the membrane matrix at the interfaces with the 

porous electrodes are now related to their concentrations in the fluid mixtures in the 

electrodes using the phase equilibrium condition.   

At the membrane-anode interface, x = 0; 

 
M

xOHCHa 0,3 =   = A
xOHCHa 0,3 = ,                                                                                     (43a) 

  
M

xOHa 0,2 =     = A
xOHa 0,2 = ,                                                                                          (43b) 

 

where ai = activity of species i. 

Expressing the activities in terms of molar concentrations, 
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⎥
⎥
⎦

⎤

⎢
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M
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c
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33 0,    = 
⎥
⎥
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⎢
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⎥
⎥
⎦
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M
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M
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c
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22 0,  = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣
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o

A
OH

A
xOH

c
fc

22 0,                                                                        (44b) 

where ic  = molar concentration of a species, 

           M
if = activity coefficient of species i in the fluid phase in the 

                     membrane  phase,   

          A
if = activity coefficient of species i in the fluid phase in the porous  

                   anode,    

           co  = normalization concentration = 1 (mol/liter).   

 

Equations (44a) and (44b) leads to 

 

M
xOHCHc 0,3 =  = A

xOHCHc 0,3 = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
M

OHCH

A
OHCH

f
f

3

3                                                                      (45a) 
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Similarly, at the membrane-cathode interface at x = Mδ , 

M
xOHCH M

c δ=,3
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xOHCH M
c δ=,3 ⎟

⎟
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⎞
⎜
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M
xOH M
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⎟
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⎜
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⎛
M
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C
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f
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2

2                                                                               (46b) 

At first approximation; particularly, for the situation of non-availability of the M
if  data 

in the membrane phase, one may take: 
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                       ⎟
⎟
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From Eq. (24d), 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Φ
−++ dx

dFcz
HH

 = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ρ
μ

pfM
o k

m - ⎟
⎠
⎞

⎜
⎝
⎛−

dx
dp                                                        (47) 

On substitution for ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Φ
−++ dx
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 from Eq. (47) into Eqs. (33) and (34) to obtain, 

after simplification, 
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       M
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From Eqs. (41) and (42), 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dx

dc OHCH3 =  ( M
xOHCHc 0,3 =  - M

xOHCH M
c δ=,3

) xe
e M

1

11
1 α
δα

α
⎟
⎠
⎞

⎜
⎝
⎛
−

                                              (49a) 

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dx

dc OH2  =( M
xOHc 0,2 =  - M

xOH M
c δ=,2

) xe
e M

2

21
2 α
δα

α
⎟
⎠
⎞

⎜
⎝
⎛
−

                                                      (49b) 

On substitution for ⎟⎟
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dc OH2  from Eqs. (49a) and (49b) into Eqs. (48a) 

and (48b), respectively, the following expressions are obtained for methanol and water 

fluxes: 
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 where 
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where 
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o

D
m

,
2

2
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α =   .                                                                                                 (51a) 
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Note that the fluid phase flux through the membrane matrix is given by Eq. (31). 

 

Assuming the fluid phase permeating through the membrane matrix to be consisted of H+, 

water and methanol (neglecting dissolved species such as nitrogen, oxygen), 

 

                =∑
i

ix  1                                                                                                    (52) 

where xi is the mole fraction of species i.  Therefore, 
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where +Hc , OHCHc
3

, OHc
2

, and Tc  are the molar concentrations of H+, methanol, water 

and fluid mixture, respectively.  Here it is assumed that the fluid phase total molar 

concentration is constant throughout the membrane matrix.  Differentiating Eq. (52a) 

leads to 
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Using the expressions from Eqs. (49a) and (49b) in Eq. (53), the following expression for 
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                                                  (54) 

From Eq. (52a), 

( )M
OH

M
OHCHT

M
H cccc

23
+−=+                                                                                          (55) 

Applying this equation at x = 0 (membrane –anode interface) and at x = Mδ (membrane- 

cathode interface), the following expressions for M
xHc 0, =+  and M

xH M
c

δ=+ ,
are obtained. 



 28

M
xHc 0, =+  = Tc  - ( )M
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xOHCH cc 0,0, 23 == +                                                                           (56a) 
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Then, the average concentration of hydrogen ion +Hc  in the membrane matrix   

 (see Eq. 26) is given as 
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The methanol and water concentrations in the membrane at the membrane-porous 

electrode interfaces are to be computed from the concentrations of these species in the 

porous electrodes as shown in Eqs. (45) and (46). 

 

The hydrogen ion concentration, M
Hc +  in the membrane as a function of distance can be 

calculated using the Eqs. (45), (46), (54) and (55). 

From Eqs. (29a) and (30), 
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Because of the steady-state condition, the following equations are obtained using Eqs. 

(17a) and (21): 
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Note that 
effOHCH

o
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,
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,
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2
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α = . 

Also, +Hc = M
H

c +  is to be obtained from Eq. (57b), and ( )
0@ =+ x

M
H

c  is to be obtained from 

Eq. (56a).   Of course, om  is to be obtained from Eq. (31). 

 

Equations (63) and (65) can be used to compute the hydrogen ion flux and current 

density, respectively, through the fluid phase in the membrane matrix. 

 

4.1.2 Transport Set II  Flux Equations using Maxwell-Stefan Relations 
 

4.1.2.1 Introduction 
 
An extremely wide variety of membrane types exist.  One may distinguish between 

biological and synthetic membranes.  Each type has wide range of composition and 

behavior.  The synthetic membranes may be classified into (a) “homogenous”, (b) 

“microporous” and (c) mixtures of these two types.  In a homogenous membrane the 

matrix plays the role of a true solvent for permeating species.  The permeating species are 

confined to matrix-free regions in microporous membranes.  These aspects are important 

for materials viewpoint.  However, the formalisms needed to explain the transport of 
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species through them is much the same.  Also note that the membranes are used in a wide 

range of process conditions. 

 
 
 
 
 O2 
CO2 
 

 Porous 
carbon layer 

 
Porous 
carbon layer 
 
 
 
 
 H2O 
 
MeOH 
&  
H2O x    
 
 x = 0         x = Mδ  
      Anode-membrane                                                                       Cathode- membrane  
           interface              interface 
 
Legend: 
 
              x = spatial coordinate 
 
           Mδ  = thickness of the membrane        
 
 

Figure 1.  Polymer electrolyte membrane separating the porous anode and 
cathode layers (sketch not to scale). 
 

4.1.2.2 Mathematical Derivation 
 
The species transport equations given below are quite general in that they can be applied 

to any type of membrane (for example, acid doped polybenzimidazole, ®Nafion , a 

Mδ

MeOH (fuel) in 
H2O feed 

Oxidant feed 
(O2  or  air) 
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ceramic (clay: Al 2 O 3 .2SiO 2 .2H 2 O)- ®Nafion or PVDF ( polyvinylidene floride) 

composite).  It is here assumed that the geometrical configuration of the membrane is 

invariant during the isothermal, steady-state operation of the direct methanol fuel cell 

(DMFC). 

 

Here a membrane is viewed as an insoluble selectively permeable matrix M and one or 

more mobile permeating species; ,....,βα . The membrane is defined here as having 

negligible curvature, i.e., its thickness is much less than its surface radius of curvature.  

This, in turn, implies that the mass transport is uni-directional and perpendicular to the 

membrane surface.  The membrane matrix is immobile.  That is, the velocity of the 

matrix is zero with regard to a stationary laboratory coordinate system.  Velocities of the 

mobile species are referred to the coordinate system fixed in the stationary membrane.  

The diffusional response times within the membrane are assumed to be short in 

comparison with those in the mixtures in contact with its boundaries (located at x = 0 and 

x = δ  as shown in the sketch; where δ  is the thickness of the membrane).  This 

effectively means that for every species a pseudosteady state prevails in the membrane 

even when slow transient conditions prevail in the mixtures in contact with its 

boundaries. 

 

The Maxwell-Stefan equations given below satisfy the above mentioned membrane 

constraints and are specialized to generate reliable and compact descriptions of 

multicomponent transport in the membrane located between the electrodes of a direct 

methanol fuel cell. 

 

It is recognized that the matrix is one of the components of the mixture of matrix, M and 

other electrochemical/chemical species such as H + , CH 3 OH, H 2 O, etc.  The Maxwell-

Stefan equations are applied only for the mobile species (Ref. Bird et al.[2002]).  From a 

thermodynamic viewpoint, we are concerned with the number of independent mobile 

components in the mixture bathing the membrane because it is the external solution that 

determines the equilibrium state of the membrane.  As mentioned in the above reference, 



 33

determination of the effective molecular weight of the membrane matrix is very difficult 

for most situations, the internal system is defined to include only the mobile species and 

their mole fractions are defined to sum to unity.  However, this restriction may be relaxed 

if the average molecular weight of the membrane material and its actual membrane 

material, M, mass density for its configuration between the fuel cell electrodes is known.  

The interaction of each mobile species with the membrane material, M, is quite 

significant; particularly, in the case of a membrane with the interstices of nanometer scale 

or less.  Therefore, the modified mass diffusivity parameter associated with diffusion of a 

species α  accounting for its interaction with the membrane is defined as  

                    '
MÐ

1

α

   =   
MÐα

Mx                                                                                  (66) 

where Mx , MÐα  are the membrane material mole fraction and mass diffusivity of the 

component α  through membrane, M; as it appears in the Maxwell-Stefan equations 

without excluding the membrane material; respectively.  The generalized set of the 

Maxwell-Stefan equations for the fuel cell application is: 
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(Here α  = mobile species only = H + , CH 3 OH, H 2 O only) 

Note that according to the procedures used in the reference mentioned above, equation 

(67) should be used for the species that are mobile and permeate through the membrane.  

However, sum on the left-side of Eq. (67) should be carried over all species including the 

membrane matrix, M.  In the event of that mole fraction of the membrane matrix M 

cannot be determined with a reasonable accuracy, it has been suggested, in the reference 

given above that 
MÐα

Mx  be replaced by '
MÐ

1

α

 in Eq.(67) and the species mole fractions be 

based on the mixture molar concentrations excluding the membrane matrix material. 

 

In this equation, βα xx ,  are the mole fractions of the species α and β ; αv , βv , the 

resultant velocities of the species α and β , respectively ; αβÐ , the diffusion coefficient  
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for the interaction of species α  with the species β ; αv , the partial molar volume of 

species α  in the membrane ; ( )ααα γ xa = ; activity of the species α , here αγ  is the 

activity coefficient of the species α  to account for the nonideal thermodynamic behavior 

of the ‘membrane solution mixture’ ; p, the thermodynamic pressure ; Φ , the 

electrostatic potential [volts]; αz = number of positive or negative charges on a particle 

(i.e. number of charges on an ion), note that αz  for a charge neutral species is zero; R, 

the gas constant = 8.314 J/mol-K; T, the absolute temperature [K] ; F = Faraday’s 

constant = 96487 Coulomb per gram- equivalent, i.e., 96487 Coulombs of charge on 1 

gm-mole of unity charged particles such as +H ions or −e  electrons. 

 

Equations (67) for the various mobile species are rewritten as: 
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   (applied for α  =  H + , CH 3 OH, H 2 O, etc.) 

   Note that terms within the brackets are the driving potentials for the transport of a 

species α  through the membrane.  For the assumption of the incompressible solute (H + , 

CH 3 OH, H 2 O) in the membrane phase and system (i.e. membrane phase) isothermality, 

Eq. (68) can be written as: 
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          (α  = H + , CH 3 OH, H 2 O) 

The expression within the parentheses plays the role of “total potential” or driving force 

for the transport of a species α at any spatial point in the membrane phase. 

 

The general boundary conditions are set up by requiring the “total potential” for each 

species α  to be continuous across the boundary: 

At x = 0, the anode-side boundary of the membrane in contact with the anode: 
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                                                                 (for speciesα ) 

This equation is simplified to: 
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          (α  = H + , CH 3 OH, H 2 O) 

A simplification results if the assumption of chemical equilibrium across the anode-

membrane interface is valid, 

i.e., Moa ,,α  = Aoa ,,α : 
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Equations (70b) and (70c) may be written as: 
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         (α  = H + , CH 3 OH, H 2 O) 

Also, 
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          (α  = H + , CH 3 OH, H 2 O) 

For the one (x-) dimensional case, Eq. (69) becomes  
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If  c = total mixture concentration in the membrane phase, Eq. (71a) is rewritten as     
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          (α  = H + , CH 3 OH, H 2 O) 

where αN  = molar flux of species α  along x-direction at any point in the membrane 

phase. 

 

Now, apply Eq. (72) to H + , CH 3 OH, H 2 O : 

First for α = H + : 
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Now, first we write the flux equations for methanol and water; we then come back to 

Eq.(74a). Say, α = CH3 OH in Eq. (72): 
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Now, for OH 2=α  in Eq. (72): 
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At this stage, it is important to note that 

                    αβαβ ÐÐ =                                                                                              (75a) 

     (equivalent to the Onsagar reciprocal equation)          

 



 39

4.1.3 Transport Set III – Flux Equations using Onsager 
Thermodynamics 

4.1.3.1 Introduction 

The approach is based on the multicomponent diffusion using the Onsagar 

thermodyanamics as given in, “J.S. Newman, Electrochemical Systems, p.265, Prentice-

Hall, 1991 edition.”  The membrane phase is assumed to be “homogenous” phase with 

the membrane matrix playing the role of a “true solvent” for the permeating species; H+, 

CH3OH and H2O. 

4.1.3.2 Mathematical Derivation 

   The starting, multicomponent diffusion equation for the transport of any species i is 

             ( ) ( )∑ ∑ −=−=∇
j j

ij
jiT

ji
ijjiii vv

Dc
cc

RTvvKc μ                                   (76) 

where ic  is the molar concentration of species i, Tc  is the total concentration of the 

species including the solvent, R the universal gas constant, T the absolute temperature, 

iμ  the electrochemical potential of species i, jiK  the friction or interaction coefficients, 

jiD  the diffusion coefficient describing the interaction of species i and j. iv  is the 

average velocity  of the species i but not the velocity of individual molecules.  Equation 

(1) is similar to the Stefan-Maxwell equation [R.B.Bird, W.E.Stewart, and E.N. 

Lightfoot, Transport Phenomena, p.570, John Wiley and sons, Inc. New York, (1960)] 

and is equivalent to that developed by Onsagar [Lars Onsagar, “Theories and Problems of 

Liquid diffusion, “Annals of the New York Academy of Sciences, 46 (1945), pp.241-

265]. 

    The molar flux of species i is given by  

                                  iii vcN =                                                                         (77) 

The drag coefficients jiK  and diffusion coefficients jiD  are related as follows: 

                                 jiK  = 
jiT

ji

Dc
ccRT

                                                               (78) 

Equation (1) can also be written as  
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                                ( )iic μ∇−   =  ( )∑ −
j

jiji vvK                                            (79) 

In this equation ( )jiji vvK −  is the drag force exerted by species j on the species i 

because of the relative velocity difference.  The sum on the right-side of Eq. (79) is the 

total drag force on the motion of species i per unit volume.  The left-side of Eq. (79), 

( )iic μ∇−  is regarded as a driving force per unit volume acting on species i.  This force is 

considered to cause species i to move with respect to the surrounding fluid.  Equation 

(79)  expresses the balance between the driving force and the total drag exerted by the 

other species.  By Newton’s third law of motion, i.e., action is equal to reaction,  

jiK = ijK  or  

                                      jiD  = ijD   (Onsagar reciprocal relation)                          (80) 

   It is noted here that the number of independent equations of the type (76) is one less 

than the number of species and adding them leads to: 

                                [ ]∑ ∇
i

iic μ  = ( )∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−

i j
ijji vvK                                            (81) 

The left side of Eq. (81) is zero as evidenced by the application of the Gibbs-Duhem 

equation at constant temperature and pressure [J.W.Tester, M.Modell, Thermodynamics 

and Its Applications, p.148, Prentice Hall, (1997 edition)].  The right side is zero because 

jiK = ijK . 

 

Equation (76) is quite general because here the driving force on a species i is related to a 

linear combination of resistances opposing its motion instead of just one resistance 

relative to the solvent.  The spatial gradient of the electrochemical potential acts as the 

driving force for diffusion and electric migration.  The number of transport properties 

jiD  defined by Eq. (76) is ( )[ ]2/1−nn  for n component system, because jiD  = ijD  and 

iiD  is not defined; where n is the number of species involved. 

 

For the membrane phase involving membrane matrix m, H+, CH3OH and H2O; there are: 

4(4-1)/2 = 6 transport properties of type jiD .                                                    
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Following Eq.(76) 

 iic μ∇ = ( )∑ −
j

mjji vvM                                                                           (82) 

 Where mv = velocity of the membrane material which is zero in the current 

situation. 

∑
j

jiM jv = ∇ic iμ                                                                                    (82a) 

                       i = H+, M, W; j = H+, M, W, m; 

   jiji KM =     ; ji ≠  

  jiji KM = - ∑
k

kiK ; ji = ; k = H+, M, W, m. 

           Applied to =i H+; M ( CH3OH); W (H2O): 

           +++ ∇=∑ HHj
j

jH cvM μ                                                                                     (82b) 

           MMj
j

jM cvM μ∇=∑                                                                                  (82c) 

           WWj
j

jW cvM μ∇=∑                                                                                        (82d) 

    +++++++ ∇=++
HHWWHMMHHHH

cvMvMvM μ                                                   (83a) 

    MMmmMWWMMMMHMH
cvMvMvMvM μ∇=+++++                                       (83b) 

   WWmmWWWWMMWHWH
cvMvMvMvM μ∇=+++++                                           (83c) 

Note: No need to write an Eq. for membrane (m) species, because only,  

(n-1) = 4-1 = 3 independent Eqs. of the type (76) exist.  Here mv (membrane velocity) 

is zero (since membrane is assumed to be stationary with regard to the laboratory 

reference frame at the steady state conditions). So, Eqs.(83a) to (83c) become 

 +++++++ ∇=++
HHWWHMMHHHH

cvMvMvM μ                                               (83d) 

MMWWMMMMHMH
cvMvMvM μ∇=++++                                                     (83e) 

           WWWWWMMWHWH
cvMvMvM μ∇=++++                                                        (83f) 
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       With    ji ≠  

           ;
MHMH

KM ++ =  ;
WHWH

KM ++ =  ;++ = HMHM
KM  

           ;WMWM
KM =    ;++ = HWHW

KM    ;WMWM KM =   

      
MHHMHMMH

KKMM ++++ ===                                                                           (84a)                                  

      
WHHWHWWH

KKMM ++++ ===                                                                            (84b) 

      
WMMWMWWM KKMM ===                                                                           (84c) 

For ji =  

                       ∑−=
k

kijjii KKM                                                                               (85) 

+=Hi :  

 [ ]
mHWHMHHHHH

k
kHHHHH

KKKKKKKM ++++++++++++ +++−=⎥
⎦

⎤
⎢
⎣

⎡
−= ∑     

   ∴ ( )
mHWHMHHH

KKKM +++++ ++−=                                                               (85a) 

i = M (CH3OH): 

 [ ]mMWMMMHMMM
k

kMMMMM KKKKKKKM +++−=⎥
⎦

⎤
⎢
⎣

⎡
−= +∑                      (85b) 

=MMM ( )mMWMHM
KKK +++  

           = - ( )mMWMMH
KKK +++  

)( 2OHWi= : 

⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

k
kWWWWW KKM  

          −= WWK ( )mWMWWWHW
KKKK ++++          

=WWM - ( )WmWMWH
KKK +++                                                                             (85c) 

            = - ( )WmWMWH
KKK +++  

Note:  Total interaction coefficients involved are: 
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their # is =  n(n-1)/2 =  4(4-1)/2 = 6  

 

Three Eqs. (83), (83e), and (83f) are rewritten as  
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Call the matrix made of M’s as L matrix, 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
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⎝

⎛ +

W

M

H

v
v

v

 column vector as V ; and the one in 

right-side as D  driving force vector; Therefore we can write as 

                                             L V  = D                                                               (88) 

If  L is non-singular matrix, i.e., determinant (L)≠  0; so that 1−L (inverse of matrix L) 

exists, then Eq. (87) or (88) is solved by writing  

                                        V = 1−L D                                                             (89) 

( Advanced Mathematics by M.R. Spiegel, p.347 (1971 edition), 24th printing (1996)) 

The system of equations has unique solution. 

For one (x-) dimensional case, Eq.(89) is written as  

                          xxxx DLv δδ 1−=                                                                      (89a) 

                or, 

                           xv = 1−L xD                                                                              (89b) 

          where xv  = 
⎟⎟
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                                                   (89c) 
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Note: Find 1−L , then get expressions for xHv ,+ , xMv ,  and xWv , . Then, move on 

                                     1−L  = ? 

      Matrix (L) = 
⎟
⎟
⎟
⎟
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                                               (90) 

Because 
MH

M + = +HM
M ;  +HW

M = 
WH

M + ;  MWM  = WMM . 

Note that the L matrix is the symmetric matrix. 

The inverse matrix 1−L  is defined as  

      ( 1−L ) = 
( )

( )L
M T

kj

det
                                                                                           (91) 

where det (L) = value of the determinant of the square matrix L, and  

( )kjM  is the matrix made of cofactors of the elements in the matrix L; ( )TkjM  is the 

transpose of ( )kjM . 
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                                                                                                                             (92) 

( )TkjM  = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

333231

232221

131211

MMM
MMM
MMM

                                                                    (93) 

where   11M  = ( )2
MWWWMM MMM − ,   

             12M  = ( )WWMHWHWM MMMM ++ − , 

             13M  = ( )MMWHWMMH
MMMM ++ − ,   

       21M  = ( )WWMHWMWH
MMMM ++ − ,  

                   22M  = ( )2
WHWWHH

MMM +++ − , 
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                       23M  = ( )WMHHWHMH
MMMM ++++ − , 

                        31M  = ( )MMWHWMMH
MMMM ++ −  , 

                          32M  = ( )WMHHWHMH
MMMM ++++ − , 

                        33M  = ( )2
MHMMHH

MMM +++ − .                  

                                                                                                                                       (94) 

The determinant of matrix (L) is 

                              Det (L) = 

WWMWHW

WMMMHM

WHMHHH

MMM

MMM

MMM

+

+

++++

                                           (95) 

The determinant det (L) is the 3rd order determinant . 

 

From Eq. (91), (93), the inverse matrix ( 1−L ) is 

                  ( 1−L )  =  
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⎥
⎥
⎥
⎥
⎥
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                         = ( ) ⎟
⎟
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⎞

⎜
⎜
⎜
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⎛
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⎟
⎟
⎟
⎟
⎟
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detdetdet
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232221
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                                                      (96) 

We now use Eqs.(89b), (89c) and (96): 
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                                                                                                                                       (97) 

Hence, equations for the “net” velocities of species H+, M (methanol, CH3OH), and  

W (water, H2O) are given below: 
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Note: det(L) from Eqs.(90), [84a, b, c; 85a, b, c] 

           M’s from Eq.(94), [84a, b, c], [85a, b, c] 

We may write Eq.(98) as: 
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                                                                                                                                 (99) 

Treatment of chemical potentials iμ  of the species: 

For a charge neutral species, 

                            ( ) ( )iiii xRTPT γμ ln,@ +Ω=                                                          (100) 

where iμ = chemical potential of a charge neutral species i in the membrane phase at any   

                   point, 

( )PTi ,@Ω = chemical potential of species i as pure at the temperature T and pressure P  

                      and in the same state of aggregation as that of it in the “membrane solution  

                      phase”,(may be assumed to be the liquid phase); 

             iγ  = activity coefficient of species i; it is a function of temperature, pressure and  

                     composition of the “membrane solution phase”; 

              ix  = mole fraction of species i in the solution phase. 

Note: Here, i = CH3OH, H2O, and the membrane material m if it is assumed charge  

                         neutral. 

From (100), 

                         ( )[ ]iiii xRTddd γμ ln+Ω=                                                                (101) 

                                = ( )dTSdPV ii −  + ( )[ ]ii xRTd γln                                               (102) 

                        ( )[ ]iiiii xTdRdTSdPVd γμ ln+−=                                                    (103)         

where iV , iS  = molar volume and entropy of pure species i at (T,P) of the system at a   

                         spatial point in the membrane phase solution. 

If the condition of isothermality is applied; Eq.(103) becomes 

                    ( )[ ]iiii xTdRdPVd γμ ln+=                                                              (104) 

divide by dx: 
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i
i γμ ln
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⎛                                                        (105) 
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i = M (CH3OH), W(H2O), m (membrane material as a component). 

Electrochemical potential of H+ is defined as: 

                        Φ+= +++ Fz
H
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HH

μμ                                                                      (106) 
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γλθ ,ln + Φ+ Fz
H

                                      (106a) 

where om = a reference molality (e.g. 1 g-mole per kg of a solvent). 

The molality +H
m  is given also as: 

               
oo

H
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c
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+

+ =                                                                                            (106b)          

oo Mc = solvent concentration in mass units, here solvent assumed to be mixture of the 

membrane material m, water, methanol; for the transport of H+ ions. oM  is the molecular 

weight of the solvent. 

The expression for +H
m  is rewritten as 
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where Tc  = total mixture concentration and +H
c  = hydrogen ion concentration. 

One may then say, ox  = 1- +H
x  , if all other species; membrane material (m), CH3OH, 

H2O are taken to constitute the solvent for H+ ion transport. 

 

Putting Eq. (106c) into (106): 
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Under the condition of constant temperature and assuming that the effect of pressure 

variation on chem
H

,θλ +  across the membrane for the pressure variations of the order of 10 bar 

is negligibly small; then Eq.(106) reduces to: 

          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

dx
d Hμ = 0 + 

dx
dRT

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

+

o

H
H x

x
γln - 0 + 

dx
dFzH

Φ
+  

                           = 
dx
dRT

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

+

o

H
H x

x
γln  + 

dx
dFz

H

Φ
+                                            (106g) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∴

+

+

dx
d

c H
H

μ
 =  ( )RTc

H + dx
d

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

+

o

H
H x

x
γln + ( )++ HH

zc
dx
dF Φ                            (106h)    

                           =  ( )RTc
H + ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

+

o

H
H x

x
dx
d lnlnγ + ( )++ HH

zc
dx
dF Φ  

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

+

dx
d

c H
H

μ
 = ( )RTc

H +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++

o

HH

x
x

dx
d

dx
d

ln
lnγ

+ ( )++ HH
zc

dx
dF Φ                 (106i) 

From Eq.(30) 
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where i = CH3OH, H2O. 

Assuming +H
γ , iγ  variation with x over the “membrane phase” negligibly small,  
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= 0; then Eqs.(106i) and (106j) becomes: 
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Simplification: 

If  
dx
dP = 0, if pressure on both sides of the membrane are same or if the effect of 

dx
dP  on 

the transport of a species is negligible; then (107b) becomes: 
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                                        i = CH3OH, H2O. 
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From (32a) and (35): 
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Substitute from (109a), (109b), and (111a) into Eqs.(98): 
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The molar fluxes of the species are given as: 

                  xiN , =  ixi cV ,                                                                                              (113) 
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The continuity equation for a species i in the membrane phase, under the steady-state 

condition, 

                0, =
dx

dN xi                                                                                                      (114) 

                       ( )(W) H2O (M), CH3OH ,H  i +=   

leads to: 

               xiN , = 0, =xiN = 
mxiN δ=, .const=                                                           (114a) 

0, =xiN , 
mxiN δ=, are the fluxes at the end of the membrane but on the “membrane phase 

side”. 
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xWN ,  = ( )WxW cv ,  =  
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Using Poisson equation, it was found for the membrane phase in ‘Transport Set of 

Equations-I’:  
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where; +H
c  =  average concentration of H+ with the entire membrane phase taken as the  

                        mixture of [mobile H+ in the fluid phase], CH3OH, H2O and membrane  

                        material. 
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 mδ  = thickness of the membrane phase. 
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Putting the above equation into Eqs. (115b), (116b), (117b): 
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The flux equations (120a), (120b), and (120c) are quite general in that they can be 

applied to a membrane made of any material, provided the information on the values of 

the interaction coefficients jiM  is available.  The following equation for the voltage 

distribution in the membrane is from the solution of the Poisson equation for the “net 

charge” due to H+ ions passing through the membrane in the company of H2O molecules 

as well as CH3OH if CH3OH molecules are also permeating. 
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The expressions in Eqs. (120a), (120b), and (120c) indicate the fluxes of the species H+, 

CH3OH (M) and H2O (W) via diffusion mechanism, where the diffusion flux of each 
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species is affected by the gradients of the concentrations of all mobile species, and via 

electric field effect. 

 

Equations (120a) through (120c) are now transformed as follows: 

For the treatment of Eq.(120a): 

                        ⎥⎦
⎤

⎢⎣
⎡

+ dx
dxx M

H
= ( )

dx
dx

xxx
dx
d H

MMH

+

+ −  

                        ⎥⎦
⎤

⎢⎣
⎡

+ dx
dx

x W
H

= ( )
dx

dx
xxx

dx
d H

WWH

+

+ −  

  Using the above equations, Eq.(120a) is rewritten as: 
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For the treatment of Eq.(120b): 
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Using the above equations, Eq.(120b) is transformed into: 
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For the treatment of Eq.(120c): 
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Putting this information into Eq.(120c): 
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                              +H
c  =  TH

cx +  

    where +H
x  = 

2
@/0@/ MxHxH

xx
δ== ++ +

 

 

Equations (121a), (121b), and (121c) describe the fluxes of the species H+, CH3OH (M) 

and H2O (W) through the membrane via diffusion and electric field effect.  Note the 

transport of  CH3OH (M) and H2O (W), via electric field effect also, for these charge 

neutral species. 

 

These equations are quite general.  Also, for the condition of steady-state the fluxes 

xH
N

,+ , xMN , and xWN ,  are invariant with respect to the distance x through the 

membrane phase. 
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In what follows an approximate method (i.e. engineering practice method) is followed to 

relate the fluxes to the species mole fractions.  Here, diffusion interaction related 

parameters s
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M
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⎛
 are assumed to be constant over the membrane phase thickness, 

mδ .  Total membrane phase molar concentration Tc  is also taken constant.  In fact, one 

may take the average values of these parameters at the membrane ends. 

 

Treatment of Eq.(121a): 
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Now, some approximations have to be made 
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     where ( )2
+H

x  =  
( )

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
∫ +

m

H

m

dxx

δ

δ

0

2

                                                                             (122g) 

                       =
( ) ( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ − == ++

2
@

2
0@

2
MxHxH

xx δ                                                                (122h) 

Equation (122f) becomes 
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Equation (122b), now, becomes 
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                                                                                                                                      (123) 
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Check: Units :  
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⎠
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⎜
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⎥
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⎣
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Equation (123) is dimensionally correct. 

Treatment of Eq.(121b): 

Multiply this Eq. by dx and integrate over the membrane: 
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                                                                                                                            (124) 

Divide both sides by mδ : 
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Treatment of Eq.(121c): 

Multiply (121c) by dx and integrate term by term over the membrane for x = 0 →x = 

mδ : 
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Comment: 

In Eqs. (123), (125), and (127), on the right-hand side of each equations, the terms  

contribute to the flux of the concerned species via the multi component diffusion and the 

last term on the right-hand side represents the flux due to electric field.  In the case of  M 

(CH3OH) and W (H2O), the last term is defined here as the electro-osmotic flux. 

 

Equations (123), (125) and (127) are now written in terms of concentrations rather than in 

terms of mole fractions: 
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Now, the species H+, CH3OH (M), and H2O (W) concentrations in the membrane phase 

at its boundaries with the electrodes are expressed in terms of the species compositions in 

the porous electrodes using the concept of phase equilibria between the membrane and 

electrodes with regard to each species. 

 

For the liquid mixture in the porous anode in equilibrium with the membrane phase at x = 

0, with regard to a species i, the condition for equilibrium is 
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                                eA
i
−μ  = eom

i
−μ                                                                                (131) 

                                                              (i = CH3OH, H2O) 

              eA
i
−μ  = oL

iμ  + RT ( )eAL
i

AL
i x −−−γln                                                                   (132) 

              eom
i
−μ  = om

iμ  + RT ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

o

eom
iAmc

i c
c,ln γ                                                           (133) 

                                                            (i = CH3OH, H2O) 

 

where  oL
iμ  = chemical potential of the pure liquid species i at the temperature and  

                       pressure of the mixture in the anode, 

           om
iμ  =  chemical potential of the pure liquid species i at the temperature and  

                        pressure of  the mixture in the membrane phase, 

        eAL
ix −−  =  mole fraction of species i in the liquid phase mixture in the porous anode  

                        end in contact with the membrane, 

          eom
ic −  = mole concentration of species i [mol per unit volume] in the membrane  

                        phase in contact with the porous anode end at x = 0, 

               oc  = 1 mol per unit volume; used here as adjusting parameter to make ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

o

eoM
i

c
c

  

                        a dimensionless quantity, 

           AL
i
−γ  =  activity coefficient of species i in the liquid phase mixture in the porous 

                        anode to account for the nonideal behavior of species i in the mixture, 

         Amc
i

−,γ  =  activity coefficient of species i in the membrane phase to  

                         account for the nonideal behavior. 

The standard state chemical potentials for the liquid phase in the anode, oL
iμ , and for the 

membrane phase, om
iμ , are assumed to be identical, i.e. oL

iμ  = om
iμ , 

Eqs. (131), (132),and (133) lead to 

                         
o

eom
iAmc

i c
c −

−,γ  = AL
i
−γ eAL

ix −−                                                                 (134) 

This leads to: 
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                                eom
ic −  = ⎥

⎦

⎤
⎢
⎣

⎡
−

−

Amc
i

AL
i
,γ

γ eAL
ix −−

oc                                                        (135) 

                                           =  mAL
is −− eAL

ix −−
oc                                                          (136) 

                                                               (i = CH3OH, H2O) 

Here, mAL
is −−  = ⎥

⎦

⎤
⎢
⎣

⎡
−

−

Amc
i

AL
i
,γ

γ
, has been defined as the liquid solubility coefficient of 

component i in the membrane phase corresponding to the liquid phase composition in the 

anode.  Note that eom
ic −  is the molar concentration of the species i in the membrane phase 

at x = 0. 

 

Following the similar procedure, it leads to  

                                      em
ic −  = mCL

is −− eCL
ix −−

oc                                                    (137) 

                                                              (i = CH3OH, H2O) 

where em
ic −  = molar concentration of species i in the membrane phase at x = mδ , 

       mCL
is −−  = ⎥

⎦

⎤
⎢
⎣

⎡
−

−

Cmc
i

CL
i
,γ

γ
, the liquid solubility coefficient of component i in the membrane   

                        phase corresponding to the mixture composition in the porous cathode end  

                        in contact  with the membrane at x = mδ . 

If the dependence of the solubility coefficient of a species i in the membrane phase on 

compositon can be relaxed; then, one may set  

            mAL
is −−  = mCL

is −− = m
is  (solubility coefficient of the species i in the membrane 

                                                  phase)                                                                  (138) 

 

Equations (136) and (137) are rewritten as 

                     eom
ic −  = m

is eAL
ix −−

oc                                                                        (139a) 

                                       (at the membrane-anode interface) 

and                  em
ic −  =  m

is eCL
ix −−

oc                                                                      (139b) 

                                       (at the membrane-cathode interface) 

                                        (i = CH3OH, H2O) 
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where m
is  = solubility coefficient of the species i in the membrane phase at the prevailing  

                     temperature and pressure conditions. 

Treatment of H+: 

                       eA
H
−
+μ  = eom

H
,
+μ                                                                                        (140) 

where  eA
H
−
+μ  = electrochemical potential of H+ in the porous anode end in contact with the  

                        membrane phase, 

            eom
H

,
+μ = electrochemical potential of H+ in the membrane phase end in contact  

                         with the anode at x = 0. 

The electrochemical potential of H+ is expressed as 

                        +H
μ = RT ( )+++ HHH

m γλθln                                                                    (141) 

where  +H
m  = molality of H+ in the solution in a porous electrode or in the membrane  

                        phase, 

             +H
γ  = +H

γ (temperature, pressure and compositon) = activity coefficient of H+, 

             θλ +H
 = a proportionality constant, independent of composition and electrical state,  

                        but characteristic of H+ and the solvent and dependent on temperature and  

                        pressure. 

Equation (141) is used in Eq.(140) to obtain 

                        A
H

,θλ +  eA
H

m −
+  eA

H
−
+γ = m

H
,θλ +

eom
H

m −
+

eom
H

,
+γ                                                   (142) 

If it can be allowed that A
H

,θλ +  = M
H

,θλ +  (it may become possible if one can assume that 

water is solvent for the mobile H+ ions in the porous anode and membrane); then, 

Eq.(142) becomes 

                       eA
Hm −

+  eA
H
−
+γ = eom

Hm −
+

eom
H

,
+γ                                                                   (143) 

                             eom
Hm −

+  = eA
Hm −
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⎜
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+
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                                                               (143a) 

        ( )W
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The solubility coefficient of H+ ions in the membrane phase in the presence of water may 

be defined as 

               AmL
Hs −−

+  = 
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                                                         (144) 

where eom
Wc −  = molar concentration of water in the membrane phase end in contact with  

                        the porous anode at x = 0, 

            eA
Wc −  = molar concentration of water in the porous anode end in contact with the  

                        water, 

 eA
H
−
+γ , eom

H
,
+γ  = activity coefficients of H+ ion in the porous anode solution and in the  

                        membrane phase solution, respectively, at the membrane-anode interface  

                        at x = 0. 

Note that  AmL
H

s −−
+  is controlled by the product of  ⎟⎟
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⎞
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It can be assumed that  ⎟
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                  Then, AmL
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From Eqs. (143b) and (144), 

                             eom
H

c −
+  = AmL

H
s −−

+
eA

H
c −

+                                                                       (145) 

Following the similar procedure it can be shown that 

                             em
H

c −
+  = CmL

H
s −−

+
eC

H
c −

+                                                                        (146) 

where  em
Hc −

+ = molar concentration of H+ in the membrane phase end in contact with the  

                       porous cathode at  x = mδ , 

           eC
H

c −
+  = molar concentration of H+ ion in the mixture in the porous cathode end in 

                       contact with the membrane at  x = mδ , 
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                         CmL
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 defined as the solubility coefficient of H+ 

ions in the membrane phase end in contact with the porous cathode at x = mδ , 

        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

eC
W

em
W

c
c

 = ratio of molar concentration of water in the membrane to the molar 

                         concentration of water in the porous cathode phase end at the  

                         membrane-cathode interface at x = mδ , 

        ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
−

em
H

eC
H

,γ
γ

 = ratio of H+ ion activity coefficient in the porous cathode to that in the  

                        membrane  phase at the cathode-membrane interface. 

If it can be allowed that  

                        AmL
H

s −−
+  = CmL

H
s −−

+  = m
H

s + ; 

then, Eqs. (145) and (146) are written as 

                     eom
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+  = m

H
s +

eA
H

c −
+                                                                                     (147) 

                      em
Hc −

+  = m
Hs +

eC
Hc −

+                                                                                     (148)                                 

Molar concentrations of  H+, CH3OH (M), and H2O (W) appearing in the membrane 

phase in Eqs. (128), (129), and (130) are expressed in terms of the concentrations of the 

species in the porous anode and cathode using Eqs. (139a), (139b), (147) and (148) to 

obtain 
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5 Conclusions 
 
Derivation of the transport flux equations for a direct methanol fuel cell solid polymer 

electrolyte membrane using i) moderately dilute solution theory based on Fickian 

diffusion, ii) concentrated solution theory based on the generalized Stefan-Maxwell 

equations, and iii) concentrated solution theory based on the Onsager irreversible 

thermodynamics approach to transport processes have been presented.  The developed 

equations account for the effect of the voltage, pressure and the species concentration 

gradients on their transport fluxes.   

 

These equations, describing species transport fluxes through a solid polymer electrolyte 

membrane are to be coupled with the equations, yet to be developed, describing mass 

transfer through the electrode porous backing layers and species mass transport with 

electrochemical/chemical kinetics in the porous electrode layers.  The coupled equations, 

describing the various phenomena occurring in a DMFC in operation, will be of immense 

significance in the evaluation of performance and design/development of a DMFC.   

 

The developed transport equations, in this report, can be used to experimentally 

determine the transport properties of a membrane, from very dilute to very concentrated 

solutions, such as permeability of the fluid mixture and effective mass diffusivities of the 

various species. 

 

 




