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1 Summary

Development of the equations to predict the species (H*, CH,OH, H, O) molar fluxes

and ionic current density through the PEM of a DMFC is described. In the Transport Set
I section of this report, the equations are based on the extension of moderately dilute
solution theory. These equations involve the Fick’s law type diffusivities that are
strongly dependent on the species concentrations. In the Transport Sets Il and 111
sections of this report, the developments are valid for dilute to very strong solutions. The
transport set 11 is the application of the generalized Maxwell-Stefan equations for the
species transport through the PEM. The transport through set 111 is the result of the
application of the Lars Onsager’s irreversible thermodynamic approach to transport

processes.

2 Introduction

Modeling activity in conjunction with the experimental work is deemed to economically
aid in the development of an optimal design of a direct methanol fuel cell (DMFC) for
aerospace and ground transportation vehicle applications. To this end, research/
development activity by the principal investigator (P.l.), Sarwan S. Sandhu is given

below.

The principal investigator (P.1.) developed a theoretical scheme (see Volume 1 of this
report) to predict the reversible cell voltage in the absence of electrode poisoning and
methanol crossover through a polymer electrolyte membrane of a DMFC, for example,
Nafion® perfluorosulfonic acid polymer and polybenzoxazole or polybenzimidazole
based electrolyte membranes. The scheme based on the application of thermodynamic
fundamentals of the phase and electrochemical reaction equilibria predicts the reversible
voltage at any fuel cell temperature. The effect of nonideal behavior of fluid phases in
the anodic and cathodic fluid compartments of a fuel cell on the reversible voltage is

accounted for. The simulation is capable of predicting the reversible cell voltage as



function of reactant feed composition and different total pressures in the anode and
cathode plenums. The developed reversible voltage equation reduces to the Nernst type
equation for the ideal fluid phase behavior of the fuel and oxidant feeds. The predicted
reversible cell voltage can be used as an ideal standard to which the actual voltage of a
direct methanol fuel cell operating at a given set of reactant feed composition,
temperature, and pressure conditions can be compared to evaluate the fuel cell

performance.

A senior year undergraduate student, Mr. R. Owen Crowther, typed the entire theoretical
development by the P.1. for the reversible cell voltage prediction. The P.I. guided Owen
to develop a computer code to simulate the entire set of mathematical equations to
generate the reversible cell voltage data as function of temperature, fuel feed

composition, and anode and cathode side total pressures.

The actual theoretical development, the computer code, and the code generated numerical
data in the form of tables and plots are presented in Report #1 entitled: “Fuel Cell
Project: Direct Methanol Fuel Cell: Theoretical Formulation of Reversible, Open-Circuit
Voltage for a Direct Methanol Fuel Cell” by Sarwan S. Sandhu, Department of Chemical
& Materials Engineering, The University of Dayton, Dayton, Ohio 45469-0246.

Presented in this report volume, the P.I. has developed the mathematical equations to
predict the ionic current density and the species (H*,CH30OH, H,0) molar fluxes for their
transport through a solid polymer electrolyte or polymer-ceramic material composite
membrane of a DMFC at the steady state, isothermal conditions by the application of
fundamentals of transport phenomena. The developed transport equations are presented
in three sets. In the transport set I, the equations are based on the extension of
moderately dilute solution theory. These equations involve the Fick’s law type mass
diffusivities that are known to be strongly dependent on the species concentrations. The
transport equation sets Il and 111 are valid for very strong solutions. The transport
equation set Il is based on the application of the generalized Maxwell-Stefan equations.
The transport equation set 111 is based on the application of the Lars Onsager’s



irreversible thermodynamic approach to transport processes. The developed equations
account for the effect of the voltage, pressure and the species concentration gradients on
their transport fluxes. These equations, describing species transport fluxes through a
solid polymer electrolyte membrane are to be coupled with the equations, yet to be
developed, describing mass transfer through the electrode porous backing layers and
species mass transport with electrochemical/chemical kinetics in the porous electrode
layers. The coupled equations, describing the various phenomena occurring in a DMFC
in operation, would be of immense significance in the evaluation of performance and
design/development of a DMFC. The usefulness of the developed transport equations
may also be seen in that they can be employed to experimentally determine the transport
properties of a membrane such as permeability of the fluid mixture and effective mass

diffusivities of the species by designing appropriate fuel cell experiments.

The developed transport equations by the P.I. were typed by Mr. Sarath Krishnan, a
graduate student in the chemical engineering program at the University of Dayton. Very
recently, Mr. R. Owen Crowther (who is now a graduate student in our chemical
engineering program) has been guided by the P.I. to simulate the first set of transport
equations in the form of a computer code to generate numerical data on current density
and species (H*, CH3OH, H,0) molar fluxes through a polymer electrolyte membrane of

a DMFC. He is expected to start developing the computer code in the near future.

The actual theoretical development of the transport equations is presented in Report #2
entitled: “Fuel Cell Project: Direct Methanol Fuel Cell: Theoretical Formulation of
Transport Fluxes of species (H*, CHsOH, H,0) through a Solid Polymer Electrolyte
Membrane (PEM) of a Direct Methanol Fuel Cell,” by Sarwan S. Sandhu, Department of
Chemical & Materials Engineering, The University of Dayton, Dayton, Ohio 45469-
0246.

The P.1. developed a set of equations to predict the reversible as well as irreversible or
actual power production from a continuously fed DMFC operating at steady-state
conditions. This development is based on the fundamentals of classical thermodynamics



and the species and overall material balances. The scheme requires the information on
the reactant feed stream composition, temperature, and pressure conditions at the inlets of
a DMFC, fractional conversion of methanol via electrochemical process for the
production of electric power, its chemical oxidation at the catalytic surface of the
cathode, and the amounts of methanol, water, and hydrogen ions transported through the
solid polymer electrolyte membrane from the anode side to the cathode side of a DMFC.
The development accounts for the nonideal behavior of the fluid phases. This
development is not in the typed form at the time of reporting. Mr. Sarath Krishnan, a
graduate student in the chemical engineering program at the University of Dayton has
gladly accepted to understand the entire scheme of equations and to present them in the
form of a typed report. Also, he would develop a computer code under my direction to
generate numerical data on the reversible and actual electric power production as function

of input parameter values.

The P.1. studied and carried out partial analysis of the open literature on the research/
development of direct methanol fuel cells depending on availability of time for this
equally important activity. Based on the information acquired from the literature on the
direct methanol fuel cells and his knowledge of the basic and engineering sciences
relevant to the research/development of a DMFC, the P.I. developed an outline of a
comprehensive research/development program to develop an efficient DFMC energy
conversion system. The outline has been entitled, “Direct Methanol Fuel Cell (DMFC)
Research/Development - Theoretical and Experimental Integrated Approach”. A copy of
this outline was provided to Dr. J.P. Fellner of the Power Division of the WPAFB, Ohio.

The effort by Sarwan S. Sandhu (P.1.), his students and Dr. J. P. Fellner on the
research/development activity has resulted in the following presentations and proceedings
publications:

“Direct Methanol Polymer Electrolyte Fuel Cell Modeling: Open-Circuit Voltage
Equation” in the Proceedings of the 8" International Conference on Electrical and
Electronic Products, Vol. 34 (2002), pp. 233-253, Product Safety Corporation,



Sissonville, West Virginia; The Conference held at the Greenbrier, White Sulphur
Springs, West Virginia; January 14-16, 2002.

Direct Methanol Polymer Electrolyte Fuel Cell Modeling: Reversible Open
Circuit Voltage Equation and Species Flux Equations”, presented at the 8" International
Symposium on Polymer Electrolytes” held at the Eldorado Hotel, Santa Fe, New Mexico,
May 19-24, 2002.

“Direct Methanol Polymer Electrolyte Fuel Cell Modeling,” presented at the 2002
AIChE North Central Regional Student Conference. “A Climate Change,” Chem-E-Car
Competition, University of Michigan, February 7-9, 2002.

3 Methods, Assumptions, and Procedures

Presented in this report volume, the P.I. has developed the mathematical equations to
predict the ionic current density and the species (H*,CH3OH, H,O) molar fluxes for their
transport through a solid polymer electrolyte or polymer-ceramic material composite
membrane of a DMFC at the steady state, isothermal conditions by the application of
fundamentals of transport phenomena. The developed transport equations are presented
in three sets. In the transport set | section, the equations are based on the extension of
moderately dilute solution theory. These equations involve the Fick’s law type mass
diffusivities that are known to be strongly dependent on the species concentrations. The
transport equation sets Il and 111 sections are valid for very strong solutions. The
transport equation set 11 section is based on the application of the generalized Maxwell-
Stefan equations. The transport equation set 111 section is based on the application of the
Lars Onsager’s irreversible thermodynamic approach to transport processes. The
developed equations account for the effect of the voltage, pressure and the species
concentration gradients on their transport fluxes. These equations, describing species
transport fluxes through a solid polymer electrolyte membrane are to be coupled with the
equations, yet to be developed, describing mass transfer through the electrode porous
backing layers and species mass transport with electrochemical/chemical kinetics in the
porous electrode layers. The coupled equations, describing the various phenomena

occurring in a DMFC in operation, would be of immense significance in the evaluation of



performance and design/development of a DMFC. The usefulness of the developed
transport equations may also be seen in that they can be employed to experimentally
determine the transport properties of a membrane such as permeability of the fluid
mixture and effective mass diffusivities of the species by designing appropriate fuel cell

experiments.

4 Results and Discussion

4.1 Flux Equations for a Direct Methanol Fuel Cell Solid Polymer
Electrolyte Membrane

Derivation of the transport flux equations for a direct methanol fuel cell solid polymer
electrolyte membrane using i) moderately dilute solution theory based on Fickian
diffusion, ii) concentrated solution theory based on the generalized Stefan-Maxwell

equations, and iii) concentrated solution theory based on the Onsager irreversible

thermodynamics approach to transport processes are given below.

4.1.1 Transport Set | — Flux Equations using Moderately Dilute Solution
Theory

4.1.1.1 Introduction

The transport equations given below are quite general in that they can be applied to any
type of membrane (e.g. acid doped polybenzimidazole, Nafion® - DuPont, a ceramic
(clay: Al,05.2Si0,.2H,0)- Nafion® or PVDF ( polyvinylidene floride) composite) with
some adjustments if required. The developed equations are presented in the form such
that transport and solubility/permeability data either can be obtained from experimental
work or available literature. It is assumed here that the geometrical configuration of the

membrane is invariant during the isothermal, steady state operation of DMFC.



4.1.1.2 Mathematical Derivation

In general, transport of H"™ through membrane can be considered via diffusion, migration
due to electric field and convection dependent upon the pressure difference across the
membrane and permeability of the membrane to the fluid mixture of CH3OH, H,0, H,
etc., noting that the membrane permeability is function of its molecular structure and void
fraction, €, defined as the ratio of the volume of the interstices between the atoms /
functional groups and nanometer /micrometer pores to the total membrane occupied

volume.

If the gradient of the H™ electrochemical potential is used as the driving force for
diffusion through membrane in the presence of water or water-methanol mixture, the flux
of H" per unit area of the membrane perpendicular to the direction of transport of H* can

be expressed as:

NT EUH+
o R L S /7 R ()

where u,. = mobility of H" in water or in water-methanol mixture present in the

membrane, [(m?/s)/ (J/mol)];

7 = tortuosity factor to account for the zigzag path ways for the species transport
through the membrane;

e =void fraction of interstices, nanometer/micrometer size pores acting as
pathways for the permeation of H*, water, and methanol, if methanol crossover is
occurring through the membrane;

¢,,. = fluid phase concentration of H*, [ mol/m¢’];

.= .+ 2, F® =electrochemical potential of H" in the fluid phase, [

J/mol];

v, = superficial fluid phase velocity, [m/s];
,ufj[ = chemical potential of H" in the fluid phase in the presence of membrane

material [J/mol];

z,,. = number of protonic charges on H'=+1;



F = Faraday’s constant, e.g., charge on 1 g-mol of charged H* ions = 96487
[coulomb/mol];

@ = electrical potential,[ V ].
eu,

] is the effective mobility of H'.

In the first term on the right hand side of Eq. (1), ( r

This multiplied with (~ ¥, . ) results in the effective velocity for diffusion and

migration via electric field, and multiplication by the concentration c . results in the

contribution to the net flux I\TIH+ . The second term on the right hand side is the

contribution to the flux via convective motion of the fluid phase.

The Nernst-Einstein relation is used to express u . interms of D . [diffusivity of H',

D +

u,. = lel' (2)

where, D ,. = H* ion diffusivity in the fluid phase (in water or water-methanol

mixture) in the membrane, [m?/s];
T =temperature, [K];

R = universal gas constant, [8.314J / mol — K].

Replacing u . , interms of D, ., in Eq. (1) leads to

lij S DH* CH+
= T (RTVa ] e ®)
N
HY = DH*,eff RT [‘VﬂH+] +Cy v, (32)
eD . e . . . .
where D, . = H_ = effective diffusivity of H" in the fluid phase present in
' T

the membrane, [m%/s].

If the hydrogen ion is chosen to define the electric potential, @ ;

C +
Then, u,. =RT In(L] +z, . FO 4)
c

0



The gradient of the electrochemical potential of any other ionic species i can be written
as:

()
Z,. Z,

. . Zu.,. AT
\Z :V(ﬂi_ A ] + -

Note that in the first term on the right hand side of Eq. (5) the expression within the
parentheses is independent of electric potential according to the reference [J.S. Newman,

Electrochemical systems, Prentice Hall, 1991].

Z; _ Z;
(,ui —Z—,LlH+] =RTIn4-——RTIn 2, (6)

H+ ZH+
where 4, is the absolute activity of species i; z;, the number of unitary charges on

species I.
o=@ (i] fi (62)

where a’= a proportionality constant, independent of composition and electrical
state; function of the nature of solute and solvent and dependent on temperature and
pressure; for condensed phases the pressure dependence is ignored;

¢, = molar concentration of species i, [mol/liter];

Co= 1 mol/liter; is introduced here to make a’, [a dimensionless quantity];
f. = activity coefficient of species, i, to account for non-ideal behavior of

species i in the fluid phase present in the membrane, [dimensionless].

C..
’. [C—] f. (6b)

and 4,,. from Egs. (6a) and (6b) into (6), one obtains:

. . C..
RT{In [afc—' fiJ—iln (afﬁ o fH*H
C, Z,,. c,

4 . Cc.
RT (Ina’ ~4n al. )+ RT(Ini—ilnLj+
z c, z c

0 H* 0

1
[*})

Similarly, 4.

Substituting for A,

i T My
ZH+

H*



RT [In f,——in fHJ
z

Ht

(6c)

In general for any ionic species, i, the flux equation can be written similar to Eq. (3a).

C.

ﬁi = Di,eff (ﬁj (_ﬁl’ll) + Ci \70

V u, using Egs. (4), (5), and (6¢) is:

Z, ¢z
RT(Ina’ -——Ina/. )+RT|In--———In
. - ZHJr CO ZH+
Vi =V
RT(In f,——ln fH+]
z
H+
RT(Ina’ -ilna& )+RT|InS - %
. Z,,. C, Z,.
=V
7.
RT(In f,———In fHJ
z
H*
- C,.
+LV(RT|nL+ 2H+F®J
Z,,. Cy
7.
. _ [RT(Ina -——Ina;.) - C.
Vu, =V Z,. +V |RTIn—
c

C,-

C

(o]

C,-

c

0

J+
]+

+V [RT [In f,— % In fWBJr 2F V @
ZH*

For the condition of constant temperature, Eq. (7b) becomes

6%

Then, the flux Eq. (7) for the constant temperature, can be written as

|

z.F - — C.
— VD - D, ¢VIn(—
RT i i,eff i (C )

0

ﬁi =- D e

- Dy GV (In f—Ziint,

Z,.

10

+

z

H

- C. - - Z
=RTVIn(=1)+ zF V® +RTV (In f——Inf,
C

+CV

I 70

|

(7)

(7b)

(7¢)

(8)



Simplification of the second term on the right hand side of the Eq. (8) leads to

= F - -
Ni =- D ZI_CiVCD_ Diur VC
1 RT ’
- Z, _
- D GV (In f; —Z—In fHJ +C,V, (8a)
H*
0t Bt =it ot b
ni-z—an+—ni-nH+ (8b)
H+
z, f,
In f, -Z—In f,. =In : (8¢c)
H* Z,.
o

Using the above result in Eq. (8a), the following equation is obtained.
z,F

Ni =- D ﬁciﬁq)_ D e ﬁci
=Dy GVINT . +cV, (8d)
_ f,
where fw =
f.

Either from Eqgs. (3a) and (4) or from Eq. (8d) directly with i = H*, one obtains the flux
equation for H" ions :

= _ ZH+F - - N
N, =-D c,vVe- D, Vc, . +tc,.V 9

H H* "o

+ +
H H™ eff RT

Note that the activity coefficient f, of the charged species can be estimated following the

procedure given in the literature (Ref. J.S. Newman, Electrochemical systems, pp 86-115,
Prentice Hall, 1991 edition).

The superficial velocity v, in Egs. (8d) and (9), is the volume rate of flow through a

unit cross-sectional area of the solid membrane material plus fluid phase, here, composed

of water, methanol and H”. It is averaged over a small region of the membrane facial area

11



perpendicular to the flow but large with regard to the interstitial micro size pores. The
velocity vV, can be described by:

" >z F(— ?CID)Ci
= piM | & i

Vo= - Vp_pg—p (10)
" p

In this equation,  is the fluid viscosity [kg/ms]; K , the fluid phase permeability

through the membrane, [mz]. The first term on the right side of Eq. (10) is the pressure

gradient related force on the fluid phase, the gravitational force is the second term, and
the third term is the net force per unit fluid phase volume due to electric field effect. This
term may be labeled as the driving force for the electro-osmotic transport of the fluid

phase through the membrane. Also note that c, is the molar concentration of the ionic
species, i (with the charge number z;) in the fluid phase, with o being the fluid phase

mass density.

For the transport of the fluid phase perpendicular to the direction of the gravitational
field, or, in the situation of the second term on the right hand side of Eq. (10) being
negligibly small relative to the first and the third terms; Eq. (10) is reduced to:

V.= - k;;M {?p—ZziF(—@D)ci} (11)

In the event, either(— ?cb) electric field is negligibly small in the membrane space, or

there is no electric field in action, then Eq. (11) becomes
Ko =
v, =- - [Vp] (11a)
U
Note that this is the usual Darcy’s law for the flow through a porous medium with the

pressure gradient as the only driving force for the fluid movement. In the case of the fuel
cell, if Vp is large because of the difference in the total pressures in the anode and the
cathode compartments and the small thickness of the membrane, v, may acquire a

relatively significant value depending upon the value of k , and 4 of the fluid phase

mixture of water, methanol, and H*. In the event, Vp is negligible either due to equal

12



total pressures in the fuel cell anodic and cathodic compartments or due to a relatively
thick membrane, then Eq. (11) becomes:

V.= Ko [Z 2,F(- 6@)@ (11a)

7

k

- 0 (-5a)| 310 | (11b)

Y7,

if it is assumed that the fluid phase is electrically neutral, then,

Z z,Fc, =0 (11c)

Consequently, Eq. (11b) leads to: v, = 0, i.e., there is no effect of the electric field on the
fluid convective motion through the membrane. This is not the valid conclusion because
the literature does give evidence of the fluid transport through the membrane under the
field effect. Then, we have to accept that the membrane material to be charge neutral, but
the fluid phase permeating through membrane phase is not charge neutral. The net

charge per unit fluid phase volume is (z,.c . F ). Now, Eg. (11b) is written as:

v,= (kprJ Vo) (z,.c,.F) (11d)

U
Note that V, may have relatively significant value depending on the values of (— ?CD)
[electric field strength in the fluid phase in the membrane], c .. in the fluid phase in the

membrane and K .

For the charge transport by the only H* ions in the DMFC; Eq. (11) can be written as

VA _(kpr J [ﬁp— zH+F(—§q)) CH*] (12)
U

Substituting for v, from Eq. (12) into Eq. (9) and simplification leads to

NTH+: l:(Z;}FJDHﬂeﬁCW +(kpr ]ZWFC&}(—ﬁ(D) + DH*,eff (—§CH+) +

U

(kpr j c,,. (_ ?p) (13)

13



Note the structure of the individual terms contributing to the flux of H" ion through the

membrane. In the first term on the right hand side of the Eq. (13), (— ?CD), the electric
field is acting as the driving force and (— ?cw ) and (— ﬁp) are the concentration and

pressure gradient driving forces in the second and third terms, respectively.

Substitute for v, from Eq. (12) into Eq. (8d) to obtain:

ﬁi = H%}Di,eﬁ C +£kpr jzw FCH*Ci:|(_ ﬁq)) + D e (—ﬁci) +

U
~ K pim ~
Di o Ci (—Vln fiH+) + C; (—Vp) (14)
' U
_|_fi
where fin+ == | (14a)
f.r

This equation is valid for any ionic and non-ionic species.

Methanol and water are charge neutral species, i.e., Zg, oy =2, =0, i.e., number of

charges on each of these species is zero.

f; 3 . - -
Also, fw :[ J = f, (activity coefficients of the charged neutral species i)

o]
H*

Equation (14) is written for a charge neutral species i as:

ﬁi - [szlM J ZH+FCH*Ci (—ﬁq)) + Di’eff (_ﬁci) +

D, G (—ﬁln f) +(kpr J C (—ﬁp) (15)

For the situation where it is reasonable to assume that (ﬁ In fi) =0, i.e., variation of f;

across the membrane is negligible; Eq. (15) becomes:

(kw j o Fe o 90)+ Dy (-¥6)+ (kw } ¢, (-9p) (16)

7 u
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where, i = CH30H, H,0.

Note that the first term on the right hand side of Eq. (16) involves (— ?(D), electric field

as the driving force even for a charge neutral species such as CH3OH, H,0, for example.
Here this term is labeled as the electro-osmotic contribution to the flux of charge neutral
species i through the membrane. The second term on the right side is the diffusion
contribution to the flux of species i and the third term accounts for the flux contribution

by the fluid motion set up by (— ?p), the pressure gradient in the case of different total

pressures in the anode and cathode compartments. Note that the electro-osmotic flux

contribution does depend on the fluid phase viscosity, , its permeability through

membrane, Ky, and H* ion molar concentration in the fluid phase in the membrane

matrix.

4.1.1.3 One-Dimensional, Steady-State, and Isothermal

We shall now concentrate on obtaining the equations for the transport of species H",
CH3O0H, and H,0 through the membrane under the steady state, isothermal conditions for

the one-dimensional (x-) case.

The x-components of Eqgs. (13) and (16) are:

. z . F oc
N, =||2—|D il j +D.. | -H s
H™ x |:( RT j H*, eff H ( ,U J :| aX H" eff ax
( ] ( ?j (17a)
i k : k
N, = ( il ]ZWFCWCi (_62} + D, (—%J + ( piM J c, (_@j (17b)
’ Y7 OX ’ OX y7, OX

(molar flux for a charge neutral species, i = CH3;0H, H,0)

The current density per unit area, perpendicular to x-coordinate in the membrane, is

given by:
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i = Y l@FN,] (18)
=z +FNH+,X + Zch,0H FNCH3OH,X + Zn,0 FNHZO,X (18a)
=z FN (18b)

Note that the H ion is the only charge carrier through the membrane so that the

transference number of the species H™ is one.

Using Eq. (17a) for N,. in Eq. (18b),

: 2, F* Ko V.2 2.2 oD ac,,.
Ik = K HRT JDH*,effCH+ +(p7]ZH*F Che (_&j + ZH*FDH*,eff - a)H( +

k
(%} c, z,.F (—Z—zj (19)
— ZEHFZ oD kpr 2 2.2 oD
Tl RT Pree | T T )T
oc_. K o op
2, FD,. 4 (— 8>H< J+[ ;1 jcw z,.F (—&j (20)

Equation (20) requires the explanation to various terms. The first term on the right hand
side expresses transport via H" ion movement due to the action of the electric field in the

x-direction. The coefficient of (— aai)j is here defined as the electric conductance of H*
X

through fluid phase present in the membrane matrix, i.e.,

2 2 DH*,eff 2 2
Keee = 2y F T c,.=2z,.Fu,c.,. (20a)
ion mobility in the fluid composed of o
where u,,. | (CH,0H,H,0, and H * )present in the membrane | = RT (200)

The second term on the right-hand side of the Eq. (20) explains the current density
contribution associated with the fluid “bulk motion” created by the action of electric field
on H ions present in the fluid. Third term is the current density contribution because of
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gradient in the H” ion concentration. Fourth term is the contribution to the current density
if the pressure gradient prevails for the different total pressures across the membrane in
the electrode chambers.

Equation (20) may now be written as

. do K o o dd
= —— |+ z Fc ) |—-—1I*+
Jx Kelec( an ( ]( H H ) ( axj

7
dc . K v dp
2, D, , [— d; H y j(szcw)(—&j @

For the medium of assumed uniform dielectric constant (here that of water or of water-

methanol mixture present in the membrane), the Poisson equation is used to relate the
Laplacian of the electric potential to the charge density in the fluid phase in the

membrane:

VIO = —EZzici (22)
€7

F
:_E[chw , (22a)

where € = permittivity of the medium (here that of the fluid phase)

= (dielectric constant) (€,, permittivity of the free space)

= (dielectric constant) (8.8542 *107 Mj
volt —cm
= (dielectric constant of the fluid phase) (8.8542 *107" WJ
volt —m

coulomb
mole of unitary charges

F = Faraday’s constant = 96487

For the one-dimensional (x-) case, Eq. (22a) becomes:

d2
ng) = _E[ZH*CH*] (22b)

The material balance or continuity equation for a component i for the steady state

condition, with no reaction, is:
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VeN =0 (23)

L [ A LI (23a)

dx dy dz
For the one-dimensional component in the x-direction,
dN,
=0 (23b)
dx

Using Eq. (17a), the following equation is obtained from Eq. (23b) under the assumption

dd) (d : .
of constant [d—j (_pj Kow o4 @and D, . for the isothermal cell operation.

X dx
2
z,.F D ch++ K piu , +F2c+dc“+ (—dﬁJ+D+ _d C,,-
RT | Hef dx u )" HY dx dx HY e dx?
k dc,.
4| M| T _d =0 (23c)
7 dx dx

The modified continuity equation for the fluid mixture of (H,O, CH3OH, and H) through
the nano/micro porous medium is applied for the permeation of fluid phase mixture
through the electrolyte membrane at the steady state conditions.

Vel[pv ] =0, (24)
where p = fluid-phase density.

For the one-dimensional (x-component) case, Eq. (24) is written as:
d

— oV, ) =0 244
L (ovi) (24a)
The solution of Eq. (24a) is
(/?Vo,x)@X:(J = (PVo,x)@ng = m, = constant, (24b)

where m, = superficial fluid mass flux permeating through the membrane along

X-axis per unit time per unit area of the membrane perpendicular to the
X-axis.

The x-component of Eq. (12) is

gl )
’ 7 dx HooH dx
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The fluid phase mass flux is related to the pressure and electrical gradients as follows:

K
B2 2]

For the electric potential distribution, Eq. (22b) is written as

d? _
dX? = _E[ZH*CW]’ (25)

where T, is the H" ion average concentration defined as

c.o= 20 (25a)

where &,, = thickness of the membrane. In fact, one may approximate this quite

reasonably by
C = _H°"H" (26)

where cg is the H" ion concentration in the fluid phase at the anode-membrane interface

and c§+ the concentration of H" at the membrane-cathode interface on the membrane

side. For the situation of relatively fast electrode kinetics associated with the

electrochemical reactions, especially fast kinetics at the cathode, the H* ion concentration

at the membrane-cathode interface, c& may be approximately set equal to zero. Thus,

C. = i (26a)
H* 2

Equation (25) is solved using the following boundary conditions:
Atx=0, ®=®" (electric potential in the fluid phase at the

anode-membrane interface) (27a)
Atx = 6, , ® =d° (electric potential in the fluid phase at the

cathode-membrane interface) (27b)
The solution to Eq. (25) is
(O —D*) = (D —D*) [%j +(%}(5Mx—x2) (28)
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Note: Here, (®¢ —d”*) = -(absolute value of the cell voltage)
- -joc -0
Note that Eq. (28) describes the electric potential in the fluid present in the interstices in

the membrane matrix.

From Eqg. (28) one obtains

c_p* .c,.F
o _ [CD @ J{ZH °, j(aM _2x) 29)
dx Om 2¢
o - " c.F
= _‘ ‘ + (ZH*CH* j(&M —2x) (29a)
Oy 2¢e

The result in Eq. (29) is used in Eq. (24d) and the resultant equation is solved for the

pressure distribution in the fluid phase in the membrane matrix to obtain
(p-p**)=

(G R N )]

where (®° —®*) = -(absolute value of the cell voltage),

p"* = total pressure at the anode-membrane interface,

C

Yo,

A
p = average fluid density = % where p* and p° are the fluid densities at

the anode-membrane and cathode-membrane interfaces, respectively.
Using the boundary condition of p = p" € (total pressure at the membrane-cathode

interface) at X = J,, , one obtains the following result from Eqg. (30):

kK 5 tA _ A tC Do —p?
mo{ prpr 0, o pl2 (31)

H O o O

This equation shows the effect of the pressure and electric potential differences on the
permeation flux of the fluid phase through the membrane. For the case of p"* (total

pressure at the anode) greater than p" © (total pressure at the cathode), both of these
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driving forces are seen to cause the fluid phase to move towards the cathode. For the

case p" < p" €, the effect of these driving forces on m, is opposite. For the case of p" A=

p < Eg. (31) becomes:

n, = (kwﬁ] (2, . Floc —o%) @2)

MOy
This simple result tells us that due to the electric field effect there is a flux of fluid
mixture that permeates through the membrane. For a membrane of given molecular
configuration, one way to decrease m,; therefore, to decrease the flux of methanol is to
increase the membrane thickness. Other way is to use a membrane of such a molecular
structure/configuration that the permeability, Kyrv, is decreased in such a way that
permeation of methanol is selectively reduced more than water with either no or

enhancement effect on the permeation of H” ions.

Using Eg. (15), one-dimensional molar fluxes of H,O and CH3OH through the membrane

are
' K dd degy,
Nenon = (%J Cenon (2, FC,.) (—aj + Doy, om ef L_ ;HXOH J N
(electro-osmotic transport) (diffusion transport)
k d
+[ ZM ] CcHsOH (_ d_sj (33)

(pressure gradient transport)

i k do dc,,
Npox= (%} CHzo(ZH+FCH+) (_Wj + Dy oen [_ dj(oj +

(electro-osmotic transport) (diffusion transport)

+(kpﬂj Ch,o (_ d_pj (34)
U 2 dx
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(pressure gradient transport)

For the condition of the steady state, the local continuity equations for H,O and CH3;OH

are
dN
( CH3OH,XJ - O (353.)
dx
dN
[ ”20’*] =0 (35h)
dx

Substitution for N, o, and Ny, o, from Egs. (33) and (34) into Egs. (35a) and (35b),

respectively, and simplification leads to

k d do d’cep,
( ;flM J&|:CCH30H (ZH+FCH+) (_&j} + DCHgOH,eff [_%J +
k d d
T LI B ——p) =0 36a
) & -2 (360

+(kpr j d {CH O(_%ﬂ 0 (36b)
u o) odx| dx

k pftM

U

From the Eq. (24d), with the assumption of constant ( J and constant fluid phase

density p in the membrane phase, the following equations are obtained:
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Ko | d do
( L J&|:CCH30H (ZH+FCH+)(_&J} =

n ) dc k
& SO | i CCH3OH (_d_p) (37a)
o, dx u ) dx dx

Ko | d dd

o Loveten Fe (-5 -

(&J dc, o _(kpr ji{cH O(_d_pﬂ (37b)
p ) dx uo)dx| dx

Substitutions are made from Eqgs. (37a) and (37b) for

Ko | d d Ko | d do)] .
( L ]&{CCHSOH (ZH+FCH*)(_Ejj| and ( L ™ CHzo(ZwFCw)(‘&j into

Egs.(36a) and (36b), respectively, to obtain, after simplification, the following results:

oosgn (M owen _ -
dx PDcy om et dx
d’c ' dc

ac L T (38b)
dx PDyoer ) dX

These ordinary differential equations are solved using the following boundary conditions:

At x = 0 (membrane-anode interface);
M (39a,b)

— ~AM —
CCHSOH - CCH3OH,X:0’ CHZO - CHZO,X:O
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At x = 6,, (membrane-cathode interface);

— AM — AM
Cer,on = CcHuoH x=5y * Ci,o0 = Ch,0.x=0y, (40a,b)

The solution of the differential Egs. (38a) and (38b) based on the boundary conditions
Egs. (39) and (40), is

" " " ealx _ ealﬁM
Cenon = Comonxes, t (CCH3OH,X:O - CCH30H,X:()'M) g |’ (41)
mO
where @, = ——° . (41a)
PLYCH.0H eff
eazx _ easz
— AM M M
CHZO - CH20,><=5M + (CHZO,X=0 - CH20,><=5M ){ 1— g% (42)
mO
where o, = ——>—. (42a)
pDHZO,eff

Methanol and water concentrations in the membrane matrix at the interfaces with the
porous electrodes are now related to their concentrations in the fluid mixtures in the
electrodes using the phase equilibrium condition.

At the membrane-anode interface, X = 0;
M — A

aCH3OH,x=0 - aCH3OH,x=0 , (43a)
M

Ap,0x-0 alﬁzo,x:o’ (43b)

where a; = activity of species i.

Expressing the activities in terms of molar concentrations,
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C C

0o 0

CM B f M CA B f A
|: H,0,x=0 " H,0 :| — |: H,0,x=0 ' H,0 (44b)
CO CO

where ¢, = molar concentration of a species,

M M A A
|:CCH30H,XO fCHsoH ] - l:CCHsoH,Xo fCHsoH } (44a)

fiM = activity coefficient of species i in the fluid phase in the
membrane phase,
fiA: activity coefficient of species i in the fluid phase in the porous

anode,

Co = normalization concentration = 1 (mol/liter).

Equations (44a) and (44b) leads to

f A
M —_ A CH,0H
Cch,oH,x=0 = CcH,0H x=0 sz (453-)
CH4OH
A
o mon [ o (45b)
H,0,x=0 ~— “H,0,x=0 fM
H,0

Similarly, at the membrane-cathode interface at x = 9, ,

f C
M _ .C CH,OH
CCH3OH,X:5M - CCH3OH,X:5M { f MS (463.)
CH,0OH
) = cf fuo 46b
CHZO,x=5M - CHZO,x=5M f M ( )
H,0

At first approximation; particularly, for the situation of non-availability of the fiM data

in the membrane phase, one may take:
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f." f.©
(f_“"] = 1, and (f.MJE 1.

From Eq. (24d),

{Z Fe (_dﬁﬂ _ m( p J (_d_pj (47)
L dx Koim 2 dx

On substitution for {zw Fc,,. (— %ﬂ from Eqg. (47) into Eqgs. (33) and (34) to obtain,

after simplification,

; m, dcgy,,
’\lnggoH,x= [7JCCH30H + DCHSOH,eff [_ ZHXOH j (483)
. m, dc,,
Naﬂzo,x = (7J CHZO + DHZO,eff [_ dk){(oJ (48b)
From Egs. (41) and (42),
dCCH3OH a ax
{ o = (CngSOH,X:O - Cng3OH,x:5M) (Hﬁ]e 1 (49a)
dc a )
[d—'::OJ =(C o0 = Chions, ) (Hﬁjeaz (49b)

dCCH3OH
dx

dc
On substitution for ( ] and [%j from Egs. (49a) and (49b) into Eqgs. (48a)
X

and (48b), respectively, the following expressions are obtained for methanol and water

fluxes:
M _(m, M M M g
NCH3OH,x - T CCH30H,X=5M _(CCH3OH,X=O _CCH3OH,x=6M) P (50)
p 1_e 19M
m
where o, = ——>——. (50a)
PYCH.0H eff
v [ M M M M Gl
NHZO,X - CHZO,X=5M _(CHZO,X=O _CHZO,X=6M) P (51)
p 1_e 29m
m
where @, = —2— . (51a)
PL,0 eff
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Note that the fluid phase flux through the membrane matrix is given by Eq. (31).

Assuming the fluid phase permeating through the membrane matrix to be consisted of H*,

water and methanol (neglecting dissolved species such as nitrogen, oxygen),

dx =1 (52)
where X; is the mole fraction of species i. Therefore,
c,. ¢C C
{ HY , CHOH HZO} =1 (52a)
C, C, C,

where ¢, ., Ceyons Cho»and c, are the molar concentrations of H', methanol, water
H 3 2

and fluid mixture, respectively. Here it is assumed that the fluid phase total molar
concentration is constant throughout the membrane matrix. Differentiating Eq. (52a)

leads to

dc .
( Z)H( J:_%( CH,OH +CH20)

— _|:dCCH3OH + dCHZO } (53)

dx dx

Using the expressions from Egs. (49a) and (49b) in Eq. (53), the following expression for

dc . ) . )
H_ | is obtained.
dx

(CM _cM ) ae”
CH30H ,x=0 CH4OH ,x=6 5
dc, . : : " 1—eMm
( Ho | =- (54)
dX ( M M ) azeazx
+ CHZO,X:O - CHZO,x:é‘M 1— eazé‘M

From Eq. (52a),
Cm =Cr — (C(';/IHaoH + C»Tzo) (55)
Applying this equation at x = 0 (membrane —anode interface) and at x = J,, (membrane-

cathode interface), the following expressions for c["ﬂ ., and cm ., are obtained.

=0
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M —_ M M
I (CCH3OH,X:O +CHZO,X:O) (56a)

<

_ M M
Chrnes, = O - (CCHSOH,x:a‘M +CH20,X:()'M) (56Db)

1ATOM

Then, the average concentration of hydrogen ion € ,. in the membrane matrix

(see Eq. 26) is given as

2 2

A c M M
C + +C + c * x= * x=
CHJr — H H - H™,x=0 H™ x=0y (57&)
2 2
M M M M
6H+ - CT _(CCHQ,OH,XO +CCH3OH,X:§M + CHZO,X:O +CH20,X:(5M ] (57b)

The methanol and water concentrations in the membrane at the membrane-porous
electrode interfaces are to be computed from the concentrations of these species in the

porous electrodes as shown in Egs. (45) and (46).

The hydrogen ion concentration, cg’ﬂ in the membrane as a function of distance can be

calculated using the Eqgs. (45), (46), (54) and (55).
From Egs. (29a) and (30),

—|[@¢ -®" (z T F
dﬁ - ‘ ‘+ H H (é'M —2X) (58)
dx Om 2¢
- ~-®°-®" z ¢ Fs
[d—pJZ— —mmu_ _ZH+(_:H+F ‘ “f‘ H H M (1_§J (59)
dX kpr P 5M 2e 5M
dc .
Now, ( . ] , (dﬂj : (d—p) are expressed as follows from, Eqgs. (54), (58),
AX ) oo VOX Jaro \OX g g
and (59),
(04
dc . (Cg'HpH,x:o - Cc’\:AHsoH,x:sM )1_ e;gM
( dH J T 60)
X o
@x=0 + (C:Xlzo,x:o - C:Xlzo,x:a‘M )1_ 6225“"
—|@°-®* (z T .F
(dﬁj _| (28R (61)
dX ) gxeo Oy 2e
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- —|®° -®* z ¢t .F§S
(d—pj = Dy o F | ‘+ HeZhe T O (62)
dX ) gu-o Ko 2 O 2e

Because of the steady-state condition, the following equations are obtained using Egs.
(17a) and (21):

. . (2. .F k
NH*,x :NH*,x=o = ( ;T ]DH*,eff (Cm)@xo"'( Gl JZH*F(Cm)Z@XO:I

Y7,
(04
‘CDC —CDA 7 ¢.F CgAH30H,x:0 _Cng30H,x:5M ) 1—ei’1‘$M
* _ H H 5|\/| + DH+ ot +
O 2¢e ' ( M M ) o,
+Ch,0,x=0 ~ CH,0,x=5, 1_ e
] c A —
(CH+)@X=O — +zH+cH+F +
H Ko 2 O 2¢e
(63)

() )P (%) o
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k O - ph T.F
N e

7
(CM _cM ) o,
CH{OH x=0 ~ “CHiOH x=d ) 1 Lt
+z .FD .
H ,eff a
(CM _cM ) 2
+1Ch,0,x=0 = CH,0,x=5, 1— g%m

' ¢ -0" (z .t F)S
m + +
* Oﬂ_+(ZH+EH+F) ‘ ‘_’_( H*H ) M (65)
Ko £ O 2
m m
Note that o) = ———; a, = ——
PYcH,0H eff pDHZO,eﬁ

Also, T .= Em is to be obtained from Eq. (57b), and (CHM )@X=O is to be obtained from

Eqg. (56a). Of course, m, is to be obtained from Eq. (31).

Equations (63) and (65) can be used to compute the hydrogen ion flux and current

density, respectively, through the fluid phase in the membrane matrix.

4.1.2 Transport Set Il Flux Equations using Maxwell-Stefan Relations

4.1.2.1 Introduction

An extremely wide variety of membrane types exist. One may distinguish between
biological and synthetic membranes. Each type has wide range of composition and
behavior. The synthetic membranes may be classified into (a) “homogenous”, (b)
“microporous” and (c) mixtures of these two types. In a homogenous membrane the
matrix plays the role of a true solvent for permeating species. The permeating species are
confined to matrix-free regions in microporous membranes. These aspects are important

for materials viewpoint. However, the formalisms needed to explain the transport of
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species through them is much the same. Also note that the membranes are used in a wide

range of process conditions.

A
8%
H

A 4

% O,
CO; «—<F <K

g

gg q I;orolus

sP b~ carbon layer
59

J\Q%
Porous Oxidant feed

carbon Iay% d\ (O, or air)

MeOH (fuel) in

o~
H>O feed &
Q4 Qo T Mo
MeOH —Si% 5T

&
H,O l > X —> l
x=0 X =0,
Anode-membrane Cathode- membrane
interface interface

Legend:
X = spatial coordinate

oy = thickness of the membrane

Figure 1. Polymer electrolyte membrane separating the porous anode and
cathode layers (sketch not to scale).

4.1.2.2 Mathematical Derivation

The species transport equations given below are quite general in that they can be applied

to any type of membrane (for example, acid doped polybenzimidazole, Nafion®, a
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ceramic (clay: Al,, 0,.2SiO, .2H, O)- Nafion® or PVDF ( polyvinylidene floride)

composite). It is here assumed that the geometrical configuration of the membrane is
invariant during the isothermal, steady-state operation of the direct methanol fuel cell
(DMFC).

Here a membrane is viewed as an insoluble selectively permeable matrix M and one or

more mobile permeating species; «, f,..... The membrane is defined here as having

negligible curvature, i.e., its thickness is much less than its surface radius of curvature.
This, in turn, implies that the mass transport is uni-directional and perpendicular to the
membrane surface. The membrane matrix is immobile. That is, the velocity of the
matrix is zero with regard to a stationary laboratory coordinate system. Velocities of the
mobile species are referred to the coordinate system fixed in the stationary membrane.
The diffusional response times within the membrane are assumed to be short in
comparison with those in the mixtures in contact with its boundaries (located at x = 0 and
X = & as shown in the sketch; where ¢ is the thickness of the membrane). This
effectively means that for every species a pseudosteady state prevails in the membrane
even when slow transient conditions prevail in the mixtures in contact with its

boundaries.

The Maxwell-Stefan equations given below satisfy the above mentioned membrane
constraints and are specialized to generate reliable and compact descriptions of
multicomponent transport in the membrane located between the electrodes of a direct

methanol fuel cell.

It is recognized that the matrix is one of the components of the mixture of matrix, M and
other electrochemical/chemical species suchas H*, CH,OH, H, O, etc. The Maxwell-
Stefan equations are applied only for the mobile species (Ref. Bird et al.[2002]). From a
thermodynamic viewpoint, we are concerned with the number of independent mobile
components in the mixture bathing the membrane because it is the external solution that

determines the equilibrium state of the membrane. As mentioned in the above reference,
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determination of the effective molecular weight of the membrane matrix is very difficult
for most situations, the internal system is defined to include only the mobile species and
their mole fractions are defined to sum to unity. However, this restriction may be relaxed
if the average molecular weight of the membrane material and its actual membrane
material, M, mass density for its configuration between the fuel cell electrodes is known.
The interaction of each mobile species with the membrane material, M, is quite
significant; particularly, in the case of a membrane with the interstices of nanometer scale
or less. Therefore, the modified mass diffusivity parameter associated with diffusion of a

species a accounting for its interaction with the membrane is defined as

1 Xy

. = 66
DaM DaM ( )

where Xx,,, D, are the membrane material mole fraction and mass diffusivity of the

component « through membrane, M; as it appears in the Maxwell-Stefan equations
without excluding the membrane material; respectively. The generalized set of the

Maxwell-Stefan equations for the fuel cell application is:

allspecies Xa X

L (v, -V,) = -xaﬁlnaa-xa(v"jﬁp-xa z, (ijﬁdb (67)
I op RT RT

(Here a = mobile species only =H", CH,OH, H, O only)

Note that according to the procedures used in the reference mentioned above, equation
(67) should be used for the species that are mobile and permeate through the membrane.
However, sum on the left-side of Eq. (67) should be carried over all species including the
membrane matrix, M. In the event of that mole fraction of the membrane matrix M
cannot be determined with a reasonable accuracy, it has been suggested, in the reference

Xy 1

given above that be replaced by

in Eq.(67) and the species mole fractions be
aM DaM

based on the mixture molar concentrations excluding the membrane matrix material.

In this equation, x,,x, are the mole fractions of the species e and g; v,, V,, the

resultant velocities of the species « and £, respectively ; B_,, the diffusion coefficient

af !
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for the interaction of species « with the species £ ;V_, the partial molar volume of
species « in the membrane ; a, (: ;/axa); activity of the species « , here y is the
activity coefficient of the species « to account for the nonideal thermodynamic behavior

of the “membrane solution mixture’ ; p, the thermodynamic pressure ; @, the

electrostatic potential [volts]; z, = number of positive or negative charges on a particle
(i.e. number of charges on an ion), note that z_ for a charge neutral species is zero; R,
the gas constant = 8.314 J/mol-K; T, the absolute temperature [K] ; F = Faraday’s

constant = 96487 Coulomb per gram- equivalent, i.e., 96487 Coulombs of charge on 1

gm-mole of unity charged particles such as H " ions or e~ electrons.

Equations (67) for the various mobile species are rewritten as:

allspecies X X ~ v
TP (G, -v,) = -x, {Vlnaoﬂr a

o b RT

A=l af

#a

- (=
Vp+z | — |[VO 68
oS0 o
(applied for « = H*, CH,0H, H, O, etc.)
Note that terms within the brackets are the driving potentials for the transport of a
species « through the membrane. For the assumption of the incompressible solute (H ™,

CH,0H, H, O) in the membrane phase and system (i.e. membrane phase) isothermality,

Eq. (68) can be written as:

allspeciesx X _ T
S (G, -v,) = -x, V(Inaa+%+ﬁ] (69)
= D, RT RT

o

(¢ =H",CH,0OH,H,0)
The expression within the parentheses plays the role of “total potential” or driving force

for the transport of a species « at any spatial point in the membrane phase.
The general boundary conditions are set up by requiring the “total potential” for each

species a to be continuous across the boundary:

At x =0, the anode-side boundary of the membrane in contact with the anode:

34



Ina, o P +ﬂ = Inaa+%+£ (70a)
RT RT |ex=0A RT RT [|@x=0Mm

(anodeyside) (memb}ane side)
(for speciesa )
This equation is simplified to:

v F
(Inaa,o,M _Inaa,o,A)+ (;Tj (poM po,A) + (Za j ((Do,M _(DO,A) =0

RT

aot,o,M \7 ZaF ~ _
|n[a J + (RTJ (poM po,A) + ( T j ((Do,M d)OYA) 0 (70b)

a,0,A

(¢ =H",CH,0H, H,0)
A simplification results if the assumption of chemical equilibrium across the anode-
membrane interface is valid,

1€, A, om = Ayon

v F
[gTj (poM po,A) + (ZI;T j (q)o,M _(Do,A)

Equations (70b) and (70c) may be written as:

v, z F v, z, F
Ina + 2O Ina 70d
|: aoM+(RijoM RT o,M} |: aoA+(RT} RT o,A:| ( )

(¢ =H",CH,0OH,H,0)

0 (70c)

Also,

v, z,F (Y, z,F
|:[RijoM RT (Do,M} |:(RijoA RT (DO,A:| (709)

(¢ =H",CH,0OH,H,0)

For the one (x-) dimensional case, Eq. (69) becomes

all species X, X R R o [=0))
> 2 (v, —vﬂ)5X = -x, |6, i[lnaa +&+Z“—] (71)
= Py | dx RT RT
all species XaX ) 7 Fq)
(va —vﬂ) = -xmi Ina, +h+“—] (71a)
~ p, dx RT =~ RT

#a

If ¢ = total mixture concentration in the membrane phase, Eq. (71a) is rewritten as
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o e (cx, ) (e, ) _ o d pv,  z,FO
g;l W(Va—vﬂ) = -Xa&(lnaa+R_T+?j (71b)

=il c e v, —v v
N ﬂz(a ﬂ) _ -xai(lnaa+ pv, +ZaF<1))
=R > dx RT RT

#a

p=all| _ v
Z (Cavzx)cﬂ (Cﬁ'vﬂ)ca:|: -X i(lnaa+%+ﬂj

= cZD RT  RT

o

ﬁ:au_M_ . d Ina + Pv,, +ZaF(D

= I CZ Daﬁ | a dX “ RT RT

Bi" Ny =NyCs | _ ¢, 9 (Ina, + o, 29 (72
2 cD,, “ dx “ RT RT

(¢ =H",CH,0OH,H,0)
where N, = molar flux of species « along x-direction at any point in the membrane

phase.

Now, apply Eq. (72)toH", CH,OH,H,O:

Firstfora = H":

FAllN .c,—N,C . v., z. .FO
P :-c+ilna++p”+H (73a)
= cb,. " dx " RT RT
#H* 4
NH+CCH3OH _CH+NCH3OH + NH+CH20 _CH+NH20 + (NH+CM _CH+NM ]:
¢ DH*—CH3OH ¢ DH*—HZO ¢ DH*—M
v. z, F
-C iInaH+pH+H (73b)
dx T RT
Simplify:

N\, Cen om n N, Cuo + N,,.Cy _[ij N on n Nio _
CDH*—CHSOH CDH*—HZO CO,y ¢ DH*—CHsoH DH*—HZO



d pv.. z FO
-C +—(InaH++ M. j (73c)

H™ dx RT RT
NH+ Cch,oH + Ch,0 + Cu ) (Cw] NCH3OH + NHZO _
CDH*—CH3OH CDH*—HZO CDH*—M ¢ DH*—CH3OH E)H*—Hzo
v . ]
C.. _d Ina . + PV, +i® (73d)
H dx H RT RT
N [CCH3OH /CH+] [CHZO /CH+] [CM /CH+] NCH3OH NHZO _
Hl cb Y Y RY) Y| B
c H*—CH,OH c H*-H,0 c H*-M c H*—CH,OH c H -H,0 |
V..
g Ina,, + PY, +Lq) (74)
dx RT RT

N

. +
H b b b

H* ~CH;0H H*—H,0 H*-M

1
oot ] oot ] |euron) [, o .

V..
_d4 Ina, . + Py, +id) (74a)
dx H RT RT

Now, first we write the flux equations for methanol and water; we then come back to
Eq.(74a). Say, « = CH3 OH in Eq. (72):

A | Neyon €5 —Copon Ny | e d Ina PVewon  Zenon F ®
D - CH;0H d CH;0H + RT + RT

B=1 CBYehon-p X

#CH,OH

NCH3OH CHZO _CCH3OH NHZO " NCH3OH CH+ _CCH3OH NH+ n NCH30H Cy _CCHSOH NM

c DCH3OH—H20 c DCHaoH—H* c DCH3OH—M
d | vaH3OH
_CCH3OH & n aCH3OH + RT
N Ch,o 4 C- 4 Cwm ) Comon N ~ Cenyon N0 _
CH3OH
c DCH3OH—HZO c E)C|_|30H_|_|+ c E)CH3OH—M c DCH3OH—H* ¢ DCH3OH—HZO

d vaH3OH
CCH3OH _& In aCH3OH +T
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Divide by Cgy, o :

Chi,o / Conyon + C.y- / Conom + Cy / Conon ) N, N Ny o _
CHOH
CBenonro CPouonn CPeuonm | [CPcionn CPgponn
_i Ina + vaH3OH
dX CH,0H RT

Now, for & =H,0 in Eq. (72):

al |\ N,.Cc,—C,oN V Z, ~F
Zl: H,0 “p H,0 ﬂ]:_CHZO%(InaHZO-"pTFO_'— H,0 CDJ

= cb
=1 —
ﬂ:tHzO H.0-4

NHZOCH+ _CHZONH+ n NHZOCCH3OH _CHZONCH3OH 4 NHZOCM _CHZONM

¢ DHZO—H* c DHZO—CH3OH c DHZO M

N C,: + Ceh,oH + Cu ) Ch,0 NH+ + Ch,0 NCH3OH _
M0l ¢ 5 15 5 15 B
c CUh0chon  CPho-m cCo, C Yy,0-cH.oH

L0-H"

d PVi 0
Chol——|INa, o + : 74c
Hzo[ dx( S ﬂ (74c)
At this stage, it is important to note that

D,,=D,, (75a)

(equivalent to the Onsagar reciprocal equation)
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4.1.3 Transport Set Il - Flux Equations using Onsager

Thermodynamics

4.1.3.1 Introduction

The approach is based on the multicomponent diffusion using the Onsagar
thermodyanamics as given in, “J.S. Newman, Electrochemical Systems, p.265, Prentice-
Hall, 1991 edition.” The membrane phase is assumed to be “homogenous” phase with
the membrane matrix playing the role of a “true solvent” for the permeating species; H”,
CH30H and H,0.

4.1.3.2 Mathematical Derivation

The starting, multicomponent diffusion equation for the transport of any species i is
Vi, =3 K, (¥, -V,)=RTY
i i

where ¢, is the molar concentration of species i, c; is the total concentration of the

CiCj (.
6D, (vj —vi) (76)

species including the solvent, R the universal gas constant, T the absolute temperature,

; the electrochemical potential of species i, K;; the friction or interaction coefficients,
D;; the diffusion coefficient describing the interaction of species i and j. V; is the

average velocity of the species i but not the velocity of individual molecules. Equation
(1) is similar to the Stefan-Maxwell equation [R.B.Bird, W.E.Stewart, and E.N.
Lightfoot, Transport Phenomena, p.570, John Wiley and sons, Inc. New York, (1960)]

and is equivalent to that developed by Onsagar [Lars Onsagar, “Theories and Problems of
Liquid diffusion, “Annals of the New York Academy of Sciences, 46 (1945), pp.241-
265].

The molar flux of species i is given by

—

N, =c,V, (77)

The drag coefficients K;; and diffusion coefficients D;; are related as follows:

_ RTg¢;c
B ¢; D

(78)

ij

Equation (1) can also be written as
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Ci(_ﬁlui) = ZKij(\_ii _\71) (79)
]
In this equation K (\7i -V, ) is the drag force exerted by species j on the species i

because of the relative velocity difference. The sum on the right-side of Eq. (79) is the

total drag force on the motion of species i per unit volume. The left-side of Eq. (79),
C; (— ﬁ,ui ) is regarded as a driving force per unit volume acting on species i. This force is
considered to cause species i to move with respect to the surrounding fluid. Equation
(79) expresses the balance between the driving force and the total drag exerted by the
other species. By Newton’s third law of motion, i.e., action is equal to reaction,
Kij =K ;i or
D;; = D;; (Onsagar reciprocal relation) (80)
It is noted here that the number of independent equations of the type (76) is one less

than the number of species and adding them leads to:
Z[Ci 6/“i] = Z|:ZKij(\7j _Vi)} (81)
i i j

The left side of Eq. (81) is zero as evidenced by the application of the Gibbs-Duhem

equation at constant temperature and pressure [J.W.Tester, M.Modell, Thermodynamics

and Its Applications, p.148, Prentice Hall, (1997 edition)]. The right side is zero because
Kij= K.

Equation (76) is quite general because here the driving force on a species i is related to a
linear combination of resistances opposing its motion instead of just one resistance
relative to the solvent. The spatial gradient of the electrochemical potential acts as the
driving force for diffusion and electric migration. The number of transport properties

D;; defined by Eq. (76) is [n (n —1)/2] for n component system, because D;; = D;; and

D.. is not defined; where n is the number of species involved.

For the membrane phase involving membrane matrix m, H*, CHsOH and H.O; there are:

4(4-1)/2 = 6 transport properties of type D; ;.
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Following Eq.(76)

V= ZMij(Vj _Vm) (82)

Where vV = velocity of the membrane material which is zero in the current

situation.
YM V= Vo (82a)
j
i=H, M,W; j=H",M, W, m;
M;; =K;; i#]

Mij :Kij' zKik; i=]j; k=H" M, W, m.
k

Applied to i =H"; M ( CH30OH); W (H,0):

DM V=c, V. (82b)
J

2 My Yy =c, Vay, (82¢)
J

ZMWj \J :Cwﬁﬂw (82d)
J

M, Y, +M_ .V, +M ¥, =C, Vi, (83a)

M e Vi + My Vi + Mgy Vi + My 00 =C, Vi, (83b)

M, Vor + My Vi + My Yy + My oV, =0, Vs, (83c)

Note: No need to write an Eq. for membrane (m) species, because only,
(n-1) = 4-1 = 3 independent Egs. of the type (76) exist. Here v, (membrane velocity)

is zero (since membrane is assumed to be stationary with regard to the laboratory

reference frame at the steady state conditions). So, Eqgs.(83a) to (83c) become

M, Ve t M Vg + MV =C Vi (83d)
M Vi My Vi + Moy Vi =Cy Vi, (83e)
M Voo + My Ty + My By, =Gy Vs, (83f)
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MH*M:KH*M; MHW:KHW; IVIMH*:KMH*;
M w =Kuws M =Kps My =Ky
Mg =My =Ky =Ky (842)
Moy =My =Koy =Koy (84b)
Myw =M, =K, =K . (84c)
Fori=j
M“:K”—Zk:Kik (85)
i=H":

MH*H* :KH*H* _|:;KH*k:|=KH*H* _[KH*H* +KH*M +KH*W +KH*m]

MH*H* :_(KH*M + KH*\N + KH*m) (85a)
i =M (CH3O0H):
Mun =Kuu _|:ZKMk:|:KMM _[KMH++KMM +Kyw + Ky (85b)
k

Muw = (K, o+ Ky + Ky )

=K., +Kyw +Kyn)
1I=W(H,0):
Mww :wa _[ZKWk}

k

Ky = Ky e +Kiw + Kt + Ky

Myw = (K0 + K +Kum) (85c)

=K,y +Ku +Km)

Note: Total interaction coefficients involved are:
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K., K.. Kuw;
{HM H*W MWJ (86)

their #is = n(n-1)/2 = 4(4-1)/2=6

Three Egs. (83), (83e), and (83f) are rewritten as

MH*H* MH*M MH*W \7H+ C.,-Va,.
M MH* Muw  Muw Vu | = | Cw ﬁﬂM 87)
MWH+ Muvw  Myw W Cu V

V..

Call the matrix made of M’s as L matrix, column vector as V : and the one in

VM
VW
right-side as D driving force vector; Therefore we can write as

LV =D (88)
If L is non-singular matrix, i.e., determinant (L)= 0; so that L™ (inverse of matrix L)
exists, then Eq. (87) or (88) is solved by writing

V=L'D (89)
( Advanced Mathematics by M.R. Spiegel, p.347 (1971 edition), 24" printing (1996))

The system of equations has unique solution.

For one (x-) dimensional case, EQ.(89) is written as

S5, v, =L7, D, (89a)
or,
v,= LD, (89b)
c dity:
H™ dx
VH* X
where v, =|v,,, |; D, =|c, dg“" (89c)
' X
Vw x )7
W dx
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Note: Find L™, then get expressions for Vie oo Vi and vy . Then, move on

Lt =2
MH*H* MH*M MH*W
Matrix (L)=|M .. My, My,
I\/|WH‘r IleM IleW
Because M., =M ... M . =M_ i My =Myy.

Note that the L matrix is the symmetric matrix.
The inverse matrix L™ is defined as

;)

det(L)

(L=

(90)

(91)

where det (L) = value of the determinant of the square matrix L, and

(Mm jk) is the matrix made of cofactors of the elements in the matrix L; (M ik )T is the

transpose of (M i )

44

(_1)1+1 Muw Muyw (_1)1+2 H*M Miw
MMW vav MH+W Mvvw

(_1)2+1 MH*M MH*W (_1)2+2 MH*H M H*W (_1)2+3
Muw Myw Mww My w

(_1)3+1 MH*M MH*W (_1)3+2 M H*H M HYW (_1)3+3
MMM MMW MH+M MMW

MH*M MMM
MH*W MMW
MH*H MH*M
MH*W MMW
H*H MH M
MH*M MMM




MF\Z/IW) (MH*WMMW MH*MMWW) (MH MMMW MH*WMMM)
MH*MMWW) (MH H MWW Mfi*w) (MH*MMH*W MH H*MMW)
MH*WMMM) (MH*MMH*W_MHHMMW) (MH H*MMM Mli*M)

MH MMWW) (MHHMWW Mfrw) (MH*MMH*W MH H*MMW)
MH*WMMM) (MH*MMH*W MH H*MMW) (MH*H MMM MIi*M)

MH*MMWW) (MH H Myw Mli*w) (MH*MMH*W MH H*MMW)
MH*WMMM) (MH*MMH*W_MHHMMW) (MH*H My MIi*M)
11 I\/Ilz M13
Mzz Mzs
31 Maz M33
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The determinant of matrix (L) is

IVIH*H* IVIH*M MH*W
Det(L)=|M, .. Myy My,
MWH+ IVIWM IVIWW

The determinant det (L) is the 3" order determinant .

From Eq. (91), (93), the inverse matrix (L™) is

i Mll MlZ M13 ]
M 21 M 22 M 23
(L_l) _ Mg M, Mg,
det(L)
1 M 11 M 12 M 13
= det(L) MZl MZZ M23
M 31 M 32 M 33
Mll MlZ M13
det(L) det(L) det(L)
(L—l) - MZl MZZ M23
det(L) det(L) det(L)
M 31 M 32 M 33
det(L) det(L) det(L)

We now use Eqgs.(89b), (89c) and (96):
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My M, My, c dﬂH
v, det(L) det(L) det(L) H T dx
v - M M, M c duy
M det(L) det(L) det(L) " dx
Y Mg Mo Mg desy
det(L) det(L) det(L) " dx
My, duy,. My, duy My desy
, det()\ % “ax ) L aet W)\ Tax )T Lder () L™ Tax
H* x
| - M, duy. M, duy M dusy
XM‘X det(L ) “wTax )T det(L ) o )T det(L) iy
W X
My c du. n M, c duy n Mg c dusy
det(L) | " dx det(L) \ ™ dx det(L) \ " dx

(97)
Hence, equations for the “net” velocities of species H*, M (methanol, CH3;0H), and
W (water, H,0) are given below:

e ((dzﬂtéiﬂ[% dﬁIHdﬁEﬁ)ICM d:xMj{dz(l )j( o D
o (e % ) ) ()
oo o ) %)

Note: det(L) from Eqgs.(90), [84a, b, c; 85a, b, c]
M’s from Eq.(94), [84a, b, c], [85a, b, c]
We may write Eq.(98) as:

1 du,,. du du
v, = Myl c,.—|+My,lcy, —% |+ M W
H* det(L) ( 11( H " dx j+ 12( M~ 4x j+ 13(CW dx ]]

(98)
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1 d,.. du du
Vy, = —— | MylCc.., —"—[+M,]|c, —™ |+M..| c, —~
WX det(L) ( Sl( H™ dx J 32( M dx ] 33( Y dx

(99)
Treatment of chemical potentials z; of the species:
For a charge neutral species,
4, =Q,(@T,P)+RTIn(y, x,) (100)

where x, = chemical potential of a charge neutral species i in the membrane phase at any

point,

Q, (@T, P): chemical potential of species i as pure at the temperature T and pressure P
and in the same state of aggregation as that of it in the “membrane solution
phase”,(may be assumed to be the liquid phase);

y; = activity coefficient of species i; it is a function of temperature, pressure and
composition of the “membrane solution phase”;

X; = mole fraction of species i in the solution phase.

Note: Here, i = CH30H, H,0, and the membrane material m if it is assumed charge

neutral.
From (100),
du, =dQ, +d[RT In(y, x, )] (101)
= (v,dP —S,dT) + d[RT In(y, x, )] (102)
du, =V,dP —S,dT + Rd[T In(y, x; )] (103)

where V;, S, = molar volume and entropy of pure species i at (T,P) of the system at a

spatial point in the membrane phase solution.
If the condition of isothermality is applied; Eq.(103) becomes

dg; =V,dP +Rd[T In(y, x, )] (104)
divide by dx:
(dij _y, B g dintix) Inlr; ) (105)
dx dx dx
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i =M (CH30H), W(H,0), m (membrane material as a component).

Electrochemical potential of H' is defined as:

My =pu"+2, FD (106)
m,.
=RT In{if_"fhemyw —Ho} z, FO (106a)
m

where m° = a reference molality (e.g. 1 g-mole per kg of a solvent).

The molality m . is given also as:

CH+
M. = (106b)

c, M, = solvent concentration in mass units, here solvent assumed to be mixture of the
membrane material m, water, methanol; for the transport of H" ions. M is the molecular

weight of the solvent.

The expression for m . is rewritten as

lCH+ /CTJ

= [ X 106
_ [xoMJ (1060

where ¢, = total mixture concentration and c . = hydrogen ion concentration.
One may then say, x, =1- x . , if all other species; membrane material (m), CH;OH,

H,O are taken to constitute the solvent for H* ion transport.

Putting Eq. (106c¢) into (106):

chem X *

u,. =RT ln{iﬁf‘ e MH m"}- 2, .Fo (106d)
= [RTInA%%" | + RT e RTIn (M,m°) + 2. Fo 106
= na.: n ]/*”x_ - n{M,m Z,. (106e)

(0]
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dut,. d d X, dT do
g =R—[TIhA2%"+R—|TInly . " ||-RIn(IM m°)— +z F—
[ dx j dx[ " | dx{ [7/“ Xq ﬂ (M,m°) dx " dx

(106f)

Under the condition of constant temperature and assuming that the effect of pressure

variation on Af_;f“em across the membrane for the pressure variations of the order of 10 bar

is negligibly small; then Eq.(106) reduces to:

du. . i X .
o lzoe TS il y 2o )lo04 2 F 92
dx dx | ™ x HO dx

d X, . dd
=RT—|Iny,. " ||+z F— 106
dx{ &L X, ﬂ o dx (1069)
du,,. d X,. do
sle,,—"*|=1(c .RT)—|Iny ||+ lc.z . JF— 106h
(H de (H )dx{ (7/” xoﬂ (H H) dx ( )

0

d X, do
(cH+RT){&[InyH+ +Inxiﬂ+ c,.z,.) e

du.,. diny d X,,. do .
C, —|= RT)| —*+—|In*||+(c.z . JF— 106i
[” de (” ){ dx +dx( XO]:I (H H) dx (1061
From Eq.(30)
¢ ) - oy 9Py Rt d(iny,), d(inx,) (106j)
dx dx dx dx

where i = CH;0H, H,0.

Assuming y .., y; variation with x over the “membrane phase” negligibly small,

d In + i
Vu _ d Idn Yi = 0; then Eqgs.(106i) and (106j) becomes:

dx
du,,. d X, . do
C.. =lc .RT)|—|In——||+(c. .z . JF— 107a
[ H dX J (H )[dXL XO j:l (H H ) dX ( )
C; e ) c,V, aP ¢,RT i[In X; | (107b)
dx dx dx
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o | it i 1%

m
M. : 5
Sothat | | [ %) =)™ I Em
det[L] dx Js'm s
Simplification:
dP . . . dP
If d—: 0, if pressure on both sides of the membrane are same or if the effect of ™ on
X X
the transport of a species is negligible; then (107b) becomes:
Ci% = ciRlenXi (108)
dx dx
i = CH30H, H,0.
dy dInx,,
c = ¢y RT
( M dx j M dx
- ¢, RT dInx,, .dxM
dx,,  dx
1 dx dx
= (x,,¢; )(RT ) ——™ = (c,RT )Y 109a
Cuer JRT) =50 = rRT (1093)
dﬂH o dInx
Also, ¢, —==c¢,RT W
Yodx dx
= Xy C; RT dlnx, dx,
dx,  dx
1 dx
=(x,C; RT)——XL
(X Cr )XW -
dx
= (¢, RT)(—W J (109b)
dx

Also, c,. %[In(xw /xo)] = (chT )%[In(xw /xo)]

_ din(x,. /x,) d(x,. /x,)
= (o) dlx,,. /x,) dx
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dx,..
= (cT){ o j (110)
From (32a) and (35):
du,, . dx .. do
(cw d—:J = (¢, RT)( d; ] + ¢z, X Fa (111)
~ dx.,. do
= (c;RT) | e F X (111a)

Substitute from (109a), (109b), and (111a) into Eqgs.(98):

M, dx,,. dd
= RT F
Y (det(L)j {(CT o dx i CT X T }r

(%(L)j (R e } (det )M = (1123

M., dx.. dd
= | — 4 RT )——— -
Yo (det(L)J {(CT ) ax " dx
M,, dx,, de
—= RT 112b
[aaillemn } [det )M (120
_ [ My dXH* do
= | 3L RT ==
Yo [det(L)] {(CT “ax "X
M., dx,, de
— RT 112
[det(L)] [(CT )dx } [det M (112c)
The molar fluxes of the species are given as:
N, = Vi,Ci (113)
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The continuity equation for a species i in the membrane phase, under the steady-state

condition,
dN,
=0 (114)
dx
(i = H+, CH30H (M), H20 (W))
leads to:
Ni,x = Ni,x:O = Ni,x:()‘m = const. (1148.)
N; .o » N;, arethe fluxes atthe end of the membrane but on the “membrane phase
side”.
NH*,X = (VH*,XCH*) =
I dx,,.
Mll (CTRT)—H CTFX d(I) i
det(L) dx dx
Cre Vigry = X,yoCr " ] M., ] (115a)
2| (c,RT)ZM |4 (c,RT) 2w
| det(L) dx det( ) dx )|
NH*,x =

dxy,

Cr Xy Vi x = XwCr

(
(&

(dz/tl(zL)j[
[

e CalLC
[ty e [

(116b)

gaces Gl

dx

i) ere) (2050

dx,,

dx,, M dx
RT 23 RT )—%

) dx j (det(L)}((CT ) dx

dx

oo ey e
o ) P o,

dXy
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_(%(Si))[(q RT)dz—)H(HLchTFxW %}
[E Gl e Gl

e = () ) s ) (s ) (s )

Mg, 2 dx,, M., , 4o
[det(l-)j ciRT) (XW dx ]+ [det(l_)j (2, Fet) (e X“*)d_x (117b)

Using Poisson equation, it was found for the membrane phase in ‘Transport Set of

Cr Xy Vi x = Xy Cq (117a)

Equations-1’:

— D" —®° c,.F
(dﬁ): | M(ZH*CH* ](am_zx) (118)
dx o, 2¢e

where; C,. = average concentration of H* with the entire membrane phase taken as the

mixture of [mobile H" in the fluid phase], CHsOH, H,O and membrane
material.

=X,.C

0,, = thickness of the membrane phase.

— 0" —@° z X .CF
(dibj = ‘ ‘ + | HHT (S, - 2x) (119)
dx O 2¢
Putting the above equation into Egs. (115b), (116b), (117b):
NH*,X =

(25 oy e ) sy [, 5|
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MZl 2 _‘(DA_CDC‘ ZH+6H+
det(L) (ZH+FCT)(XMXH+)[ 5 +( 5 e J(5m ZX)}
(120b)
NW,X_
M31 2 d H* M32 2 d M
(det(L)) (ciRT) [XW dx J* (det(L)] (etRT) (XW x J '
M., ) 1dx}
() 3%
M., ) — 0" —®° z,.C,.F
(det(L)j(Z”FCT)(XWXW)I ‘ S L( 2¢ }(&"ZX)}
(120c)

The flux equations (120a), (120b), and (120c) are quite general in that they can be
applied to a membrane made of any material, provided the information on the values of

the interaction coefficients M;; is available. The following equation for the voltage

distribution in the membrane is from the solution of the Poisson equation for the “net
charge” due to H" ions passing through the membrane in the company of H,O molecules
as well as CH3OH if CH3OH molecules are also permeating.

(0-d*)= (@A—®C)(5ij+ (Mj(cimx—xz) (121)

0 2¢e

The expressions in Egs. (120a), (120b), and (120c) indicate the fluxes of the species H”,
CH3OH (M) and H,O (W) via diffusion mechanism, where the diffusion flux of each
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species is affected by the gradients of the concentrations of all mobile species, and via

electric field effect.

Equations (120a) through (120c) are now transformed as follows:

For the treatment of Eq.(120a):

H* x
_ My, CiRT dXEﬁ My, 2 d dx,,. _
o _x, —H
(det(L)j[[ 2 j{ dax |]" det(L) & dx(XWXM) T )T
+
M, 2 d dXH*
RT| —I(x_. —
_(det(L)](CT {dx (XH XW) oy |
M, A, —‘CDA—CDC‘ z,.C,.F
F -2 121
det(L)] (ZH* CT) Xw[ 5. e (6, —2x) (121a)

Using the above equations, Eq.(120b) is transformed into:

™ | der(1)) O %XMXH‘ e ddx " det(L) 22 dEA '
e = i) (b oG+ (a5 [

o) S ),

dx

—|®* —° .C.F
(dMZl )(ZHJ:CTZ)(XM XH+)[ ‘ 5 ‘+[ZH 2CH ](5m _ZX):I (121b)

m

7~ N\
(X
8=
—
—
~

D

—+
—

—
SN~—"
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For the treatment of Eq.(120c):

dx,,. d dx
R }: g U )0 5
dx d dx
] w d)’:l }: &(XWXM)_XMd_)\QI
Putting this information into Eq.(120c):
NW,x =
M31 2 d dXW
3 RT) | = — W
det(L) (CT )(dX(XWXH+) XH* dX +
M., 2 d dx,,
— RT) | — — Xy —— | t+
det(L) & )(dx(XWXM) oy

M,, \(CZRT) (dx} .
det(L))| 2 dx

lBHA _§e —
My (ZH+FCT2)(XWXH+)[ \<D5 @ ‘+(ZH+2CH+F](5,“2X):|
(S

det(L)

(121c)

XH*/@x:o + XH*/@X:(SM

where YH+ =

Equations (121a), (121b), and (121c) describe the fluxes of the species H*, CH30H (M)
and H,O (W) through the membrane via diffusion and electric field effect. Note the
transport of CH3OH (M) and H,0 (W), via electric field effect also, for these charge

neutral species.

These equations are quite general. Also, for the condition of steady-state the fluxes

N, ., Ny, and N, areinvariant with respect to the distance x through the
X ' s

membrane phase.
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In what follows an approximate method (i.e. engineering practice method) is followed to
relate the fluxes to the species mole fractions. Here, diffusion interaction related

parameters ( ] s are assumed to be constant over the membrane phase thickness,

det(L)
o,,. Total membrane phase molar concentration c; is also taken constant. In fact, one

may take the average values of these parameters at the membrane ends.

Treatment of Eq.(121a):
Multiply both sides of this Eq. By dx and integrate:

'[X:(Sm N dx =

x=0 HT.x

) (527) T oo 8 b [

x=0
M s —@"-0° (z, Fc X,
(g ) T e |5 oo
(122a)
NH*,x O =
M ZRT
(det(lll_)J(CTz ] le' @x:&m—Xip @x:OJ
4| My 2RT) {(x %, ) (. x,) _‘T L W)
det(L) T H* M /| @x=5 HY "M J|@x=0 ) M y
M ndx
* det(laL) (CTZRT) {(XH XW)@X‘5 (XH*XW)@x—o_ 1 (XW d)H( jdx}
M S _|pA —pC ; Fe.%.
* det(llL) (ZH FCTZ)! Xa{ ‘ S ‘Jr[ : 2; . ](5m2X)}}dx
(122b)
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Now, some approximations have to be made

% dx ] X=Gn [dx ]
X H ldxz= X H ldx
!( " dx o | dx

x=0
R ) PR (1220)
f
X\ dX « (x
where X,, = | *——|= [(  Joro | M)@”"‘J (122d)
S, 2
B dx,. o (d
j(xw )(;H de; W ( At jdx
0 X =0 dx
= % Dy oecss X o) (122¢)
§m
X,y X
- ‘([ " _[(XW)@xo(Xw)@xsm]
where X,, = =
S5 2

(122f)
[T e
where (xﬁ| ) = |- 5 (1229)
_ (Xni) @x=0 _(Xni+ ) @x=5y (122h)
2

Equation (122f) becomes
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M _
+ det(ﬂL) (z,,. Fe?) [-|o* ~@°[] (2. )
NH+ X =
My, CT2 RT Xli* @x=5,, _Xiﬁ @x=0 Term(1)
det(L) )| 2 S,
M (XH+XM)@x:o"m _(XH+XM)@x:o Xil@x=s, X+ |@x=0
+(det(1lz_)J (3T) S, M[ 5,
Term (2)
M (XH+XW)@X:§m _(XH+XW)@x:0 X+ |@x=5, "Xy~ |@x=0
+(det(13L)] () { S, W[ 5,
Term (3)

(123)
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Check: Units :

i)
(e1RT) = { .

) A

Units of each of the terms : (1), (2), (3):

HESERES
] e (R [ e o (72

Equation (123) is dimensionally correct.
Treatment of Eq.(121b):
Multiply this Eq. by dx and integrate over the membrane:

Term (4) :

{dzﬂt(zll_)j (CTZRT){(XM X, )@H —(xM xH+) Iy
M 2RT
+[det(2IZ_)J [CTZ ) |.l%ll @ x=6, _lell @x=OJ
@x=o (XM XW) @x=0 XW (XM @ x=6y, —Xm @X:O)}

(124)
Divide both sides by J, :
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M —|D" —D°
| qetly (%) (2, Fe?) [%} (125)
Treatment of Eq.(121c):

Multiply (121c) by dx and integrate term by term over the membrane forx =0 »>x =

@x:OJ

2
@x=s, Xw

C2RT

(2H+Fc$)[—‘<I)A—CDCH (xwxw) (126)
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N M,, (CTZRT) (XWXM) @x=5p _(XWXM) @x=0 _x, Xw |@x=5, " Xw | @x=0
det(L) S, S

N M, CT2 RT Xv2v @x=5, ~Xw|@x=0
det(L) /| 2 S,

—|o* -
+ (dzﬂt(sll_ )] (zH+FcT2) (xW XH)[¥] (127)

Comment:

In Egs. (123), (125), and (127), on the right-hand side of each equations, the terms
contribute to the flux of the concerned species via the multi component diffusion and the
last term on the right-hand side represents the flux due to electric field. In the case of M

(CH30H) and W (H20), the last term is defined here as the electro-osmotic flux.

Equations (123), (125) and (127) are now written in terms of concentrations rather than in
terms of mole fractions:

@x=5, )2 (C

o

m

M12 RT |-|+ ) @ x=3 (CH+C ) @ x=0 _E CH+ @ x=6y, _CH+ @ x=0
det(L 5, . S
M (CH+CW)@X:6 (CH Cw )@x -0 Cirl@x=s, Chu+|@xo
+ 13 (RT) m _EW m
det(L) S, 5

+ (dz(lll_)] (z,.F) [@} c2.) (128)

)2
+|@x=0
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@ x=0 _ CM @ x=0
— CH*
m 5m

M, (CMCW) @x=5 _(CMCW) @x=0 _ | Cm|@x=5, “Cm|@x=0
(RT) S —Cy S

M, ~jo" -]
: )J (cMcH+)(zH+F)[5—} (129)

@x=8 _(CWCH+) @ x=6,, —Cw

M,, (RT) (CWCH+) o0 o Cw @x=0
det(L) S, H 5.
@x0 _ | Cw @ x=6,, —Cw | @x=0

2

(Y ( RT j Cw|@x=s, ~Cw|@x-0
+ —_—
det(L) )\ 2 S,

[T

Now, the species H*, CHzOH (M), and H,0O (W) concentrations in the membrane phase

at its boundaries with the electrodes are expressed in terms of the species compositions in

the

porous electrodes using the concept of phase equilibria between the membrane and

electrodes with regard to each species.

For the liquid mixture in the porous anode in equilibrium with the membrane phase at x =

0, with regard to a species i, the condition for equilibrium is
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Hi = Hi (131)
(i = CH30H, H,0)
1" =y +RT In(}/iL—AXiL—A—e) (132)
ﬂ_m7e0 = ﬂ.om + RT In 7/.C’m_A —Ci (133)
i 1 [ c

(i = CH30H, H,0)

where u’- = chemical potential of the pure liquid species i at the temperature and
pressure of the mixture in the anode,
u." = chemical potential of the pure liquid species i at the temperature and

pressure of the mixture in the membrane phase,

x-~"* = mole fraction of species i in the liquid phase mixture in the porous anode
end in contact with the membrane,
¢ = mole concentration of species i [mol per unit volume] in the membrane

phase in contact with the porous anode end at x = 0,

M —eo
. . C;
Cc, =1 mol per unit volume; used here as adjusting parameter to make ( : J
C

0

a dimensionless quantity,

y " = activity coefficient of species i in the liquid phase mixture in the porous
anode to account for the nonideal behavior of species i in the mixture,
yo™ A = activity coefficient of species i in the membrane phase to

account for the nonideal behavior.

The standard state chemical potentials for the liquid phase in the anode, ™, and for the

membrane phase, ", are assumed to be identical, i.e. z’ ="

Egs. (131), (132),and (133) lead to

in,m—ACi— — }/iL—A XiL—A—e (134)
C

0

This leads to:
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Cim—eo - |: j/ci’m_A:| XiLfAfe CO (135)

—_ L-A-m , L-A-e
= S. X

I 1 0o

(i = CH3OH, H,0)

(136)

L-A

Here, s/ A" = {%} , has been defined as the liquid solubility coefficient of
Vi

component i in the membrane phase corresponding to the liquid phase composition in the

eo

anode. Note that ¢ is the molar concentration of the species i in the membrane phase

atx = 0.

Following the similar procedure, it leads to

L-C-m L-C-e
i i

(i = CH30H, H,0)

c (137)

0

where ¢"° = molar concentration of species i in the membrane phase at x =4, ,

L-C
st = {%} the liquid solubility coefficient of component i in the membrane

phase corresponding to the mixture composition in the porous cathode end

in contact with the membrane atx =9,, .

If the dependence of the solubility coefficient of a species i in the membrane phase on

compositon can be relaxed; then, one may set

L-A-m
i

= 5" = s (solubility coefficient of the species i in the membrane

phase) (138)

S

Equations (136) and (137) are rewritten as

¢ =s"x"*c, (139a)
(at the membrane-anode interface)
and ¢ = s"x "¢, (139Db)

(at the membrane-cathode interface)
(i = CH30H, H,0)
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where s = solubility coefficient of the species i in the membrane phase at the prevailing

temperature and pressure conditions.
Treatment of H':
1 :;e = e (140)

where ﬂ::e = electrochemical potential of H" in the porous anode end in contact with the

membrane phase,

w1 = electrochemical potential of H" in the membrane phase end in contact

with the anode at x = 0.

The electrochemical potential of H” is expressed as
u, =RT (2% m 7. ) (141)
where m . =molality of H" in the solution in a porous electrode or in the membrane

phase,
7. = 7, (temperature, pressure and compositon) = activity coefficient of H*,

/Ifﬁ = a proportionality constant, independent of composition and electrical state,

but characteristic of H" and the solvent and dependent on temperature and

pressure.

Equation (141) is used in Eq.(140) to obtain

AR mhice y i 0m miee e (142)
If it can be allowed that A7* = A7) (it may become possible if one can assume that
water is solvent for the mobile H* ions in the porous anode and membrane); then,

Eq.(142) becomes

m S:e 7::(9 — mg:eo ySLeo (143)
A-e
e = mAe (7'*—} (143a)
H +
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m-eo A-e
m-eo — CW 7/H+ A—e
c..o = — ——||c (143b)
" K(Cw )][m J] "

The solubility coefficient of H™ ions in the membrane phase in the presence of water may

be defined as
M —eo A-e
S [(CWA j[?:—ﬂ (144)
CW 7/H+

where ¢, = molar concentration of water in the membrane phase end in contact with

the porous anode at x =0,

¢,y ° = molar concentration of water in the porous anode end in contact with the

water,

m,eo

7HAIe , 7. = activity coefficients of H™ ion in the porous anode solution and in the

membrane phase solution, respectively, at the membrane-anode interface
atx=0.

m-eo A-e
: C .
Note that s-"* is controlled by the product of ( W j and [7/” J

CWA7e 7/3;90
7/A—e
It can be assumed that ( r;'e ] ~1
yo

A Cvr\rll—eo
Then, s " = (CVC_ J

From Eqgs. (143b) and (144),
cl = s el (145)
Following the similar procedure it can be shown that
clt=s " (146)
where c-°= molar concentration of H" in the membrane phase end in contact with the
porous cathode at x =4, ,
¢t =

-~ = molar concentration of H" ion in the mixture in the porous cathode end in

contact with the membrane at x =6, ,
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m—e C-e
shmC = [(CW j(]/:!e J] defined as the solubility coefficient of H*

H C-e
Cw o

ions in the membrane phase end in contact with the porous cathode at x =4, ,

Cu " : . :
( chej = ratio of molar concentration of water in the membrane to the molar

concentration of water in the porous cathode phase end at the

membrane-cathode interface at x =o,,,

C-e
(7/,:9 ] = ratio of H" ion activity coefficient in the porous cathode to that in the
o

membrane phase at the cathode-membrane interface.

If it can be allowed that

L-m-A L-m-C

—_ —m-— —_ m .
SH+ - SH+ - SH+1

then, Egs. (145) and (146) are written as

cr® =" ch’ (147)
m-e — m C-e
C.. =S, Cr. (148)

Molar concentrations of H*, CHzOH (M), and H,0 (W) appearing in the membrane
phase in Egs. (128), (129), and (130) are expressed in terms of the concentrations of the
species in the porous anode and cathode using Egs. (139a), (139b), (147) and (148) to

obtain

¥ s () [(Cﬁf R )2]
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5 Conclusions

Derivation of the transport flux equations for a direct methanol fuel cell solid polymer
electrolyte membrane using i) moderately dilute solution theory based on Fickian
diffusion, ii) concentrated solution theory based on the generalized Stefan-Maxwell
equations, and iii) concentrated solution theory based on the Onsager irreversible
thermodynamics approach to transport processes have been presented. The developed
equations account for the effect of the voltage, pressure and the species concentration

gradients on their transport fluxes.

These equations, describing species transport fluxes through a solid polymer electrolyte
membrane are to be coupled with the equations, yet to be developed, describing mass
transfer through the electrode porous backing layers and species mass transport with
electrochemical/chemical kinetics in the porous electrode layers. The coupled equations,
describing the various phenomena occurring in a DMFC in operation, will be of immense

significance in the evaluation of performance and design/development of a DMFC.

The developed transport equations, in this report, can be used to experimentally
determine the transport properties of a membrane, from very dilute to very concentrated
solutions, such as permeability of the fluid mixture and effective mass diffusivities of the

various species.
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