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Project Overview 

Seismic/elastic techniques show considerable promise for the reliable detection of all 
types of buried mines, even low-metal anti-personnel mines. The reason for this is that 
mines have mechanical properties that are significantly different from soils and typical 
forms of clutter. For example, the shear wave velocity is more than 20 times higher in the 
explosive and the plastics used in typical mines than in the surrounding soil. In addition, 
mines are complex mechanical structures with a flexible case, a trigger assembly, air 
pockets etc. The complex structure gives rise to structural resonances, non-linear 
interactions, and other phenomenology that is atypical for both naturally occurring and 
man made forms of clutter. Thus, this phenomenology can potentially be used to 
distinguish a mine from clutter. 

Seismic detection techniques have fallen into disfavor because of practical system 
implementation issues. Both the detection and generation of seismic waves has 
previously been conducted with ground contacting transducers (thumpers and geophones) 
which are impractical in the vicinity of land mines because of the threat these pose to 
both the system and the operator. Mines are generally very small in comparison with the 
wavelengths used in seismic exploration. Their target strengths are, therefore, fairly small 
and it has been nearly impossible to pick them out from the background. 

A system has recently been developed at Georgia Tech that exploits the advantages of 
seismic techniques while overcoming the implementation issues. The technique uses an 
interrogation sensor that detects the elastic waves in the earth without contacting the 
earth. A radar is currently being used as the interrogation sensor. The system employs an 
elastic wave source that launches a surface (Rayleigh) wave that travels over the 
minefield. This technique uses wavelengths comparable to the size of a mine; thus, the 
target strength of the mine is much stronger than that of traditional seismic techniques. In 
addition, it can detect the localized interactions of the mine and the elastic waves since 
this technique safely interrogates the earth directly above the mine. 

The objective of this research is to support ongoing development of the seismic mine 
detection technique. Specifically this involves the creation of a reliable three-dimensional 
theoretical (numerical) model for the propagation of elastic waves in the earth. The model 
will be used to investigate the interaction of elastic waves with buried objects, thus 
providing both a predictive capability for system performance and a technique for the 
design of future field experiments. As a part of this modeling, an experimental effort to 
measure the relevant physical properties of soils and mines has also been undertaken. 

The activities undertaken on this project over the last year are outlined below. 
Additional technical details pertaining to these activities may be found in the manuscripts 
that are included in the appendices to this report. 



Activities 7/1999 - 7/2000 

I. Three-Dimensional FDTD Model 

a) A linear three-dimensional FDTD model has been developed to model wave 
propagation in soil and the interactions of elastic waves with buried objects. The 
model has been written to run efficiently on a massively parallel computer. 
Stratification of the soil and the structure of the target are accounted for in the FDTD 
code. The model is presented in the attached papers [P1-P4]. 

b) The linear 3-D FDTD model has been validated by comparison to experimental data 
taken in a sandbox at Georgia Tech [P1-P4]. 

c) The linear 3-D FDTD model has been used to study the interactions with a variety of 
buried mines and clutter objects [P1,P3,P4]. 

d) The effects of trenching have been modeled numerically [P2]. The numerical 
trenching model has been validated experimentally. 

e) Initial investigations have been performed on techniques for including the non- 
linearity and the loss of the sand in the model. This is described in Appendix I. 

f) Because of the computational requirements for the model, a Beowulf cluster 
consisting of 50 500MHz Pentium III processors and 6 GB of memory has been 
assembled as part of this project. The three-dimensional FDTD model has been 
implemented to run efficiently on the Beowulf cluster. 

II Soil Property Measurements 

a) Physical properties of wet compacted sand and local soil samples have been measured 
through seismic propagation experiments involving surface coupled accelerometers. 

b) The depth dependence of shear wave velocity in the experimental model has been 
studied using an inversion technique involving surface measurements and the three 
dimensional model [PI]. The technique presumes the depth dependance of the 
velocity to be the dominant source of surface wave dispersion. The vertical profile is 
then derived by matching measured time domain waveforms to model predictions. 

c) Experiments have been performed to investigate the non-linear properties of the sand 
in the experimental model as a function of frequency and range [P5]. These 
experiments have shown that the transfer function of the measurement system has 
strong nonlinearities above 1,000 Hz in the range of normal drive levels. Increasing 
the source drive signal by a factor of 10 produces significant nonlinearity over the 
entire operating bandwidth (100-2,000 Hz). The dominant source of the measured 
nonlinearities was found to be source to surface coupling and near source effects. 
Evidence of nonlinear dispersion in the propagation path was also observed. 



Ill Collaboration with NPGS 

a) In December 1999, a three-man team from Georgia Tech toured facilities at NPGS 
and met with Tom Muir to discuss plans for field tests. 

b) A series of pilot field tests will be performed form July 16 to August 16, 2000 to test 
the propagation characteristics and ambient noise field at the NPGS test site. These 
tests are also intended to resolve logistical issues, which will be encountered in full 
system tests. 

Plans for Future Work 

Develop a method for modeling the non-linear nature of the sand and incorporate it 
into the three-dimensional FDTD model. 

Include the fine structural details of mines in the numerical model. 

Measure the depth dependence of the shear waves speed explicitly both at the NPGS 
field site and in the laboratory model. 

Use the numerical model to study the interactions of a variety of mines and burial 
scenarios. 

Use the numerical model to study alternate configurations of the system including 
alternative source and sensor concepts and signal processing schemes. 
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Appendix I 

Model for Nonlinearities and Loss 

It is common to assume linear elasticity or linear viscoelasticity in numerical models 
because of the associated conceptual and computational simplicity. [R20] However, soil 
is generally an unconsolidated material and even a relatively small excitation can cause 
nonlinearities. In addition, linear elasticity does not include an attenuation mechanism, 
which every real material has. For these reasons it is inadequate to model unconsolidated 
soils with a linear elastic model in many applications. 

Initial investigations have been performed on techniques for including the non- 
linearity and the loss of the soil in the model. Several approaches for including the non- 
linearities and the loss into the model have been presented in the literature. These fall 
into three categories: viscoelastic models [R1-R7], simple nonlinear elastic models [R8- 
R10], and nonlinear endochronic models [R11-R20]. From our initial investigations, 
these models do not seem to be adequate to model the propagation in the soil. The elastic 
limit and yield limit of unconsolidated materials, unlike consolidated materials, are 
widely separated having very small strains for the elastic limit and large strains for the 
yield limit. This causes the nonlinear propagation zone of the unconsolidated material to 
be of considerable width even for a small excitation on surface. [R8] In this nonlinear 
zone, the materials show cusped hysteresis loops, amplitude dependent wave speed, 
harmonic generation, redistribution of spectral energy, and amplitude-dependent 
attenuation. [R8 - RIO, R16, R20] 

For the model to be able to accurately predict wave propagation in unconsolidated 
soil, it must be able to model the hysteresis loops in the stress-strain relationship with 
reasonable accuracy. This is very important for two reasons. First, the nonlinear nature 
of the stress-strain relationship will generate harmonics and, second, the hysteresis will 
generate loss. These must be properly balanced or the model will be incorrect. Without 
the loss, the nonlinearities will generate more and more harmonics. This will result in an 
ever-increasing frequency content of the modeled signal, and eventually cause the FDTD 
model to fail. In the real physical system, the loss due to the hysteresis limits the 
frequency content of the signal. 

Unlike linear elasticity, linear viscoelasticity has attenuation mechanisms. These 
attenuation mechanisms are realized by introducing relaxation times and memory 
variables in the FDTD code. [R4-R7] With this formulation, it is not possible to model 
the nonlinearities, and it will be difficult, if not impossible, to properly model the loss 
seen in the soils. This is because the loss is closely tied to the nonlinear mechanisms and 
can not be properly modeled with a linear model. 

The simple nonlinear elastic models include nonlinearities and hysteresis, but they 
do not do a very good job of modeling the hysteresis loops in the stress-strain 
relationship. Thus, they are not suitable because they underestimate the loss at the high 
frequencies and fail due to the above-mentioned mechanism. 

The endochronic models also include nonlinearities and hysteresis. The endochronic 
theory was first introduced by Valanis [R11,R12] and was developed from the concepts 
of irreversible thermodynamics of internal variables. It is a phenomenological model 



[R13]. In endochronic theory, the kernel needs to be singular, and the weakly singular 
kernel function can be approximated by the finite sum of exponential functions [R13- 
R16]. The medium response is determined by the kernel function. The endochronic 
model does a better job of modeling hysteresis loops than does the previously mentioned 
models, but the kernels that have been developed do not accurately model the 
experimental observations that we have made. It is not clear that it is possible to modify 
the kernel so that it will fit our experimental observations. In addition, endochronic 
theory is very complex and greatly increases the computational burden for the FDTD 
code. 

It may be possible to extend the endochronic model so that it will correctly model 
soils, but we have been developing another approach that we believe will perform better 
and be simpler to implement. This approach is essentially an extension to the simple 
nonlinear approach in which the hysteresis loops are modeled more accurately. 
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ABSTRACT 

A three-dimensional finite-difference model for elastic waves in the ground has been developed and implemented. 
The model is used to investigate the interaction of elastic waves with buried land mines. When elastic waves interact 
with a buried mine, a strong resonance occurs at the mine location. The resonance can be used to enhance the mine's 
signature and to distinguish the mine from clutter. Results are presented for a single mine buried in the ground and 
several mines in the presence of clutter. The predictions of the numerical model are in fairly good agreement with 
experimental results. 

Keywords: land mine detection, elastic, acoustic, FDTD, finite-difference 

1. INTRODUCTION 

A new technique is being investigated at the Georgia Institute of Technology, in which buried land mines are located 
by using both elastic (acoustic) and electromagnetic waves in a synergistic manner.1"3 Here, elastic waves interact 
with a buried land mine and cause the mine and the surface above the mine to vibrate. An electromagnetic radar 
records the vibrations and, thus, detects the mine. During the process of developing the elastic/electromagnetic 
sensor, a major part has been the implementation of a numerical model which simulates the interaction of the elastic 
waves with the buried land mines.4 

The numerical model is based on the finite-difference time-domain (FDTD) method. The equation of motion and 
the stress-strain relation, together with a constitutive relation, form a set of first-order partial differential equations 
that completely describes the elastic wave motion in a medium. Introducing finite differences, this set of equations 
can be discretized and adapted to the finite-difference time-domain modeling scheme. Assuming that the field is 
known at one initial time to, this numerical scheme is used to determine the field values at later times t > in ■ 

The finite-difference model has been implemented in two and three dimensions. The solution space is discretized 
and a staggered finite-difference grid is introduced. The grid is surrounded by a perfectly matched layer, that absorbs 
the outward traveling waves and, thus, models the infinite extend of the solution space. The finite-difference model 
has been implemented in a fully parallel fashion. The computations for this paper's results have been performed 
both on a Cray T3E parallel supercomputer located at the ERDC Massively Shared Resource Center in Vicksburg, 
Mississppi, and on a Beowulf PC cluster located at the Georgia Institute of Technology. The Beowulf cluster has 
been developed and built especially for the model described in this paper. 

The numerical model has been very helpful for explaining and understanding the experimental results. The 
numerical model bears several advantages over the experimental model. With the numerical model, it is possible to 
visualize the elastic wave motion within the ground, whereas with the experimental model only the wave fields on 
the surface can be observed. Furthermore, no noise is present in the numerical model, and material parameters can 
be adjusted easily. 

Electronic Mail and Telephone: christoph.schroeder@ee.gatech.edu, 404-894-3123, waymond.scott@ee.gatech.edu, 404-894-3048 



Results obtained with the three-dimensional model are presented in this paper. In Sec. 3.1, the propagation of 
a Rayleigh surface wave is shown as measured experimentally and computed numerically. The surface wave is seen 
to disperse as it propagates along the surface. The same effect can be also modeled numerically. In Sec. 3.2, the 
interaction of elastic waves with a buried anti-personnel mine is shown. In both experiment and numerical model, a 
strong resonance is observed at the mine location. Finally, in Sec. 3.3, the interaction of elastic waves with several 
buried mines in the presence of clutter is described. 

2.  THREE-DIMENSIONAL NUMERICAL MODEL 

In a realistic setting, one or several mines are buried in the ground, surrounded and covered by various kinds of 
clutter. To approximate these conditions, experiments have been performed with mines buried in a large sand 
box.1 In these experiments, elastic waves are launched by an electrodynamic transducer placed on the surface of the 
ground. The waves propagate along the surface and interact with the buried land mines. To study these mine-wave 
interactions, a three-dimensional finite-difference model has been developed. 

2.1. Finite-Difference Model 

Figure 1 shows the three-dimensional finite-difference model. To reasonably simplify the model, the ground is assumed 
to be linear, isotropic and lossless. The surface of the ground is modeled as a free-surface, a Perfectly Matched Layer 
terminates the solution space at the remaining grid edges and absorbs the outward traveling waves. The solution 
space is discretized using a staggered finite-difference grid.5 
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Figure 1. Three-dimensional finite-difference model; (a) lay-out, (b) finite-difference cell. 

The elastic wave motion in solids is described by a set of fundamental partial-differential equations: the equation 
of motion relating the particle velocity vector and the mechanic stress tensor, the strain-velocity relation and the 
elastic constitutive relation. Combining these equations, a first-order system of equations is obtained describing 
the elastic wave fields entirely in terms of the particle velocity and the mechanic stress. In three dimensions, three 
unknown velocity components and six unknown stress tensor components arise. 

For the numerical finite-difference model, the derivatives of the partial differential equations are approximated 
by finite-differences. The finite-difference algorithm shall be explained by deriving the update equations for the x- 
component of the particle velocity, vx, (from the first component of the equation of motion) and for the longitudinal 
stress component, TXX (from the combined strain-velocity and constitutive relation). Update equations for the other 
field components can be derived in a similar manner. 

The first-order system of equations consists of nine linear independent equations for the three unknown velocity 
vector components vx, 
can be written out as 

and vz, and the six stress tensor components TXX, ryy, TZZ, TVZ, TXZ and rxy. The equations 
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where A and \i are Lame's constants and describe the isotropic solid, and p is the material density of the medium. 

Taking Eq. (1) and Eq. (4), the update equations for the particle velocity vx and the longitudinal stress rxx are 
derived. Introducing finite-differences in space and time, the partial-differential equations are discretized: 
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Here, the capital letters mark the numerical value of the correspondent field component at a discrete location in 
space and time. For example, Vx

+0'5(i, j — 0.5, fc — 0.5) stands for the numerical value of the particle velocity vx at 
{x,y,z) = {iAx, {j - 0.5)Ay, (k - 0.5)Az) at time t = (I + 0.5)At. Knowing Vj"0-5, Txx,Txy and Txz, Eq. (10) can 
be solved for Vx

+0'5, i.e. for the particle velocity at the incremented time t — (I + 0.5) At: 
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Similarly, T^1 is obtained from Eq. (11): 
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In the same manner, discrete update equations can be obtained for all field components.6 

The discretization leads to the characteristic finite-difference grid. In this grid, the field components are staggered 
in space and time. The finite-difference grid can be thought of as being comprised of basis cells. The three-dimensional 
basis cell for the elastodynamic case resembles strongly the three-dimensional basis cell for electromagnetic finite- 
difference modeling, the so-called Fee-cell.7 However, due to the stress being a tensor, more field components are 
present in the elastodynamic case. Figure 1 (b) shows the three-dimensional finite-difference basis cell. The position 
of the cell in space is labeled with i in the ^-direction, with j in the y-direction and with k in the ^-direction. Only 
the field components in black are assigned to the (i,j, k)-th cell. The other field components belong to adjacent cells 
and are gray in Fig. 1 (b). Note that the field components are not known at the same points in space and time. 
The grid is laid out such that each field component is surrounded by the field components it is dependent on. The 
finite-difference algorithm then works as follows. Knowing the field components at one initial time t0 throughout 
the entire grid, the field values for later times can be determined. First, the velocity components on the grid are 
calculated at the incremented time t0 + 0.5At using Eq. (10) for vx and equivalent equations for vy and vz. The 
stress components at to + At are determined from the velocity components using Eq. (11) and its equivalences. Then, 
the velocity components are updated using the stress values, the stress components are computed from the velocity 
components and so on. In this way, the field values can be determined up to any desired time. 

When implementing the finite-difference scheme, boundary conditions have to be treated in a special manner. 
Three different kinds of boundaries arise: the source, internal boundaries (i.e. boundaries within the medium marked 
by a change in material properties), and external boundaries (i.e. the grid edges). 

In the experimental model, an electrodynamic transducer placed on the surface launches the elastic waves. The 
transducer foot has the shape of a bar. In the numerical model, the transducer is approximated by exciting the 
particle velocity component normal to the surface, vz, on an area equivalent to the area of the foot. The motion 
of the transducer foot has been measured using accelerometers and resembles closely the shape of a differentiated 
Gaussian pulse. In the numerical model, a differentiated Gaussian pulse is used as excitation, because the excitation 
must have a smooth shape to avoid numerical dispersion artifacts. To compare the experimental and numerical 
results, the transfer function of the numerical model at each point in space is determined and convolved with the 
excitation of the transducer. In this way, the elastic wave fields due to excitation with the real transducer foot motion 
are obtained. 

The conditions at internal boundaries, i.e. at the interfaces between different media, are usually satisfied implicitly. 
However, to ensure numerical stability, the material properties have to be averaged for components on the boundary. 
While the material density p, appearing in the equation of motion, is averaged directly, the inverse of Lame's 
constants, A and ß from the stress-strain relation, must be averaged. 

Four external boundaries arise at the four outer grid edges. At its upper edge, the half-space is bounded by a free 
surface. Due to the continuity of normal stress, the normal stress components vanish at a free surface. In order to 
satisfy this condition, an extra row must be inserted into the finite-difference grid one step beyond the free-surface 
boundary. 

In order to model the infinite half-space, all waves that are reaching the three remaining outer grid edges must be 
perfectly transmitted and absorbed. The boundary condition that does this most accurately is the Perfectly Matched 
Layer (PML) boundary condition, first introduced by Berenger8 and adapted to elastodynamics by Chew and Liu.9 

Here, a non-physical splitting of the wave fields allows the introduction of a lossy boundary layer that is perfectly 
matched to the solution space. In continuous space, it has been shown that an arbitrarily polarized wave incident on 
this PML medium is perfectly transmitted. The wave experiences the exact same phase velocity and wave impedance 
as in the solution space, while rapidly decaying along the axis normal to the PML-medium interface. In discrete 
space, however, the PML will not be matched perfectly to the solution space. To keep reflections at the interface 
small, a tapered loss profile is chosen for the PML.3 

2.2.  Parallelization 
The finite-difference model has been implemented in a fully parallel fashion.   When implemented on a parallel 
computer, the three-dimensional finite-difference grid is divided into several sub-grids, and each sub-grid is assigned 



to one processor of the parallel machine. The processors compute the wave fields on their sub-grids and share only 
the field values on the interfaces with their neighbors. The finite-difference model has been implemented to run 
both on a Cray T3E supercomputer with 544 processors (located at the ERDC Massively Shared Resource Center 
in Vicksburg, Miss.) and on a PC computer cluster located at the Georgia Institute of Technology. The PC cluster 
contains 50 Pentium III processors and has been especially built for this project. 

3. INTERACTION OF ELASTIC WAVES WITH BURIED ANTIPERSONNEL MINES 

The interaction of elastic waves with anti-personnel mines, buried in sand, is to be investigated. First, the propagation 
of a Rayleigh surface waves along the surface is compared as measured experimentally and as computed numerically. 
Then, the interaction of elastic waves with a single anti-personnel mine is described. Finally, three anti-personnel 
mines are buried in the ground together with some rocks and a wooden stick. 

In the experiment, the mines are buried in a large sand-filled box. The properties of sand, together with the 
properties of plastic, air, rocks, and wood, are depicted in Table 1. Note that the shear wave speed in sand is assumed 
to be depth-dependent. Note also that wood is usually anisotropic, but is assumed to be isotropic to simplify the 
numerical model. This assumption is justified by considering the small dimensions of the wooden stick used here. 

Table 1. Parameters used for finite-difference simulation. 

Sand Shear wave velocity Cs,sand (depth-dependent) 

Pressure wave velocity £p,sand 250 m/s 

Material density Psand 1400 kg/m3 

Plastic Shear wave velocity Cs,plastic 1100 m/s 

Pressure wave velocity Cp, plastic 2700 m/s 

Material density Pplastic 1200 kg/m3 

Air Shear wave velocity ^s,air 0 m/s 

Pressure wave velocity Cp,air 330 m/s 

Material density Pair 1.3 kg/m3 

Granite Shear wave velocity Cs,granite 3500 m/s 

Pressure wave velocity £p, granite 5500 m/s 

Material density Pgranite 4100 kg/m3 

Wood Shear wave velocity Cs,wood 100 m/s 

Pressure wave velocity Cp,wood 300 m/s 

Material density Pwood 650 kg/m 

The space step for the numerical model is chosen to be Aa: = Ay — Az = 0.5 cm; the time step is At = 11.54 fis 
and, thus, fulfills the Courant condition (the necessary condition for stability of the finite-difference algorithm). The 
excitation has the shape of a Gaussian pulse. To be able to compare the numerical and experimental results, the 
transfer function of the system is determined in a post-processing step for each point in space and convolved with 
the transducer motion as measured in the experiment. 

3.1.  Surface Wave Dispersion 

A Rayleigh surface wave is seen to disperse as it propagates along the surface of the ground. This effect has been 
observed experimentally1'2 and is believed to be mainly due to the shear wave speed in sand increasing with depth. 
The pressure within the sand grows with depth, thus enhancing the cohesion between the grains of the sand. The 



increased cohesion causes the medium to be stiffer and the shear wave speed to become larger. The shear wave speed 
as a function of depth is empirically found to be 

150   1 
lOz03 + 5 

where z is the depths in meters. The depth profile is graphed in Fig. 2. 
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Figure 2. Shear-wave-speed depth profile. 

Figure 3 shows waterfall graphs of the vertical particle displacement at the surface as measured experimentally 
(Fig. 3 (a)) and as determined numerically (Fig. 3 (b)). In these graphs, the displacement at a number of points 
along a straight line on the surface is plotted as a function of time and offset by the distance from the source. The 
slope of the traveling waves in the graph indicates the wave speed. Thus, by determining the slope, the different 
wave types can be distinguished. 

Both in the experiment and in the numerical model, a pressure wave (P) and a Rayleigh surface wave (R) are 
seen to propagate. The pressure wave is faster than the Rayleigh wave and, thus, its slope is larger. The pressure 
wave is seen to decay quickly, due to the pressure wave being a volume wave rather than a surface wave. As the 
surface wave propagates, the pulse disperses and changes its shape. Dispersion arises, if wave components with 
different frequencies travel with different speeds. Due to the shear-wave speed increasing with depth, high-frequency 
components, which are more confined to the surface, will experience a lower shear-wave speed than low-frequency 
components, which reach deep into the ground. The agreement of experiment and numerical simulation is fairly 
good. The differences are mostly due to non-linear effects occurring in the sand. The non-linearities dampen the 
high-frequency components and, in this way, cause the pulse to broaden and to change in shape. By decreasing 
the amplitude of the excitation in the experiment, the agreement of experiment and numerical simulation can be 
improved. However, the signal-to-noise ratio of the radar output in the experiment will also decrease and, thus, the 
noise contents of the data will increase. Thus far, the non-linear effects are not incorporated into the numerical 
model. 

Figure 4 shows the the vertical particle displacement on the surface and on a cross section through the ground 
at two times, Ti and T2, corresponding to the vertical lines in Fig. 3 (b). The wave fields have been computed 
numerically and are plotted on a logarithmic scale, in which black corresponds to the largest magnitude (0 dB) and 
white to the smallest (-60 dB). At Ti, a Rayleigh surface wave (R), a shear wave (S) and a pressure wave (P) are 
seen to propagate. The shear wave and the pressure wave are visisble only on the cross section through ground. 
The pressure wave induces head waves (H) as it propagates along the surface. Head waves are downwardly directed 
plane shear waves generated by the passage of bulk waves along the free surface. They usually decay rather quickly. 
Both the head waves and the surface wave are visible on the cross section and on the surface. At T2, the waves have 
propagated farther. The pressure wave has left the range of the plot. The surface wave (R) and the shear wave (S) 
have separated. The head waves (H) have decayed and are not visible any more on the surface. 

3.2.  Interaction with a Buried Anti-Personnel Mine 

To investigate the interactions with a buried land mine, a simple model for an anti-personnel mine is inserted into 
the numerical model. Figure 5 shows the simple model, together with a simplified cross-sectional drawing and a 
picture of a real TS-50 anti-personnel mine. The simple mine model consists of a main chamber containing plastic 
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Figure 3. Waterfall graphs of the vertical particle displacement on the surface according to (a) experiment and (b) 
numerical simulation. 
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Figure 4. Normal particle displacement on the surface (top) and on a cross section through the ground (bottom). 
Ti and T2 correspond to the vertical lines in Fig. 3 (b). 

explosives, and a smaller chamber on top of the mine's main chamber filled with air. In the cubic finite-difference 
grid, the round shape of the mine is approximated by cubes, leading to the stair-case form evident in Fig. 5. The 
air-filled chamber is inserted into the model to approximate the structure of a real TS-50 mine. A real TS-50 mine 
contains plastic explosives, a trigger mechanism, several chambers and is enclosed in a plastic case (see Fig. 5). 

Figure 6 shows waterfall graphs of the mine-wave interaction for both experiment and numerical simulation. The 
mine is buried 2 cm beneath the surface, at a distance of 70 cm from the source. A pressure wave (P) and a Rayleigh 
surface wave (R) arise. The waves hit the mine and are reflected (rR) and transmitted. While the interaction of the 
mine with the pressure wave is weak, the surface wave strongly interacts with the mine. In both experiment and 
numerical simulation, resonant oscillations occur at the mine location and remain even after the waves have passed 
the mine. For the numerical model, it can be shown that the incident waves couple into flexural waves which arise 
in the thin soil layer above the mine.4 These flexural waves are confined to the thin layer and form a standing 
wave pattern, giving rise to the resonant oscillations. While this explains the resonance in the numerical model, it 
gives only one possible cause for the resonance in the experiment. A real TS-50 mine has several chambers, it has 
a flexible case that can support both flexural and longitudinal waves, and it contains springs that can also give rise 
to resonances. The authors are currently working on refining the numerical model to incorporate more details of the 
mine. 
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Figure 5. Simple model for the TS-50 anti-personnel mine; cross-sectional drawing and photograph of a real TS-50 
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Figure 6.   Interaction of elastic waves with a buried anti-personnel mine; waterfall graphs of the vertical particle 
displacement on the surface according to (a) experiment and (b) numerical simulation. 

In Fig. 7, the vertical particle displacement on the surface and on a cross section through the ground is plotted. 
The fields are determined using the numerical model. The dynamic range of the plots is 50 dB. The wave fields 
are shown at four different instances in time, corresponding to the vertical lines marked with Ti, T2, T3 and T4 in 
Fig. 6 (b). In the first plot, the surface wave is seen to just hit the mine. While only the surface wave (R) is visible 
on the surface, both the surface wave (R) and the shear wave (S) appear on the cross section. In the second plot, 
the surface wave has just passed the mine. The interaction of the surface wave with the mine gives rise to reflected 
surface waves (rR) and reflected shear waves (rS), which are clearly visible on the cross section. Pressure waves are 
also induced by the surface wave, but they are weak and not visible. In the third and fourth plot, the surface wave 
has passed the mine. Some energy, however, remains at the mine and causes the mine to vibrate and to radiate. 

3.3.  Mine-Wave Interaction in the Presence of Clutter 

Next, it is investigated how the presence of clutter affects the mine-wave interaction. For this, three mines are buried 
in the ground together with a wooden stick and four rocks of various sizes and shapes. The material properties of 
the rocks (granite) and wood can be found in Table 1. Figure 8 shows how the mines, the rocks and the stick are 
arranged in the ground. The mine closest to the source is smaller (6 cm in diameter) than the other two mines (8 
cm). The mines are buried 2 cm beneath the surface. The first mine lies at a distance of 50 cm from the source, the 
second at 70 cm and the third at 80 cm. The rocks and the wooden stick are located at different depth and have 
different shapes. The rock closest to the source is a tilted cuboid, the second rock is a sphere, and the other two 
consist of rectangular plates of random size. The wooden stick is modeled as a cylinder with a bent axis. 

Figure 9 shows the vertical particle displacement on the surface in two series of pseudo color plots as obtained 
with the numerical model.   The first series, Fig. 9 (a), has a dynamic range of 40 dB, whereas the second series, 



Figure 7. Interaction of elastic waves with a buried anti-personnel mine; pseudo color plots of the normal particle 
displacement on the surface (top) and on a cross section through the ground (bottom) at four instances in time, 
corresponding to the vertical lines in Fig. 6 (b). 
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Figure 8. Three mines (M), 4 rocks (R) and a wooden stick (W) buried in the ground; top view and side view. 

Fig. 9 (b), has a range of 70 dB. The dynamic range of the first series (40 dB) corresponds to the dynamic range of 
the experimental measurements. In the 70 dB range, however, more details of the wave-interaction with mines and 
clutter will be visible. In all plots, black represents the highest magnitude (0 dB) and white the lowest (-40 and -70 
dB, respectively). The wave fields are shown at four instances in time. 

At the first instance, i.e. the first row in Fig. 9, the surface wave just hits the mine closest to the source. In front 



of the surface wave, head waves are propagating. The head waves decay quickly and, therefore, appear only at the 
earliest instance. On the 40 dB scale, only one faint head wave is visible. However, on the 70 dB scale, three head 
wave fronts are evident. These head waves have already reached the other two mines. At the second instance, the 
surface wave has passed the first and second mine and has just reached the third mine. A similar resonance to the 
one described in Sec. 3.2 is observed at the location of the first mine. Energy is trapped at the mine, and the mine 
radiates continuously. At the third and fourth time, the surface wave has passed all mines and all three are excited 
to resonant oscillations. The mines are clearly visible on the surface, whereas the rocks and the stick cannot be seen. 
The interaction with all rocks is rather weak. Very similar results have been observed also experimentally using real 
anti-personnel mines. Strong resonances could be seen at the mine locations, making it easily possible to distinguish 
the mines from the clutter. 

4.  CONCLUSIONS 

A three-dimensional finite-difference model for elastic waves in the ground has been developed and implemented in a 
fully parallel fashion. Results are obtained and compared to experimental results. Experimentally, a Rayleigh surface 
wave is seen to disperse as it travels along the surface of the ground. This dispersion effect can be modeled also 
numerically by assuming a depth-dependent shear-wave speed profile. When an anti-personnel mine interacts with 
elastic waves, a strong resonance occurs at the mine location. This resonance has been observed in both experiment 
and numerical simulation. When clutter is present, this resonance can be used to distinguish mines from objects like 
rocks and wooden sticks, making it easy to locate the mines in the ground. 
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Figure 9. Three mines, 4 rocks and a wooden stick buried in the ground; pseudo color plots of the normal particle 
displacement on the surface with a dynamic range of (a) 40dB and (b) 70 dB. 
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INTRODUCTION 

A system is being investigated that uses elastic waves as the primary detection mechanism to detect buried land 
mines [1]. The system is shown in Fig. 1. In the system, a stationary transducer, located on the surface of the soil 
adjacent to the search region, generates an elastic wave in the earth. The elastic wave propagates through the search 
region and interacts with the buried mine. This causes both the mine and the earth to be displaced. The displacement of 
the mine is different than that of the earth, because the mechanical properties of the mine are different than those of the 
earth. The radar is used to detect these displacements and, thus, the mine. The interaction of elastic waves with buried 
land mines is being investigated using both numerical and experimental models. 
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Figure 1. Photograph and schematic diagram of the experimental model. 

EXPERIMENTAL AND NUMERICAL MODELS 

Numerical and experimental models for the system have been constructed. The numerical model is a three- 
dimensional, finite-difference time-domain (FDTD) model for elastic waves traveling in the earth. The model is linear 
and is based on the first-order elastodynamic equations that are differenced in space and time. Pressure, shear, and 
Rayleigh (surface) waves are all modeled by the algorithm. A perfectly matched layer is used to absorb the waves at the 
edges of the model, and a free surface boundary condition is used to model the boundary between the earth and the air. 

The experimental model uses an electrodynamic transducer to induce the elastic waves, a sand filled tank, a 
simulated mine, and a radar to measure the surface displacements. The transducer is a 20 LB moving coil shaker 
coupled to the sand through a narrow foot to preferentially excite surface waves. The tank is approximately 4.5 m wide, 
1.5 m deep and 4.5 m long; and is filled with 50 tons of packed damp sand to simulate the earth. The radar is an 8 GHz 
continuous wave homodyne system specially designed for measuring the surface displacements. The radar is 
automatically scanned over the surface of the sand to measure the surface displacement field. 

This work is supported in part by the OSD MURI program by the US Army Research Office under contract DAAH04- 
96-1-0448, by a grant from the US Office of Naval Research under contract N00014-99-1-0995, and by an equipment 
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RESULTS 

The models have been used to study the interaction of the elastic waves with a variety of different mines, simulated and 
inert. The results in this paper are for a simulated mine that consists of an air-filled plastic cylindrical container. The 
container is 9 cm in diameter and 2.2 cm in height and has thin flexible walls. This simulated mine was chosen because 
it is a simple structure that can be easily modeled using the current numerical code by neglecting the effects of the 
walls. The walls of the container are not expected to contribute significantly to the response of the mine because they 
are more compliant than the overlaying layer of sand. For the experiment, the simulated mine is buried in the sand and 
the sand is carefully re-compacted around the mine. The mine is placed 80 cm from the shaker in the center of the scan 
region. 

A series of waterfall graphs of the displacement of the sand surface is presented in Fig. 2 for both the experimental and 
numerical results using two different burial depths for the simulated mine. In these graphs, the displacement is plotted 
as a function of time for 101 measurement points spaced in 1 cm increments away from the source in the direction of 
the mine. Each of the 101 time traces is shifted vertically from the previous one. The bottom trace represents the 
measurement point closest to the source. The region in which the mine is located is indicated in gray. Many of the 
discrepancies between the experimental and numerical results can be attributed to non-uniform motion of the shaker 
foot. The foot exhibits several sand-loaded resonances in the frequency range of interest. In addition, the depth 
dependence of the mechanical properties of the sand produced by the static pressure gradient is very coarsely 
approximated in the numerical model. 

The incident pressure wave is seen to propagate toward and across the mine. The pressure wave is more apparent in the 
experimental data than in the model. The incident Rayleigh wave is also seen to travel toward and across the mine. 
Larger displacements are observed above the mine in all the data sets. These are due to a resonance of the buried mine. 
This resonance makes it much easier to detect the mine. In spite of the resonance, travelling waves reflected from the 
mine are seen to be relatively small. This indicates the difficulty that would be encountered in detecting this mine using 
a classical pulse-echo technique. The diameter of the mine is smaller than the wavelength of the Rayleigh wave at 
frequencies below 900 Hz. The resonance is spring mass like and occurs between 200 and 300 Hz. Thus, the resonance 
makes the mine detectable with a lower frequency seismic incident signal than would otherwise be expected. Since low 
frequencies attenuate more slowly in the earth, the resonance effect extends the possible search range outward from the 
source. 

The effects of a mine resonance are not always repeatable in the experiments. This is probably due to variability in the 
coupling between the mine and the surrounding sand introduced when it is dug up and re-buried. Care is taken to 
uniformly compact the sand. However, there seems to be a long time scale cohesion of the sand that cannot be 
reproduced by simple wetting and compaction. Plots A and B are for burial depths of 2 and 4 cm. In both these cases, 
the sand in the entire scan region was tilled and repacked to make the sand more homogenous when the mine was 
buried. The surface displacement associated with the resonance is more pronounced for 2 cm burial depth. Plots B and 
C of Fig. 2 depict different results for the same mine at a 4 cm depth. The sand for case C was disturbed only above and 
immediately around the mine and then repacked. This approximates an actual mine burial. Case C was modeled 
numerically by defining a cylindrical region of earth around the mine with 20% lower wave speeds than the bulk of the 
medium. It can be seen from the plots that this model predicts most of the qualitative features of the data and reinforces 
the observation that recently disturbed volumes of soil can be more easily detected than mines. Several authors have 
noted this trenching effect. Interestingly, both the model and the experiment predict that the trenching effect enhances 
the resonant response of the mine. 

Fig. 3 shows pseudo-color graphs of the displacement over the entire scan region in both the experimental and the 
numerical model for two different time instants. At time 1, the incident waves have not yet reached the mine. The wave 
fronts of the pressure and surface waves are seen to have separated in time. Small surface manifestations of head waves 
are discernable between these wave fronts. At time 2, both the pressure and surface incident waves have propagated 
beyond the mine. The circular wave fronts of scattered waves can be seen surrounding the mine location and a 
substantial amount of resonant motion can still be observed over the mine. Unlike the experimental data, the numerical 
model is able to reproduce displacements below the earth's surface. This can be seen in the cross-sectional graphs at the 
bottom of the figure. Here it is apparent that the surface manifestations of pressure waves have associated shear head 
waves propagating into the medium. It can also be seen that the dominant effect of the mine resonance is confined to the 
soil layer between the mine and the surface. Mode conversions can be seen to occur as both the incident pressure wave 
and surface wave are scattered from the mine. There is good agreement between the model and experiment at both times 
depicted. 



Numerical Results Experimental Results 

10 15 20 
Time [ins] 

10 15 20 
Time [ms] 

10 15 
Time [ms] 

15 20 
Time [ms] 

Figure 2. Waterfall graphs of the surface displacement. 

CONCLUSIONS 

Good agreement has been shown between experimental and numerical models for the seismic mine detection system. 
This agreement could be improved by eliminating resonances of the source used in the experiments and by determining 
the actual depth dependence of the properties of the wet compacted sand. The measured source response and depth 
dependence can then be incorporated into the numerical model 
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Abstract: 

A three-dimensional finite-difference time-domain model for elastic waves in the ground has been developed and implemented on a 
massively parallel computer. The model is based on the three-dimensional equation of motion and the stress—strain relation, from 
which a first-order stress-velocity formulation is obtained. The boundary between the soil and the air is modeled as a free surface. A 
perfectly matched layer is implemented at the remaining grid edges to absorb the outward traveling waves. The numerical model has 
been developed as part of a project in which elastic and electromagnetic waves are used synergistically to detect buried landmines. 
The numerical model is being used to study the interaction of the elastic waves with the buried mines. To verify that the model 
accurately predicts the mine—wave interaction, the eigenfrequencies of various solid bars and plates are determined numerically and 
compared to analytical solutions. Currently, the model is being refined to incorporate loss within the bulk medium. Results will be 
shown for various landmines buried in both loss-free and lossy ground. [Work supported by ARO and ONR.] 
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ABSTRACT THREE-DIMENSIONAL NUMERICAL MODEL 

A three-dimensional finite-difference model for elastic 
waves in the ground has been developed and implemented. 
The model is used to investigate the interaction of elastic 
waves with buried land mines. When elastic waves inter- 
act with a buried mine, a strong resonance occurs at the 
mine location. The resonance can be used to enhance the 
mine's signature and to distinguish the mine from clut- 
ter. Results are presented for a single mine buried in the 
ground. The predictions of the numerical model are in 
fairly good agreement with experimental results. 

INTRODUCTION 

A new technique is being investigated at the Georgia 
Institute of Technology, in which buried land mines are 
located by using both elastic (acoustic) and electromag- 
netic waves in a synergistic manner [l]-[4]. Here, elas- 
tic waves interact with a buried land mine and cause the 
mine and the surface above the mine to vibrate. An elec- 
tromagnetic radar records the vibrations and, thus, de- 
tects the mine. During the process of developing the elas- 
tic/electromagnetic sensor, a major part has been the im- 
plementation of a numerical model which simulates the 
interaction of the elastic waves with the buried land mines. 

The numerical model is based on the finite-difference 
time-domain (FDTD) method. The equation of motion 
and the stress-strain relation, together with a constitutive 
relation, form a set of first-order partial differential equa- 
tions that completely describes the elastic wave motion in 
a medium. Introducing finite differences, this set of equa- 
tions can be discretized and adapted to the finite-difference 
time-domain modeling scheme. 

The finite-difference model has been implemented in two 
and three dimensions. The numerical model is used to in- 
vestigate the mine-wave interactions and has been very 
helpful for explaining and understanding the experimental 
results. In this paper, results obtained with the three- 
dimensional model are presented. The interaction of elas- 
tic waves with a buried antipersonnel mine is shown. 

This work is supported in part under the OSD MURI program by the 
US Army Research Office under contract DAAH04-96-1-0448, by a grant 
from the US Office of Naval Research under contract N00014-99-1-0995, 
and by an equipment grant from the Intel Corporation. 

In a realistic setting, one or several mines are buried 
in the ground, surrounded and covered by various kinds 
of clutter. To approximate these conditions, experiments 
have been performed with mines buried in a large sand 
box [1], [2]. In these experiments, elastic waves are 
launched by an electrodynamic transducer placed on the 
surface of the ground. The waves propagate along the sur- 
face and interact with the buried land mines. To study 
these mine-wave interactions, a three-dimensional finite- 
difference model has been developed. 

Finite-Difference Model 

Fig. 1 shows the three-dimensional finite-difference 
model. To reasonably simplify the model, the ground is 
assumed to be linear, isotropic and lossless. The surface 
of the ground is modeled as a free-surface, and a Per- 
fectly Matched Layer terminates the solution space at the 
remaining grid edges and absorbs the outward traveling 
waves [5]. The solution space is discretized using a stag- 
gered finite-difference grid. 

Fig. 1.   Three-dimensional finite-difference model; (a) lay- 
out, (b) finite-difference cell. 



The elastic wave motion in solids is described by a set 
of fundamental partial-differential equations: the equation 
of motion relating the particle velocity vector and the me- 
chanical stress tensor, the strain-velocity relation and the 
elastic constitutive relation. Combining these equations, a 
first-order system of equations is obtained describing the 
elastic wave fields entirely in terms of the particle veloc- 
ity and the mechanical stress. In three dimensions, nine 
equations for three unknown velocity components and six 
unknown stress tensor components arise. 

The equations are discretized by introducing finite- 
differences. The discretization leads to the characteristic 
finite-difference grid. In this grid, the field components 
are staggered in space and time. The finite-difference grid 
can be thought of as being comprised of basis cells. The 
three-dimensional basis cell for the elastodynamic case re- 
sembles strongly the three-dimensional basis cell for elec- 
tromagnetic finite-difference modeling, the so-called Fee- 
cell. However, due to the stress being a tensor, more field 
components are present in the elastodynamic case. Fig. 1 
(b) shows the three-dimensional finite-difference basis cell. 
Note that the field components are not known at the same 
points in space and time. The grid is laid out such that 
each field component is surrounded by the field compo- 
nents it is dependent on. 

The finite-difference model has been implemented in a 
fully parallel fashion. The computations for this paper's 
results have been performed both on a Cray T3E parallel 
supercomputer located at the ERDC Massively Shared Re- 
source Center in Vicksburg, Mississippi, and on a Beowulf 
PC cluster located at the Georgia Institute of Technology. 
The Beowulf cluster has been developed and built espe- 
cially for the model described in this paper. 

INTERACTION OF ELASTIC WAVES WITH BURIED 
ANTIPERSONNEL MINES 

The interaction of elastic waves with antipersonnel 
mines, buried in sand, is to be investigated. In the ex- 
periment, the mines are buried in a large sand-filled box. 
If the sand is assumed to be linear, isotropic and loss- 
less, its properties can be described by three parameters: 
the material density, p = 1400 kg/m3, the pressure wave 
speed, cp = 250 m/s, and the shear wave speed. The shear 
wave speed is not constant and increases with depth. 

The space step for the numerical model is chosen to be 
Ax = Ay — Az = 0.5 cm; the time step is At = 11.54 ^s 
and, thus, fulfills the Courant condition (the necessary 
condition for stability of the finite-difference algorithm). 
The excitation has the shape of a Gaussian pulse. To be 
able to compare the numerical and experimental results, 
the transfer function of the system is determined in a post- 
processing step for each point in space and convolved with 
the transducer motion as measured in the experiment. 

To investigate the interactions with a buried land mine, 
a simple model for an antipersonnel mine is inserted into 
the numerical model. Fig. 2 shows the simple model, to- 
gether with a simplified cross-sectional drawing of a real 
TS-50 antipersonnel mine.   The simple mine model con- 

sists of a main chamber containing plastic explosives, and 
a smaller chamber on top of the mine's main chamber filled 
with air. The air-filled chamber is inserted into the model 
to coarsely approximate the structure of a real TS-50 mine 
(see Fig. 2 (a)). 

Rubber Pressure Plate    Spring 
Firing Pin 

3 cm 

Explosives    Detonator     Plastic Case 

(a) (b) 

Fig. 2.   (a) Cross-sectional drawing of a real TS-50 mine; 
(b) simple model. 

Fig. 3 shows waterfall graphs of the mine-wave inter- 
action for both experiment and numerical simulation. In 
these graphs, the vertical particle displacement at a num- 
ber of points along a line on the surface is plotted as a 
function of time and offset by the distance from the source. 
The slope of the traveling waves in the graph indicates the 
wave speed. Thus, by determining the slope, the different 
wave types can be distinguished. The mine is buried 2 
cm beneath the surface, at a distance of 70 cm from the 
source. A pressure wave (P) and a Rayleigh surface wave 
(R) arise. The waves hit the mine and are reflected (rR) 
and transmitted. While the interaction of the mine with 
the pressure wave is weak, the surface wave strongly in- 
teracts with the mine. In both experiment and numerical 
simulation, resonant oscillations occur at the mine loca- 
tion and remain even after the waves have passed the mine. 
For the numerical model, it can be shown that the incident 
waves couple into flexural waves which arise in the thin soil 
layer above the mine [4]. These flexural waves are confined 
to the thin layer and form a standing wave pattern, giv- 
ing rise to the resonant oscillations. While this explains 
the resonance in the numerical model, it gives only one 
possible cause for the resonance in the experiment. A real 
TS-50 mine has several chambers, it has a flexible case that 
can support both flexural and longitudinal waves, and it 
contains springs that can also give rise to resonances. The 
authors are currently working on refining the numerical 
model to incorporate more details of the mine. 

In Fig. 4, the vertical particle displacement on the sur- 
face and on a cross section through the ground is shown 
in some pseudo-color plots as obtained with the numerical 
model. The upper plots show the wave fields on the sur- 
face, the lower plots correspond to a cross section through 
the ground. The surface plane has dimensions of 120 cm 
by 80 cm and the cross section has a size of 120 cm by 30 
cm. The source is located on the surface, off the left edge 
of the plots. The dynamic range of the plots is 60 dB. The 
wave fields are shown at four different instances in time, 
corresponding to the vertical lines indicated by Ti, T2, T3 
and T4 in Fig. 3 (b). In the first plot, the surface wave is 
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Fig. 3. Interaction of elastic waves with a buried antiper- 

sonnel mine; waterfall graphs of the vertical particle 
displacement on the surface according to (a) experi- 
ment and (b) numerical simulation. 

seen to just hit the mine. While only the surface wave (R) 
is visible on the surface, both the surface wave (R) and 
the shear wave (S) appear on the cross section. In the sec- 
ond plot, the surface wave has just passed the mine. The 
interaction of the surface wave with the mine gives rise 
to reflected surface waves (rR) and reflected shear waves 
(rS), which are clearly visible on the cross section. Pres- 
sure waves are also induced by the surface wave, but they 
are weak and not visible. In the third and fourth plot, the 
surface wave has passed the mine. Some energy, however, 
remains at the mine and causes the mine to vibrate and 
to radiate. 

CONCLUSIONS 

A three-dimensional finite-difference model for elastic 
waves in the ground has been developed and implemented 
in a fully parallel fashion. Results are obtained and com- 
pared to experimental results. When an antipersonnel 
mine interacts with elastic waves, a strong resonance oc- 

Fig. 4. Interaction of elastic waves with a buried antiper- 
sonnel mine; pseudo color plots of the normal particle 
displacement on the surface (top) and on a cross sec- 
tion through the ground (bottom) at four instances in 
time, corresponding to the vertical lines in Fig. 3 (b). 

curs at the mine location.   This resonance has been ob- 
served in both experiment and numerical simulation. 
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SUMMARY 

An acousto-electromagnetic land mine detection technique is being investigated. 

A two-dimensional finite-difference model for elastic waves has also been developed, but 

it is a purely linear model. Strong nonlinearities are typical of the soils in which mines 

are buried. The purpose of this thesis is to characterize these nonlinearities for the 

propagation of high frequency seismic waves (30 - 2000 Hz) in moist, compacted sand 

so that the parameters used in acousto-electromagnetic land mine detection may be 

improved and the nonlinearities may be incorporated in the computer model. 

The frequency response of the soil model was recorded as a function of drive 

amplitude and propagation distance. The amplitude response of the soil model was 

recorded as a function of frequency and propagation distance. The fundamental and first 

five harmonics were saved for each. Three elastic wave transducers (shakers) were 

characterized so that source nonlinearities could be compared to propagation path 

nonlinearities. Characterization of the shakers included foot motion under unloaded and 

sand-loaded conditions. 

The source and propagation path produced nonlinearities as shown by harmonic 

generation in accelerometers mounted to the shaker foot and radar measurements of the 

soil surface displacement. Frequencies in the 100 - 600 Hz band propagated best while 

frequencies above 600 Hz attenuated rapidly. Once the shaker foot to sand coupling was 

changed results did not repeat with the same precision as when it was left alone. 
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CHAPTER I 

INTRODUCTION 

Responsible for approximately 26,000 injuries or deaths per year, an estimated 

100 million land mines lay in countries throughout the world [1]. Modern land mines are 

constructed primarily of plastic, making detection with conventional metal detectors 

unreliable. This has motivated many researchers to examine new techniques of mine 

detection. One such technique interrogates for the presence of mines using high 

frequency (30-2000 Hz) seismic waves. Radar is used as a non-contact measure of the 

mine's seismic signature. This eliminates the signal to noise and signal to reverberation 

problems that have been encountered in attempts to employ conventional pulse-echo 

techniques to the seismic detection of mines. The technique requires relatively high 

frequency seismic excitations in order to interrogate the shallow burial depths and the 

small dimensions typical for landmines (<12 inches) [2]. 

Mine detection operations commonly occur in unconsolidated soils. Typically 

there are strong nonlinearities found in these conditions. The purpose of this research 

was to experimentally characterize these features using moist, compacted sand as a soil 

model. Propagation responses were measured as a function of frequency, amplitude, and 

propagation distance over the ranges of interest for mine detection. Analysis of the 

generated data yielded conclusions about the following subjects: (a) frequency threshold 

dependency on the amplitude of excitation and propagation distance, (b) saturation 



threshold dependency on the frequency of excitation and propagation distance, (c) source 

and near source nonlinearities versus propagation path nonlinearities, (d) differences 

between various acoustic transducer arrangements (transducer type, frequency response, 

motion behavior, sources of nonlinearities, etc.) and (e) possible exploitation of 

nonlinearities to enhance characteristics of the incident signal (level, bandwidth, 

directivity, duration, etc.). 



CHAPTER II 

BACKGROUND 

General 

Finding new and better ways of detecting land mines has become increasingly 

important in recent years due primarily to the large numbers actively employed 

throughout the world and the shift towards mines manufactured with plastic casings. 

Mine warfare has also gained public attention through recent attempts at an international 

ban on landmines, changes in U.S. landmine usage policy, and U.S. deployments to 

densely mine-laden countries such as Bosnia. 

Current technology relies heavily upon electromagnetic detection techniques. The 

most prevalent is common metal detection, and for good reason. This technique is very 

reliable and easy to employ due to the significant differences in the electromagnetic 

properties of the metal mine and the ground. Even with newer mines encased in plastic, 

there is still a detectable albeit fainter, electromagnetic signature that may be found with 

this equipment. Ground Penetrating Radar (GPR) also exploits the mine-ground 

electromagnetic properties successfully. One of the problems with these techniques 

however is that they will also detect every soda can, coin, bolt, and any other piece of 

elctromagnetically significant trash in the ground. This yields a large percentage of false 

alarms when attempting to clear an area of mines. 



As researchers attempt to improve mine detection capabilities by finding a way to 

augment electromagnetic exploitation techniques, many have turned to the development 

of acoustic detection techniques. The biggest advantage of acoustic detection is the large 

contrast between the acoustic properties of the ground and those of the mine, regardless 

of metal or plastic casing. Buried clutter such as rocks, sticks, or man-made objects also 

exhibit significantly different acoustical properties than landmines. An example of how 

different the ground and mine acoustic properties are is the shear wave velocity, which is 

approximately 20 times greater through the mine's explosives than it is through the 

surrounding soil [2]. 

A mine is also a complex structure that includes a flexible, smooth plastic, 

wooden, or metal casing; a quantity of explosive materials; a firing mechanism (trigger, 

firing pin, and volatile initiating charge); and air pockets (usually surrounding the firing 

mechanism). Each of these components may vibrate under the action of forces inherent 

in the mine without an externally applied force. The frequency at which this vibration 

occurs is called the natural frequency. If a frequency of excitation coincides with any of 

the natural frequencies of the mine, resonance occurs. At resonance, the amplitudes of 

motion may become very large [3]. Because the mine structure is so complex the 

probability of achieving resonance is higher than it would be for a simple, homogeneous 

material or structure. The exaggerated displacement amplitudes associated with 

achieving resonance can be used to detect the location of the mine when buried. 

Much of the current research involves pulse-echo techniques such as the use of 

echo location (direct excitation and reception of seismic waves) [4], or detection by 



spectral analysis of surface waves (SASW) [5]. Some of the problems that these 

techniques have encountered are practical implementation issues, low signal to noise 

ratios, inability to differentiate between mines and debris of similar acoustic reflectivity 

[6], and significant residue hiding the object reflection when incident-reflected signal 

subtraction is used [7]. Also, in the case of SASW, incident surface waves arrive at the 

receivers almost simultaneously with the reflected waves from a shallowly buried object 

such as a mine. 

A new mine detection technique that has shown potential for minimizing the 

previously mentioned pulse-echo problems utilizes an elastic wave and an 

electromagnetic sensor [2]. An elastic wave transducer (shaker) has been used to 

generate waves in the ground. An electromagnetic radar is used to measure the surface 

displacement as these elastic waves travel through the ground. Because the mine has 

very different mechanical properties, as previously mentioned, the unique resonances of 

the mine and the reflection and scattering of the waves cause the ground above it to 

vibrate differently from the surrounding ground. The radar identifies where the ground 

particle displacements are different, thus identifying where the mine is buried. 

This technique has resolved several practical implementation issues and has 

shown results with excellent signal to noise ratios. Experiments have also been 

performed with various types of buried clutter such as rocks and sticks. In all cases the 

clutter has not been detected which indicates that this method would greatly reduce the 

number of false alarms in a de-mining operation. The technique has detected mines 

buried 12 inches deep and has also been able to detect mines underneath a groundcover 



(pine straw). In addition to this procedure showing promise for use on its own, another 

advantage would be its use in conjunction with other detection systems. Because the 

acousto-electromagnetic detection technique senses different phenomena, it may be 

employed with conventional detection techniques such as metal detection, ground- 

penetrating radar, or infrared detection in order to synergistically improve the chances of 

successful mine detection. 

The tests of this system are being done in a large "sandbox". Sand was chosen as 

the soil medium for its workability when burying and digging up mines, and its 

relevance. Moist sand is the most common soil encountered by Marines when 

conducting amphibious landings so it was also of practical interest. Figure 2.1 is a 

picture of the experimental setup showing this sandbox. 

Within the sandbox there is a 120 cm by 80 cm area referred to as the scan region. 

The scan region is the entire area used to take surface displacement measurements when 

looking for mines. The lead edge of the scan region is approximately 30 cm from the 

shaker foot. The radar is mounted on a three-dimensional positioner that moves it around 

the scan region. The x axis of the scan region is defined as perpendicular to the length of 

the rectangular shaker foot and the y axis is defined as parallel to the length of the 

rectangular shaker foot. Surface displacement measurements are taken every cm in the x- 

direction and every two em's in the y-direction for a total of 4,961 measurements. This 

two-dimensional scan may be processed in time in order to create a time progression, or 

movie, of the wave propagating. Different colors represent the magnitude of surface 



Figure 2.1 Photograph of the Experimental Setup 
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displacements thereby showing how the wave propagates and identifying where the mine 

is located. 

The shaker generates the elastic waves utilizing a 30 Hz - 2000 Hz chirp of 3.6 

second duration and a rectangular shaker foot that sits parallel to the lead edge of the scan 

region. These relatively high frequencies are necessary in order to interrogate the soil for 

smaller anti-personnel mines, which can be as small as two inches in diameter. The 

shaker produces compressional, shear, and surface waves within the sandbox. 

Figure 2.2 illustrates the different types of waves produced. The picture comes 

from a computer simulation of the waves [8]. It is a cross-sectional view of an elastic 

half space with a point source. The lower half represents the sand containing the waves 

propagating in three dimensions (x,z,t). The half space is bounded on top by a free 

surface which separates the sand from the air. The boundary condition at this surface is 

pressure = 0. This causes an impedance mismatch at the boundary creating a pressure 

release surface (pCsand» pcair)- 

The various waves are defined by their particle motion. The compressional wave 

propagates by means of pure translational particle motion (particle volume changes but is 

irrotational). This wave travels the fastest (250 m/s for the model in Figure 2.2) and has 

the lowest surface normal displacement. The shear wave propagates by means of pure 

rotational particle motion (particles remain equivoluminal). It travels slower than the 

compressional wave but slightly faster than the surface wave (87 m/s for the model in 

Figure 2.2). The particle motion of the surface wave is elliptical in that it contains both 

translational and rotational components of motion. It travels at a speed very close to, but 



slightly less than, the shear wave and is confined to approximately one wavelength from 

the free surface. It propagates cylindrically while the compressional and shear waves 

propagate spherically [9]. The shear and surface waves cannot be separated within the 

sandbox because the dimensions are such that the waves do not propagate far enough for 

the waves traveling at almost identical speeds to separate. 

Another way to view the surface displacements is by using a waterfall plot, which 

is also called a seismogram. Waterfall plots are generated by reading the surface 

displacements with a one-dimensional scan. The radar reads the surface displacement at 

a point in front of the shaker and records the information in the time-domain. A fast 

Fourier transform (FFT) algorithm then takes the measurement into the frequency- 

domain. During post-processing, this is convolved with the FFT of a differentiated 

Gaussian pulse and then taken back to the time-domain with an inverse fast Fourier 

transform (IFFT) algorithm. The result is a pulse that represents the waveform in the 

time-domain. The radar then moves to the next position along the axis of interest and the 

process is repeated. Once all of the pulses are recorded, they are plotted one above the 

other so that the bottom line is the data taken at the closest position and the top line is the 

data taken at the furthest position. The y axis of the waterfall plot represents the distance 

from the shaker. 

Figure 2.3 shows six different waterfall plots side by side [2]. For all of the 

waterfall plots, 121 measurements were taken along the x-axis (perpendicular to the 

shaker foot) at one cm intervals. The first plot was done with no mine present which is 

also referred to as a clean scan. The other plots have mines present in the vicinity of the 
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shaded area. The pulse amplitude is larger in these regions due to the greater surface 

displacements caused by the mine resonances. These figures illustrate the value of one- 

dimensional scans and also show what the waveform looks like as it propagates, 

attenuates, and disperses through the sand when there is no mine present and how the 

waveform is affected in the presence of a mine. 

Efforts to model these waves and their interaction with mines are also underway. 

In order to do this a two-dimensional finite-difference model for elastic waves has been 

developed. The model develops a first order stress-velocity formulation from the 

equation of motion and the stress-strain relations. The system's equations are then 

discretized using centered finite-differences. The outward traveling waves are absorbed 

by a perfectly matched layer surrounding the discretized solution space [8]. The results 

of this modeling have proven to be fairly accurate. 

Figure 2.4 is a waterfall plot, for a mine buried at x = 90 cm, generated by this 

computer model [8]. Although the two-dimensional finite-difference model yields 

reasonably accurate results, it does not take into consideration nonlinearities present in 

the system. This figure shows the mine resonance and a reflected wave. The results of 

the computer model are much smoother than an actual one-dimensional scan however. 

The same levels of dispersion are not present and the reflected pulse is much more 

noticeable in the computer model. The model's accuracy could be improved if 

nonlinearities were taken into consideration. 
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'S. 

Literature Review 

Current literature on wave propagation in unconsolidated soil is incomplete for 

the mine detection system discussed. There are two main reasons for this. The first is 

inadequate information about the frequency range of interest. Seismology research is 

concerned primarily with very low frequencies. The acousto-electromagnetic form of 

detection however, utilizes a bandwidth of 30-2000 Hz which is regarded as noise by 

many seismologists. The reason for this bandwidth is twofold. One, frequencies less 

than 100 Hz are extremely susceptible to dispersion and experience much greater 

attenuation between 5 and 10 meters [4]. The wavelengths associated with the surface 

wave for frequencies lower than 100 Hz are also not suitable for detecting smaller min 

Frequencies higher than this do not propagate far enough to be useful. Two, the purpose 

of the launched ground wave is to excite the resonances of the mine. The greater the 

bandwidth of the incident signal, the more modes of vibration in the mine that are 

excited. 

The second reason that the current literature is incomplete is the depth at which 

the mine is buried. Seismological research has not been concerned with shallow depths 

(< 12 inches). Underground obstacle or cavity detection has focussed much deeper. 

Some current methods of detection encounter problems when applied this close to the 

surface as was the case with the SASW method. 

Although current seismological research is insufficient to support this method of 

mine detection, it does yield valuable insight into the particle behavior observed in the 

sandbox. The equations of motion that apply to homogeneous, isotropic, elastic media 
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can be written in terms of stresses as shown in Equation 2.1 which applies to the x 

direction only: 

p(dV5t2) = (CGJCX) + (aVcy) + (cxjdz) Eqn. 2.1 [9] 

In order to express the right-hand side of this equation in terms of displacements, 

relationships for the stresses in terms of Lame"s constant, the shear modulus, cubical 

dilatation, and shear strain are used. Combining these with relationships for strain and 

rotation in terms of displacement yield Equation 2.2: 

pC^u/a2) = (>.+G)(c£/cx) + GV2u Eqn. 2.2 [9] 

There are two solutions for this equation of motion. The first applies to the 

propagation of a dilatational wave (compressional wave or P-wave). The second applies 

to a distortional wave (shear wave or S-wave). Because the experiments in the sandbox 

are in an elastic half-space, a third type of wave is also present. This wave is the 

Rayleigh or surface wave. A surface wave is confined to the surface of the elastic half- 

space and contains both x and z direction displacements. If potential functions O and ¥ 

are chosen to correspond to dilatation and rotation of the wave respectively, then 

Equation 2.3 is the equation of motion for the surface wave derived from Equation 2.2. 

p(5/cx)(ö2<D/a2)+ p(5/az)(a2vF/at2)=(>.+2G)(o/cx)(V2<D)+G(a/az)(V2vI/) Eqn. 2.3 [9] 

The compressional wave has the highest velocity. The shear waves and surface 

waves are slower and their velocities are very similar. The surface wave travels 

approximately 94 % as fast as the shear wave. The particle motion of the compressional 

wave is in the x direction and the shear wave particle motion is in the z direction. If the x 

and z components of the surface wave are added the particle motion is in a 
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counterclockwise direction as the wave propagates to the right. The percent of total 

energy carried by each of these three waves was measured for a circular footing and 

found to be distributed as such: surface wave 67%, shear wave 26%, and compressional 

wave 7% [9]. As the waves propagate, the compressional and shear wave amplitudes 

decrease as r"1 due to spherical spreading. The surface wave amplitude decreases as f0'5 

due to cylindrical spreading. 

Biot developed stress-strain relationships for wave propagation in porous 

saturated solids. He discovered that there is only one type of shear wave that propagates 

through the elastic structure because there is no structural coupling between the elastic 

structure and the fluid. This is because there is no shearing stiffness in the fluid. There 

are two compressional waves however. One propagates through the elastic medium and 

the other through the fluid. They are coupled by the stiffnesses and motions of the elastic 

medium and fluid. The compressional wave propagating in the fluid is the fastest. It is 

faster than if it were traveling in fluid alone due to a pushing effect by the elastic 

medium. The next fastest is the compressional wave in the elastic medium. This is 

slower than if the medium were dry because of the drag caused by the water in the pores 

[9]. 

The horizontal water table affects wave propagation also. If the water table is . 

close enough to the surface, then reflected and refracted waves from this boundary can 

become a factor. It can also influence the wave velocities depending on whether the 

measurements are taken below or above the water table. The amount of air in the pores 

of the half-space makes a large impact on the wave velocity. Richart gives an example in 
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which a 0.1% increase in air bubbles slows wave speed from 4800 ft/sec to 1204 ft/sec. 

This is important to note because the sand being used for the mine detection experiments 

is not saturated completely by water. The water table is a couple feet below the surface 

while the sand at the surface and through the depths pertaining to mine detection is damp. 

There is plenty of air in the pores of the sand because after it is watered the sand has 

room to drain to the lower water table. 

Some relevant material was found done by Sabatier [10, 11] in the area of 

acoustic-seismic coupling. Within this research are conclusions about the frequency and 

depth dependence of attenuation. In general, Sabatier found that higher frequencies in 

the ground attenuate faster than lower frequencies. For example, 200 Hz attenuates at a 

rate of 0.06 - 0.1 dB/cm but 1200 Hz attenuates at a rate of 0.16 - 0.22 dB/cm [10]. 

Sabatier also did tests with a speaker source in the air and a buried microphone to 

determine the effects of frequency and depth on the wave attenuation. He found that at 5 

cm below the surface waves at 1 Hz were attenuating at approximately 2 dB/cm while 

waves of 1000 Hz at the same point were attenuating at approximately 14 dB/cm. The 

same test was done 10 cm below the surface. This time waves of 1 Hz were attenuating 

at approximately 3 dB/cm and waves of 1000 Hz were attenuating at 30 dB/cm [11]. 

These results showed that wave attenuation is dependent on both frequency and depth 

and that the effects of frequency and depth are related. Waves attenuate at a more rapid 

rate the deeper they travel and this rate of attenuation is greater for higher frequencies 

than for lower frequencies. 
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Sabatier has also employed acoustic techniques to the detection of buried objects 

[12]. The system used in this study included a sound source that was above the ground. 

Acousto-seismo coupling was relied upon to transmit a wave through the ground. The 

receiver was a microphone that recorded the reflected signal. This signal contained the 

reflection from the surface and a reflection of smaller amplitude from a buried object. 

The tests proved effective for objects buried less than five cm deep. Some results that 

could be a problem when applying this to mine detection were also found. The type of 

porous media made a difference as to how pronounced the reflected signal from a buried 

object was, a significant signal is reflected from a hole (false alarms), and smearing of the 

surface reflection and buried object reflection occurred. 

Objective 

The objective of this thesis was to characterize the nonlinearites of the 

propagation path so that the results may then be used to refine the experimental procedure 

for acousto-electromagnetic mine detection and be applied to the finite-difference time- 

domain computer model. An example of an observed nonlinearity that prompted this 

research was a graph of displacement versus input voltage in which the curve rose 

linearly, as expected, until it began to saturate. When the voltage continued to increase, 

the curve eventually began to rise again until it reached a second point of saturation. 

When this same test was done at a different point in the box, the voltage where the 

saturation effects were seen was different. This indicated that the phenomenon was a 

result of nonlinearities in the propagation path and not the source. 
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Another indicator of nonlinearities in the system included several harmonics 

being produced in the frequency response of the surface displacements. How much the 

propagation path contributed to these nonlinearities versus how much the source or 

source to sand coupling contributed was unknown. The goal was to characterize the 

nonlinearities of the propagation path but this could not be done without considering the 

entire system. Nonlinearities may occur in the power amplifier, impedance mismatches 

between the power amplifier and the shaker resulting in oscillating transfer functions, the 

motion of the shaker foot, the shaker foot to sand coupling, along the propagation path, or 

at the receiver. These sources of nonlinearities must be isolated to determine which are 

routinely encountered, the relative impact of these nonlinear effects, how these effects 

may be reduced or eliminated, and which of these effects should be considered in the 

computer model. 

The data collected fell into two major categories: 1) frequency response as a 

function of drive amplitude and distance between the source and receiver and 2) surface 

displacement as a function of drive frequency and distance between the source and 

receiver. The frequency response data would show how the drive amplitude of the 

incident wave and the propagation path affect the surface displacement as a function of 

frequency for a fixed distance. The surface displacement data would show how the 

frequency and the propagation path affect the surface displacement as a function of the 

drive amplitude for a fixed distance. In both cases, the fundamental driving frequency 

and its harmonics were evaluated. 
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CHAPTER IE 

INSTRUMENTATION AND EQUIPMENT 

Figure 3.1 shows the general configuration of the experimental arrangement for 

Experiment Two. The only difference in Experiment One was that accelerometers were 

not used. Table 3.1 lists the major components of the experimental setup, the 

manufacturers of the equipment, and the equipment models. This configuration is the 

same one used when scans are performed for the acousto-electromagnetic detection of 

mines. 

The sandbox is approximately 4.5 m long, 4.5 m wide, and 1.5 m deep. It is 

wedge shaped as seen in Figure 2.1. The end where the shaker sits is approximately five 

feet deep. This depth extends across half of the sandbox and then slopes up to the top of 

the far end. It contains about 50 tons of packed sand with a water table that averages two 

feet below the surface. The dimensions are such that measurements in the scan region do 

not record reflections from the sides. 

The elastic wave transducers are 20 pound and 100 pound shakers. They make 

contact with the sand through the use of a shaker "foot" which can be different sizes and 

shapes. The radar is a homodyne type mounted on an XYZ positioner. The data 

acquisition and positioning is automated using Lab VIEW code to control the generated 

signal, the position of the radar, the various circuitry, and the collection and processing of 

data. The major component details are listed below. 
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Figure 3.1 Experimental Setup 

NAME MANUFACTURER MODEL REMARKS 
Data Acquisition Card National Instruments PCI-MIO- 

16E-1 
1.25 MS/s (single 
channel) 

Multi-channel filter Krohn-Hite 3944 Filters out < 30 Hz 
Low-noise pre-amp Stanford Research System SR560 
Low-noise pre-amp Stanford Research System SR560 
Power supply Topward 3303D Accelerometers 
Power supply Topward 3303D Radar 
Amplifier Crown CE2000 Modified 
Shaker Vibration Test Systems VG 100-6 1001b 
Power meter Hewlett-Packard 43 7B 
Radar Home-made Homodyne 
Accel erometers Kistler Sensitivity: 3.4- 

3.6mV/g 
Accelerometers PCB Piezotronics 352C67 Sensitivity: 

109.5mV/R 
Accelerometers PCB Piezotronecs 352B22 Sensitivity: 9.3- 

10.6mV/g 

Table 3.1 Experimental Component Details 
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Software 

The collection of data and operation of the instrumentation was coded in 

Lab VIEW. The Lab VIEW codes are contained in Chapter Xin - Appendix E. The data 

processing and analysis was done with MATLAB. The various MATLAB codes are 

found in Chapter XII - Appendix D. 

Data Acquisition Card 

The data was collected with the use of a National Instruments Data Acquisition 

Card (DAC). The PCI-MIO-16E-1 model card used had the following analog input 

characteristics:  16 single-ended or 8 differential channels, 12 bit resolution, and a 

maximum single channel sampling rate of 1.25 MS/s. It had a 1.6 MHz bandwidth for 

small (-3dB) signals and a 1 MHz bandwidth for large (1% total harmonic distortion) 

signals. The DAC had the following analog output characteristics: 2 voltage channels, 

12 bit resolution, and a maximum single channel update rate of lMS/s. Digital 

input/output had 8 input/output channels. 

Radar 

The homodyne type radar measured surface displacements by executing a phase 

comparison. It operated with a power of 1 W and had a sensitivity of 1 nm. The spot 

size was approximately 2 cm in diameter. This spot size would limit the accuracy of 

measurements above 3000 Hz due to the small wavelengths. A power meter was 

mounted above the radar to monitor whether or not the radar was operating within its 5 

dBm to 15 dBm optimal range (-5 dBm to 5 dBm as read on the power meter). 
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Positioner 

The positioner is mounted approximately 1.5 m above the surface of the sand. It 

is capable of moving in the x, y, or z directions at various rates and ranges. With the 

experimental arrangement currently employed, the positioner is limited to 190 cm in the x 

direction. It can easily range 120 cm in the y direction and 30 cm in the z direction which 

in no way limits current data collection processes. All data for Experiments One and 

Two were taken along the x axis with the waveguide positioned 1.3 to 1.8 cm above the 

sand surface. 

Shaker 

The signal that drives the shaker is produced in Lab VIEW and sent through the 

break-out box to a Crown CE2000 amplifier. The signal is then sent to a shaker that 

makes contact with the sand through the use of a shaker foot. All measurements for 

Experiment One were made with a 20 pound shaker using a rectangular foot measuring 

21.6 cm in length by 1.3 cm in width (surface area = 28.1 cm2). During Experiment Two, 

three shaker-foot combinations were utilized. The first was the same shaker and foot 

used in Experiment One. The second was the 20 pound shaker and a round foot with a 

diameter of 10.2 cm (surface area = 81.7 cm2). The third was a VG 100-6 shaker, 

capable of producing a force of 100 pounds, and a rectangular foot measuring 30.2 cm in 

length and 3.2 cm in width (surface area = 96.6 cm2). A blower cools the shaker 

throughout its operation. Figure 3.2 is a picture of the different shakers and feet. Figure 

3.3 is a picture of the accelerometer placement for Experiment Two. 
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Figure 3.2 1001b Shaker with Rectangular Foot Mounted (left - view from side), 
201b Shaker with Circular Foot Mounted (right top - view from bottom), Small 
Rectangular Foot for 201b Shaker (right bottom -view from side) 

Figure 3.3 Accelerometer Placement on the 1001b Shaker with Rectangular Foot 
(Bottom View) - 3 PCB 3 52B22 accelerometers to record vertical acceleration and 
1 PCB 352C67 accelerometer to record horizontal acceleration 
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CHAPTER IV 

EXPERIMENT ONE 

The objective of this experiment was to measure the surface displacements of the 

sandbox as a function of drive amplitude, drive frequency, and propagation distance. The 

resulting data would be used to determine both the frequency responses and amplitude 

responses for the fundamental frequency and harmonics. There were also two secondary 

objectives. First, data would be collected in order to separate the compressional and 

surface waves. Second, data would be taken with a different shaker foot to try to alter the 

relative content of pressure wave and surface wave. As a result of collecting and 

processing this data, many ways to improve the data collection were found. This lead to 

Experiment Two which is discussed in Chapter VI. 

Data was taken the following way in order to determine the frequency and 

amplitude response of the sand. Continuous wave (C W) signals from 33 Hz to 2002 Hz, 

at 11 Hz increments, were used at a given amplitude and position. It was already known, 

from the mine detection experiments, that the waves propagated through the box in less 

than 0.07 second. Therefore a frequency increment of 14 Hz (1/0.07) provided ample 

resolution to document the wave propagation. It was also known that 60 Hz and its 

harmonics were very large in the noise floor. By choosing 11 Hz as the frequency 

increment however, of the 180 frequencies, only three coincided with a multiple of 60 Hz 

and the first would not occur until 660 Hz. This reduced the impact of the 60 Hz noise. 
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Once the frequencies had been swept through, the amplitude increased linearly 

and the frequencies swept through again. A total of 24 amplitudes were used ranging 

from 0.06 volts to 0.96 volts (input to power amplifier) at a given setting on the power 

amplifier. All voltages are peak unless otherwise specified. Once the frequencies had 

swept through the given range for each of the 24 amplitudes, the radar was moved to a 

different location and the procedure was repeated. This process was done at the 

following locations in the sandbox: x = 40 cm, x = 80 cm, and x = 120 cm, all along the 

x axis (origin located 26 cm from shaker foot). The idea behind collecting the data like 

this was that both the frequencies and amplitudes used were dense enough to generate 

both the frequency response and the amplitude response from the same data. The details 

of this experiment, including the experimental design, data collection procedure, and 

results, may be found in Chapter IX - Appendix A. 

Several lessons were learned when this data was processed. First, the voltages 

ranging from 0.06 to 0.96 were only meaningful for producing total system transfer 

functions for a given power amplifier setting. They could also be normalized by the data 

for 0.06 V in order to study relative effects. It would have been much more useful 

however to know what force the shaker foot applied to the sand. That way frequency 

response as a function of the shaker force would be known. This involved measuring the 

current input to the shaker (could be used to calculate power amplifier transfer function) 

and using the shaker specifications to realize what force was applied given the input 

voltage from Lab VIEW. This was done in Chapter VI - Experiment Two. 
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The second lesson learned was that the method for processing the data produced a 

significant leakage of the fundamental and harmonics into the surrounding frequencies. 

This was evidenced by the noise level rising with the increasing amplitude of the incident 

signal. A three and a half second incident signal was used so that any ring-up or ring- 

down transients could be cut out of the data. Only two seconds from the middle of the 

signal was saved but this was not being cut out at an integer number of periods for each 

frequency. When this piece of the signal was taken into the frequency-domain, the 

additional amount past the integer number of cycles contained frequency components 

different than the continuous wave. These components showed up in the noise floor. 

Figure 4.1 shows this rising noise level for two different amplitudes. This problem was 

corrected for Experiment Two as described in Chapter VI. 

The third lesson learned was that the amplitudes increased to a point where 

dynamic fluidization occurred. This happened around amplitudes in the vicinity of 0.82 

V. Once the shaker foot would bury itself in the sand, it would be removed, the sand 

would be repacked, and the shaker would be placed back on the ground. Although this 

was not an anticipated problem, once the shaker was moved the results were not 

repeatable. The shaker foot to sand contact was different every time the shaker was 

placed in the sandbox and therefore measurements needed to be taken without moving 

the shaker until the data collection was complete. This precluded the use of the high 

amplitudes that caused dynamic fluidization or a different shaker foot was needed. 

The problem of burying the shaker foot was best seen in the amplitude response 

measurements such as the one shown in Figure 4.2. The curve begins relatively 
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smoothly. Everywhere there is an x on the curve is where the shaker had been picked up 

in order to repack the sand under it. These places yielded very large jumps in the curve 

because the new shaker foot to sand contact and the sand particle matrix under the foot 

was significantly different. The method of collecting the data for Experiment Two 

corrected this problem as described in Chapter VI. 

The fourth lesson learned involved the range of amplitudes being used. The lower 

end of the amplitudes was not low enough to ensure that the data collection was 

beginning in a linear region prior to becoming nonlinear. There were also not enough 

data points to generate a smooth amplitude response. On the other hand, there were 

many more amplitudes than required to generate the frequency response for increasing 

amplitudes. This also changed the way data was collected for Experiment Two as 

described in Chapter VI. 

The next phase of Experiment One was to collect data in order to separate the 

compressional wave from the surface wave. Data was taken in the same format as 

described above but it was taken on the x axis for x = 190 cm. The intent was to let the 

waves propagate far enough that they would separate into distinguishable pressure and 

surface waves in the time domain. From here the waves would be zeroed out one at a 

time while the other was taken back into the frequency domain. The same frequency 

responses and amplitude responses would be produced for each individual component to 

measure the relative contribution of each. 

Two problems arose during this procedure. The first was a linear assumption 

used when taking the data into the time domain. The frequency response for 33 Hz to 
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2002 Hz was convolved with the FFT of a differentiated Gaussian pulse as described for 

the mine detection data processing in Chapter II - Background. This was then taken into 

the time-domain with an IFFT algorithm. This processing method did not take into 

account that any given frequency may have been producing harmonics that would show 

up in another frequency bin. Because of the significant nonlinearities in the system this 

assumption was not going to be reasonable. 

The second problem came in trying to determine at what point the surface wave 

ended and the pressure wave began. Although the waves had propagated through a 

considerable distance, significant dispersion seemed to occur. This caused the lagging 

compressional wave fronts to remain close to the leading surface wave fronts. In addition 

to this the compressional wave had attenuated to a point where it was difficult to see. 

This was a result of having taken data at x = 190 cm instead of doing a one dimensional 

scan out to 190 cm and then using a waterfall plot to trace the progress of the 

compressional wave. The results of this phase of Experiment One led to the conclusion 

that the compressional and surface waves could not be separated to determine their 

relative contribution to the frequency response of the sand. 

Experiment One ended at this point. The problems encountered prompted a 

significant redesign of the data collection and processing procedure. The new 

experimental procedure needed to make use of the lessons learned in Experiment One to 

fix the leakage during data acquisition, increase the dynamic range of amplitudes used to 

generate the amplitude response, and prevent the shaker from causing dynamic 

fluidization or having to be moved during the data collection. A study of various shakers 
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and shaker feet was performed to try to fix this last problem. The results of this study are 

found in Chapter V - Acoustic Transducers. The lessons learned from Experiment One 

and the study of shakers were incorporated into Experiment Two in order to correct the 

above mentioned problems. The way this was done is addressed in Chapter VI - 

Experiment Two. 
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CHAPTER V 

ACOUSTIC TRANSDUCERS 

One of the biggest problems with Experiment One was the fact that the shaker 

foot was experiencing dynamic fluidization at the moderately high amplitudes. It would 

also bury in a very short amount of time at frequencies less than 100 Hz. This was due 

mainly to the small surface area of the foot as opposed to the duration of the experiments. 

It was also assumed that a significant amount of the nonlinearites in the system were 

being produced either by the shaker foot or due to the shaker foot to sand contact. The 

objective of the experiments was to determine characteristics of nonlinearities in the sand 

however. In order to do this, nonlinearities produced at the shaker foot needed to be 

quantified and minimized. 

The above mentioned problems prompted a study of the acoustic transducers. 

The purpose of the study was to characterize the motion of different shaker feet, 

determine propagation characteristics for each of their radiated waves, and select the one 

with the fewest nonlinearities to conduct Experiment Two. Three shaker - shaker foot 

combinations were examined in detail. The first was the arrangement used in Experiment 

One consisting of the 20 pound shaker with the small rectangular foot (surface area = 

28.1 cm2). The second was the 20 pound shaker with a circular foot (surface area =81.7 

cm2). The third was a 100 pound shaker with a large rectangular foot (surface area = 96.6 

cm2). This last combination was the one chosen to conduct Experiment Two. 
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In order to characterize the behavior of the different shaker feet, data was taken in 

a three-step process. The first step was to look for resonance of the foot. The frequency 

response and amplitude response of the foot under no load (shaker turned upside down so 

that foot is in air) was measured. This was done utilizing four accelerometers three of 

which were PCB 352B22's and one of which was a PCB 352C67. During the tests 

conducted under no load the power amplifier was put on one gain setting lower than that 

of the tests done loaded. This prevented the foot from bottoming out the suspension of 

the shaker. The second step was to look for sand loaded resonances. The same 

measurements were taken under loaded conditions (shaker foot placed on sand as it was 

during the experiments). All four accelerometers were left in position from step one to 

step two. The third step was to measure the shaker - shaker foot combination's 

propagation behavior by taking a sample amplitude response using the radar for a given 

frequency at two different positions in the sandbox (x = 10 cm and x = 40 cm). 

For each of the frequency response data sets, frequencies between 33 and 2002 Hz 

were measured at 33 Hz increments. This was done for 0.5 V, 1.0 V, 2.0 V, 4.0 V, and 

8.0 V. For each of the amplitude response measurements, amplitudes were swept 

logarithmically from 0.03 to 8.3 volts and then back down through the same amplitudes 

for a total of 120 measurements. This was done for 99 Hz, 198 Hz, 396 Hz, 792 Hz, and 

1584 Hz. On these graphs the upward sweep was plotted with a solid line and the 

downward sweep was plotted with a dotted line in order to check for any hysteresis 

effect. The shaker used in Experiment Two was selected based on these tests. At that 
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time the input voltage was related to the shaker foot force as described in Chapter VI - 

Experiment Two. 

201b Shaker (Rectangular Foofl 

The four accelerometers were arranged in the following fashion for the test of this 

foot. The three PCB 352B22 accelerometers were placed on the bottom of the foot at the 

left edge, center, and right edge. This placement looked just like Figure 3.3 for the 100 lb 

shaker and large rectangular foot. Their sensitivities were 10.6 mV/g, 9.3 mV/g, and 10.1 

mV/g respectively. The PCB 352C67 accelerometer was placed on the side of the foot, 

in the center, to capture any horizontal motion. Its sensitivity is approximately 11 times 

(109.5 mV/g) that of the PCB 352B22 accelerometers. 

Figure 5.1 shows the unloaded response of the 20 lb shaker with rectangular foot. 

For the unloaded test in air the motion of the center of the foot increased linearly with 

increasing amplitude. As (a) shows however, the amplitude was substantially reduced at 

1584 Hz. This was indicative of a null in the frequency response located around 1575 Hz 

as shown in (b). This figure also shows a resonance centered at 1785 Hz for the motion 

in the center of the foot. The harmonics remain in the noise floor (over 40 dB less than 

the fundamental) for the entire range of amplitudes, which indicates a linear behavior 

when the foot is unloaded. The ends of the foot are not experiencing the same null at 

1575 Hz however. This is indicated in Figure (c) as the left edge normalized by the 

center is 30 to 45 times greater for 1584 Hz than it is for the other frequencies. The foot 

is functioning as a dynamic vibration absorber when it resonates in this mode. A 

comparison of the left and right edges normalized by the center is shown in (d). There is 
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a symmetric, relative resonance at 1575 Hz with an associated phase shift shown in (e). 

The horizontal accelerometer did not register anything within 20 dB of the values of the 

vertical motion. 

Figure 5.2 shows what happened when the sand loaded resonances were 

examined. As expected, the loaded response of the shaker in sand was much different. 

The frequency response for the motion in the center of the foot changed as shown in (a). 

It was no longer simply related to the drive level due to several new resonances. The 

fundamental and two harmonics for the center accelerometer and left edge accelerometer 

are shown in (b) and (c) respectively. The motion became nonlinear as indicated by the 

number of harmonics that were produced in the loaded situation. Just how complicated 

this foot motion became when the shaker was placed on the sand is shown in (d). Not 

only did the shaker exhibit several new resonances in the frequency response, but the left 

edge could vibrate more or less than the center depending on which frequency is 

examined. To complicate matters further, (e) shows that the flapping of the ends is not 

symmetrical across the foot. Vertical displacements, bending about the center (in phase 

end displacements), and rocking about the center (out of phase end displacements) were 

mode shapes that all appeared to be present. 

Finally, the amplitude response data was taken with the radar. These 

measurements were taken along the x axis at x = 10 cm and x = 40 cm on the positioner 

(origin 26 cm from shaker foot). This data, shown in Figure 5.3, begins at amplitudes 

that are down in the noise floor. They rise above the floor once the input voltage reaches 

approximately 0.1 V. The curves appear to rise linearly although there is more deviance 
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from a straight line at x = 40 cm than at x = 10 cm. This was expected since the 

nonlinearities of the sand would have more effect on the signal the further it propagated 

in the sandbox. Saturation was not seen on the high end of the amplitudes. Dynamic 

fluidization limited drive levels before signal saturation occurred. 

To summarize, the small foot used in Experiment One had extremely complicated 

motion. It exhibited several resonances and harmonics were generated at the foot. It did 

not move up and down rigidly as assumed, but instead flexed in a nonsymmetrical way 

while also rocking back and forth. These factors combined to make the 20 pound shaker 

with small rectangular foot a poor choice for Experiment Two. 

201b Shaker f Circular Foof) 

The four accelerometers were arranged in the following fashion for the test of this 

foot: three PCB 352B22 accelerometers were equally spaced on the bottom of the foot 

around the edge, and the PCB 352C67 accelerometer was placed on the bottom in the 

center. The same three tests done on the 20 lb shaker with small rectangular foot were 

again done for this foot. 

The unloaded test produced results similar to those for the rectangular foot. Once 

again the 1584 Hz frequency did not increase as fast as other frequencies when the 

amplitude increased. Figure 5.4 shows the results of the unloaded, round foot tests. The 

frequency response at the center of the round foot is shown in (a). The frequency 

response measured by one of the edge accelerometers is shown in (b). It remains similar 

to the center frequency response up to about 1000 Hz at which point the behavior is very 

different. The measured resonances of 1225 Hz and 1575 Hz at the edge indicate that the 
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mode shape for these frequencies have anti-nodes at the edge. According to (c) and (d) 

the motion was not uniform around the foot. Two of the edge accelerometer responses 

normalized by the third edge are shown in (c). The curve remains close to one for 

frequencies less than 1000 Hz, which is also the range where the center motion was 

similar to the edge motion. Above 1000 Hz the edge motion is not uniform. The motion 

is complicated in that two edge accelerometer responses normalized by the same edge 

accelerometer yield very different results. There is edge motion occurring out of phase 

from the motion at another point on the edge as shown in (d). This appears to be a 

saddle-shaped mode, although three evenly spaced accelerometers on the edge did not 

confirm it. Finally, (e) shows that 1584 Hz does not increase, with an increase in 

amplitude, at the same rate around the edge. 

The same tests were then performed on the round foot as it was sitting on the 

sand. Figure 5.5 shows the results of this test. The new frequency response of the center 

motion is seen in (a). Once again there are several resonances of this shaker - shaker foot 

configuration. The same two edges normalized by the third edge were checked again to 

see how the loaded conditions affected the complicated edge motion found in unloaded 

conditions. Once again the motion at one part of the edge is very different from motion 

at the other parts of the edge as indicated in (b) and (c). Not only is the foot bending, 

there are frequencies for which the bending is in phase and frequencies for which the 

bending is out of phase. The response of this foot as the amplitude increased was also 

examined by plotting an amplitude response of an edge normalized by an edge. This is 

shown in (d). Although the motion of the foot is very complicated due to the difference 
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in relative magnitudes around the edge, it is made even more complicated because this 

relativity changes with increasing amplitude. Finally, the harmonics being produced by 

the foot are shown in (e) for the center accelerometer response. There are a significant 

number of harmonics manifested above the noise floor throughout the range of 

frequencies. This indicates that the circular foot motion is nonlinear. 

The round shaker foot was then used to check amplitude response for 396 Hz at x 

= 10 cm and x = 40 cm on the x axis of the sandbox. These curves are shown in Figure 

5.6. The curves rise out of the noise floor once the amplitude reaches 0.1 volts. At x = 

10 cm the saturation curve is rising linearly as expected. Instead of beginning to saturate 

however, the curve rises rapidly at 2.5 volts. The slope of this curve then decreases 

further up in amplitude. The curve at x = 40 cm is very nonlinear. It appears to reach 

saturation prior to one volt but then increases again. In both of the saturation 

measurements hysteresis is evident as the amplitudes sweep back down. This may be a 

result of front edge versus back edge arrivals but when the amplitudes come back down 

the curves become straighter which would indicate that some packing of the sand had 

occurred. 

To summarize the results for the 20 pound shaker and round foot, the behavior 

was extremely complicated and nonlinear. Several resonances were present under loaded 

conditions. The foot began bending for frequencies above 1000 Hz. This bending was 

not symmetrical around the edges. It occurred with different magnitude and changed in 

and out of phase as the amplitude increased. The motion was too complicated for three 

accelerometers on the edge to accurately document the different mode shapes present. 
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The one advantage that the round foot had over the rectangular foot was its increased 

surface area which could facilitate longer measurements before experiencing dynamic 

fluidization of the sand. 

1001b Shaker (Rectangular Foof) 

The four accelerometers were arranged in a similar manner for the test of this foot 

as they were for the rectangular foot used on the 20 pound shaker (see Figure 3.3). The 

three PCB 352B22 accelerometers were placed on the bottom of the foot at the left edge, 

center, and right edge. Their sensitivities were 10.6 mV/g, 9.3 mV/g, and 10.1 mV/g 

respectively. The PCB 352C67 was once again placed on the side of the foot, in the 

center, to capture any horizontal motion. 

The first test, which was done unloaded, yielded results similar to those for the 20 

pound shaker with rectangular foot. Figure 5.7 shows these results. The frequency 

response of the center accelerometer is shown in (a) and the amplitude response is shown 

in (b). Just as in the 20 pound shaker test, this rectangular foot exhibited a null and one 

resonance. Both of these occurred at lower frequencies than in the 20 pound shaker case 

however. The null for the 100 pound shaker test in air is at 1250 Hz and the resonance is 

centered around 1485 Hz. This resonance shows up in the 1584 Hz curve of (b). The left 

edge normalized by the center amplitude response is shown in (c). A comparison of the 

left and right edge acceleration normalized by the center is shown in (d). The motion is 

very uniform across the shaker foot with the exception of a resonance around 1250 Hz 

due to a dynamic vibration absorber effect.   A 180 degree phase shift at this same 
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frequency is apparent in (e). According to (d) and (e) however, the motion of the two 

ends, while different than the center, is almost identical with respect to each other. 

Figure 5.8 contains the results of the sand loaded test of the 100 pound shaker. 

When it was tested in the sand its frequency response exhibited fewer resonances than the 

20 pound shaker with rectangular foot. The frequency response for the center motion is 

shown in (a). The frequency response showed a null around 100 Hz but this was not a 

repeatable result according to all of the measurements taken during Experiment Two. 

There was a resonance centered around 1585 Hz. The motion of this foot was nonlinear 

as indicated by the harmonics shown in (b). If these curves are compared with those for 

the small rectangular foot, one can see that the level of harmonics being produced in the 

100 pound shaker arrangement is not as significant as for the 20 pound shaker 

arrangement. The relative motion of the ends is shown in (c) and (d). This indicates that 

although there is still some flexing of the left and right ends, it is symmetrical across the 

length of the foot. This motion was less complex than the motion of the 20 pound shaker 

with rectangular foot. Unlike the 20 pound shaker however, the 100 pound shaker 

exhibited significant motion in the horizontal direction. The center frequency response 

normalized by the horizontal response is shown in (e). Seventy percent of this frequency 

range contains magnitudes in the horizontal direction that are within 20 dB of the vertical 

magnitudes. 

Finally, the amplitude response was measured at x = 10 cm and x = 40 cm with 

the radar. This is shown in Figure 5.9. In addition to producing larger displacements in 

the sand, this shaker - shaker foot combination produced a more linear amplitude 
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response. The measurements for 396 Hz at x = 10 cm and x = 40 cm, as shown in (a) and 

(b) respectively, begin in an obvious linear region and progress to what appears to be the 

beginning of saturation. The curves also have less of a hysteresis effect than do the 

previous arrangements. 

The 100 pound shaker with rectangular foot was chosen for Experiment Two. 

The reason for this decision was threefold. First, this arrangement produced the least 

amount of nonlinearities at the source. Fewer harmonics were produced in the foot, and 

the foot motion was more rigid than the other two arrangements tested. Second, the 

rectangular foot on the 100 pound shaker had sufficient surface area to support the shaker 

during extended experiments. This would allow for taking complete sets of data without 

moving the shaker or burying the shaker foot. Third, the 100 pound shaker and large 

rectangular foot had fewer resonances in the sand loaded condition. Ideally, a foot with 

no resonances would have been used but time did not permit designing and testing 

another foot. 
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CHAPTER VI 

EXPERIMENT TWO 

Procedures 

This section includes two major topics. The first is how the experiments were 

designed. It describes what the techniques and methods for gathering data were and why 

they were chosen over others. The second major topic discusses the details of each 

individual test run in the laboratory. It documents the conditions that were unique to each 

test so that they may be considered during the evaluation of the data. 

Design of Experiments 

The objective of Experiment Two was to generate frequency and amplitude 

responses for the sand, correcting the mistakes from Experiment One. In particular, the 

input voltage was related to the shaker foot force, the data collection software was fixed 

to prevent leakage from influencing the noise floor, the range of amplitudes for the 

saturation curves were increased, and the tests were done without moving the shaker. 

The first problem that needed to be fixed was the fact that the input voltages from 

Experiment One were meaningless without knowing what the power amplifier was doing. 

This was fixed by measuring the current between the power amplifier and the shaker with 

two different current probes to check accuracy. The force of the shaker foot was related 

to the current into the shaker by a 10 lbs/amp approximation given in the specification 

sheet for the 1001b shaker. A plot of the frequency response for shaker force per input 
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voltage is shown in Figure 6.1. The two current probes measured the same thing so 

Figure 6.1 shows the data from just one of them. Five different amplitudes were tested 

(0.5 V, 1.0 V, 2.0 V, 4.0 V, and 8.0 V) and each time the shaker force per input voltage 

curve was the same. All of the amplitude response tests and the first two frequency 

response tests of Experiment Two were done with the power amplifier on Gain Setting 1. 

The third and fourth frequency response tests of Experiment Two were done with the 

power amplifier on Gain Setting 2. Gain Setting 1 is approximately 7 dB greater than 

Gain Setting 2. 

The second problem dealing with the data acquisition software was fixed by using 

buffers. In Experiment One a 4.096 second input was used, approximately three and a 

half seconds of which was a continuous wave signal and approximately half second of 

which was settling time. There were 65536 points recorded, so there were 16,384 points 

in 1.024 seconds of the signal. The first and last 16,384 points were windowed out to 

eliminate the ring-up and ring-down transients. The middle 32,768 points were used for 

the FFT. These points comprised exactly 2.048 seconds. When a 33 Hz signal was 

generated, 67.584 cycles of this waveform were contained in the middle 32,76S points 

saved. Neither the beginning nor the end coincided with the point between two cycles. 

This held true for frequencies other than 33 Hz also. 

For Experiment Two the use of buffers guaranteed an integer number of cycles. 

The Lab VIEW program created buffers containing 2048 points in each. This number 

always remained the same. When 11 Hz was generated there was one cycle of this 

waveform in each buffer (2048 pts/cycle). When 22 Hz was generated there were two 
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cycles per buffer (1024 pts/cycle). There were three cycles per buffer for 33 Hz and so 

on so that there was always 2048 points per buffer and every buffer contained an integer 

number of cycles. The signal generation rate used was 22522.5234 pts/sec so each buffer 

was 0.09093 second long. This meant that the actual frequencies used did not match the 

requested frequencies exactly. For example, when 99 Hz, 198 Hz, 396 Hz, 792 Hz, and 

1584 Hz were requested for the amplitude response tests, the actual frequencies used 

were 98.98 Hz, 197.95 Hz, 395.90 Hz, 791.81 Hz, and 1583.61 Hz. The rounded off 

frequencies are used throughout the discussion of the results. 

Once LabVIEW generated one buffer based on the requested frequency, 19 more 

buffers were generated as shown in Figure 6.2. The first three buffers and the last buffer 

were windowed out to eliminate any ring-up and ring-down transient effects. The 

remaining 16 buffers were used to analyze the results. This ensured that the number of 

points used for the FFT was always a power of two (32,768 in this case) and the number 

of cycles was an integer value. The highest frequency requested was 2002 Hz. This 

frequency had 11 points per cycle which was enough to prevent aliasing. 

The third problem from Experiment One that needed to be corrected was the 

range of amplitudes used to generate the amplitude response. Previously, the amplitudes 

were not low enough to ensure a beginning in the linear region of the curve. Experiment 

Two would take advantage of the widest range of amplitudes possible. The data 

acquisition card utilized would limit this. The maximum voltage that could be input from 

the LabVIEW program was 10 volts. Based on experience, the minimum input voltage 

that registered above the noise floor was somewhere around 0.025 volts. The starting 
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voltage was selected as 0.03 volts. The previous range of amplitudes for Experiment One 

was a difference of 24 dB from the low end to the high end. By starting at 0.03 volts, and 

increasing logarithmically, 60 measurements could be made covering about a 50 dB 

dynamic range. The highest voltage would be about 8.3 volts. 

The fourth problem was selecting a gain setting on the power amplifier that would 

allow 8.3 volts to come in but the current sent to the shaker would not drive it at such a 

level that the foot buried into the sand. Several sample amplitude responses were 

generated in order to find this setting using the 0.03 to 8.3 volt range selected for the 

card. Once the setting on the amplifier was selected several things were checked. First, 

the beginning of the measurements had to be in the linear regime of the amplitude 

response. Second, the power amplifier setting had to be high enough so that 8.3 volts 

would result in the curve showing signs of saturation. Finally, the setting on the power 

amplifier had to be such that dynamic fluidization did not occur during a 24 hour test. 

The combination of voltages and the gain settings seen in Figure 6.1 allowed all of these 

criteria to be met. 

When preparing for Experiment Two, lessons from Experiment One and from 

pre-experiment tests were applied to the design of the experiment. This resulted in four 

additional changes that were incorporated into Experiment Two. These changes were 

replacing the calibration runs (discussed in Appendix A- Experiment One Details) with 

a four-accelerometer test, the number of tests done at one time, how often the sand had to 

be reconditioned, and the duration of the incident signal. 

53 



In Experiment One a calibration scan was done between each measurement so 

that after the data was processed there was data taken at the same position, amplitude, 

and frequency for each measurement to compare to each other. It was realized during 

Experiment One however that the frequency responses and saturation curves being 

generated were actually repeatable as long as dynamic fluidization did not occur and the 

shaker was not lifted up and placed back down. Because of this, it was determined that 

the really important information was what kind of foot motion was being generated for 

that particular test due to that unique shaker foot to sand contact. 

To answer this a test was run before every frequency response or amplitude 

response data group was taken. The test recorded the responses of four accelerometers 

placed in the same configuration described in Chapter V. Prior to the frequency response 

measurements, the four accelerometer test recorded 60 frequencies (33 Hz to 19S0 Hz at 

33 Hz increments) at five different amplitudes (0.5 V, 1.0 V, 2.0 V, 4.0 V, and 8.0 V). 

Prior to the amplitude response measurements, the four accelerometer test recorded 60 

amplitudes (0.03 V to 8.3 V increasing logarithmically) at five different frequencies (99 

Hz, 198 Hz, 396 Hz, 792 Hz, and 1584 Hz). In addition to this, two accelerometers were 

recorded at every point throughout both of the measurements. By doing this, for every 

piece of information collected, one could go back to see what the shaker foot was doing. 

It could then be determined how much of the results could be attributed to the motion of 

the shaker foot and how much could be attributed to the propagation path in the sand. 

One of the specific things that the calibration tests of Experiment One were 

designed for was to check how much the sand drying affected the data being collected. 
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Now that a shaker, power amplifier setting, and input voltage had all been selected so that 

dynamic fluidization did not occur, the method for checking drying effects was changed. 

For Experiment Two, once a frequency response measurement was taken the procedure 

was repeated. This allowed for a comparison of the results with nothing changing but the 

moisture content in the sand. Every amplitude response set was also done twice without 

moving anything. Another feature was also added to the amplitude response 

measurements. Instead of sweeping up in amplitude and then going to the next 

frequency, the test swept up in amplitude and then back down the same way. This 

provided information for any hysteresis that might be present and pinpointed places 

where the particular frequency, amplitude, and time had caused the shaker foot to sand 

contact to change significantly. 

Prior to Experiment One it was thought that ten hours was the maximum duration 

that tests could be run before halting to rewet and repack the sand. After several weeks 

of collecting data it was found that the conditions in the sandbox remained almost the 

same for much longer. After wetting and packing the sand prior to a test the factors 

affecting the wave propagation change the most during the first hour. It is during this 

time that the moisture in the sand settles into some quasi-equilibrium state. After two 

hours very little change occurs for the next 36 to 48 hours. The goal for Experiment Two 

then was to be able to get two frequency response or two amplitude response 

measurements done within 24 hours. 

The last big change from Experiment One came after the buffers had been used to 

run some sample experiments. Because the buffers fixed the leakage problem the noise 

55 



floor remained at a constant level. As the amplitudes were swept up an excellent signal 

to noise ratio was achieved. Because of this improved ratio many harmonics that were 

lost in noise previously were now seen. For example, at x = 10 cm (origin was 26 cm 

from the shaker foot) for 4.0 V, the first two harmonics were approximately 20 dB above 

the noise floor in the 100 - 600 Hz band. Depending on the frequency, amplitude, and 

position in the sandbox, up to a dozen harmonics could be discerned in the frequency 

spectrum. In Experiment One, two harmonics were saved, but for Experiment Two, five 

harmonics would be saved because five harmonics could often be seen above the noise 

floor. Another advantage of the improved signal to noise ratio was that the input signal 

did not have to be as long as it was for Experiment One. The signal was reduced in 

length from 3.6 seconds to 1.45 seconds and the same half second settling time was left at 

the end. When the accelerometer data was being taken the signal was reduced to 0.36 

seconds. This saved a great deal of measurement time. 

The final experimental design involved two major tests. One of the lessons 

learned from Experiment One was that for plotting frequency response, 24 amplitudes 

was much more detail than necessary. Similarly, for plotting amplitude response, ISO 

frequencies was far more than necessary. This prompted the use of two separate tests as 

opposed to the plan for Experiment One which was to take data dense in frequencies and 

dense in amplitudes and use the same set of data to plot either frequency or amplitude 

response. By breaking it into two separate tests the necessary information was captured 

while recording less than 30% of the information collected in Experiment One. 
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The first major test was to measure the frequency response. This test lasted 

approximately 25.5 hours. It began with the four accelerometer measurements already 

discussed. From there, two complete frequency response sets were taken. Each set 

began at 33 Hz, 0.5 V, and x = 10 cm. For all of the measurements mentioned here on, 

the origin (x = 0) was 26 cm from the shaker foot. The frequency then increased by 11 

Hz increments up to 2002 Hz. The amplitude then increased to 1.0 V and the frequencies 

were swept through again. The amplitude was increased to 2.0 V, 4.0 V, and finally 8.0 

V with 180 frequencies checked at each drive level. All of this was done at five different 

locations in the sandbox. These locations were x = 10 cm, 20 cm, 40 cm, 80 cm, and 160 

cm. Throughout the entire process the response from two of the accelerometers was 

recorded in addition to the radar reading in the sandbox. This constituted one complete 

set of frequency response measurements. As soon as one was complete the entire 

procedure was repeated for a second set. 

The second major test was to measure the amplitude response. This test lasted 

approximately 17.25 hours. It began with the four accelerometer measurements just as 

the frequency response data did. From there, two complete amplitude response sets were 

taken. Each set began at 0.03 V, 99 Hz, and x = 10 cm. The amplitude then increased by 

approximately 0.83 dB 60 times up to 8.3 V. The amplitudes then follow the same 

sequence coming back down. After this, the frequency increased to 198 Hz and the 

amplitudes were swept through again. The frequency continued to increase to 396 Hz, 

792 Hz, and 1584 Hz as the 120 amplitudes were measured each time. All of this was 

done at five different locations in the sandbox. These locations were the same as for the 

57 



frequency response data sets. Once again the response from two of the accelerometers 

was recorded, in addition to the radar reading in the sandbox, throughout the entire 

process. This constituted one complete set of saturation curve measurements. As soon as 

one was complete the entire procedure was repeated for a second set. 

Data Collection 

A total of four frequency response tests (8 sets) and five amplitude response tests 

(10 sets) were conducted. The general procedure for any given test was the same. The 

sand was completely saturated with water. The actual water table remained 46 to 50 cm 

below the surface of the sandbox. After the sand was watered down it was packed with a 

hand tamper and allowed to sit for a minimum of two hours before the data was collected. 

Normally after about one hour the surface was given another light mist, repacked and left 

alone for another two to three hours. Once this was done the shaker was put on the sand 

and data collection commenced. 

Several things were checked at the beginning of the measurements for a relative 

comparison of the conditions. These things included position of the radar waveguide and 

the radar power reading. Table 6.1 summarizes the pertinent data for all of the frequency 

response tests and Table 6.2 summarizes the pertinent data for the amplitude response 

tests. Each of the power readings at the origin found in Table 6.1 and 6.2 were +/- 0.01 

dBm. The power reading for any given frequency response or amplitude response test 

remained within a 3 dB range throughout the entire test. Also, lower amplitudes were 

used for the fourth frequency response test. These amplitudes were 0.015625 V, 0.03125 

V, 0.0625 V, 0.125 V, and 0.25 V. 
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Test 1 2 3 4 
Date Started 26 Jan 00 7 Feb 00 11 Feb 00 13 Feb 00 
Time Soaked 
and Packed 

1030 1230 0840 0350 

Time Misted 
and Repacked 

1240 1300 1930 0550 

Start Time 1453 1408 2123 0710 
Accelerometer 
Placement 

Center vertical 
& center 

horizontal 

Center vertical 
& buried 3in. 
below foot 

Center vertical 
& buried 5.5in. 

below foot 

Center vertical 
& buried 5.5in. 

below foot 
Gain Setting 1 1 2 2 

Power 
Reading at 
Origin 

10.17 dBm 12.12 dBm 8.24 dBm 9.17 dBm 

Waveguide 
Distance from 
Sand (x=0) 

2 cm 1.8 cm 1.5 cm 1.3 cm 

Table 6.1 - Experimental Procedure Data for Frequency Response Tests 

Test 1 2 4 5 
Date Started 25 Jan 00 4 Feb 00 8 Feb 00 9 Feb 00 10 Feb 00 

Time Soaked 0830 0630 1630 1400 1000 
and Packed 
Time Misted 1300 1030 1700 1515 1110 
and Repacked 
Start Time 1630 1239 1922 1643 1519 
Accelerometer Center Center Center Center Center 
Placement vertical & vertical & vertical & vertical &. vertical & 

center buried 3 in. buried 5.5 buried 5.5 buried 5.5 
horizontal below foot in. below in. below in. below 

foot foot foot 
Gain Setting 1 1 1 1 1 

Power 10.04 dBm 11.65 dBm 9.95 dBm 10.45 dBm 9.55 dBm 
Reading at 
Origin 
Waveguide 2 cm 1.8 cm 1.8 cm 1.5 cm 1.5 cm 
Distance from 
Sand (x=0) 

Table 6.2 - Experimental Procedure Data for Amplitude Response Tests 
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The two accelerometers that were recorded in conjunction with the radar 

measurements were of the following types and locations. The first frequency and 

amplitude response tests were done with two Kistler accelerometers mounted in the 

center of the foot. One was on top of the foot to measure vertical acceleration and the 

other was on the side to measure horizontal acceleration. The results, which will be 

discussed later, prompted the subsequent tests to be done with an accelerometer buried 

under the shaker foot. The second frequency and amplitude response tests were done 

with two PCB 352C67 accelerometers. One was attached to the bottom center of the foot 

to measure vertical acceleration and the other was buried in the sand three inches below 

the foot. The third amplitude response measurement was repeated with the buried 

accelerometer 5.5 inches below the shaker foot. The placement of the accelerometers for 

the third and fourth frequency response tests and the fourth and fifth amplitude response 

tests were done with the same accelerometers in the same place. They were PCB 352B22 

accelerometers, one of which was mounted on the bottom center of the foot to measure 

vertical acceleration and the other was buried 5.5 inches below the shaker foot. 

Results 

Before the results of the frequency and amplitude response data are presented, one 

should note where the noise floor was for these experiments. Figure 6.3 shows the noise 

floor recorded for three different measurements. The first was recorded with Gain 

Setting 1 on the power amplifier and a drive amplitude of 8.0 V, the second was recorded 

with Gain Setting 2 on the power amplifier and a drive amplitude of 8.0 V, and the third 

was recorded with Gain Setting 2 on the power amplifier and a drive amplitude of 0.25 V. 
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These three graphs show that despite different drive levels, the noise floor did not change. 

This was expected and showed that the leakage problem from Experiment One was 

corrected. The noise floor remained as shown in Figure 6.3 for all of the measurements 

taken in Experiment Two. 

Frequency Response Data 

Four complete frequency response tests were taken. Each test consisted of two 

iterations. Each iteration included 180 frequencies taken at five drive levels at five 

different locations as previously described. Frequency Response Test 1 recorded data 

that indicated a coding error made the first drive level 0.05 V instead of the desired 0.5 V. 

For this reason, the first frequency response test is not used to describe the results. 

Figure 6.4 shows the surface displacement as a function of frequency. The 

fundamental frequency is plotted for five drive amplitudes taken from Frequency 

Response Test 2 (first iteration). Graphs (a) though (e) are measurements taken at the 

five locations in the sandbox. Figure 6.5 shows the same data for Frequency Response 

Test 2 (second iteration). These iterations confirmed two things. First, the two sets of 

data were similar, as expected, because the shaker was not moved between the two 

iterations of this test. Second, the drying of sand did not significantly alter results 

throughout the 26 hours required to take all of the data shown in Figures 6.4 and 6.5. 

Therefore, repeatability of results may be achieved during a 26 hour period if the shaker 

is not moved. 

There were certain characteristics common to the data shown in Figures 6.4 and 

6.5. The waves attenuated as they propagated in the sandbox. This was shown by the 
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decreasing surface displacements from x = 10 cm (a) to those at x = 160 cm (e). The 

amount of attenuation was frequency dependent however. In general, higher frequencies 

attenuated faster than lower frequencies. The largest surface displacements occurred in 

the 100 - 600 Hz band, but at x = 160 cm, the frequencies between 400 Hz and 600 Hz 

had attenuated more than those between 100 Hz and 400 Hz. Frequencies above 600 Hz 

did not propagate well as shown by the decreasing slope above 600 Hz. 

These figures also show that the frequency response became more nonlinear with 

increasing drive amplitude as expected. By looking at the measurements taken at x = 10 

cm, one can see that the surface displacement doubled as the drive amplitude doubled in 

the 100 - 600 Hz band. Above 600 Hz however, there was a point at which doubling the 

drive amplitude did not result in a doubling of the surface displacement. The amplitude 

where this occurred became lower and lower as the frequency increased. 

Another common result seen in Figures 6.4 and 6.5 was that the frequency 

response varied more as the drive amplitude increased. This can best be seen by looking 

at the data recorded at x = 10 cm (a). The smaller amplitude curves are smoother for a 

wider range of frequencies. As the amplitude increased, nulls in the frequency response 

appeared. More nulls were present the higher the amplitude went. The amount of 

variability increased during propagation as seen by the increasing number of dips in the 

frequency response when comparing a given amplitude in (a) to those of (b), (c), (d), and 

(e). 

Figure 6.6 shows the surface displacements versus frequency for Frequency 

Response Test 3 (first iteration). The fundamentals are plotted for five drive amplitudes 
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taken at five positions. This data was taken with the power amplifier on Gain Setting 2. 

The data was consistent with Figures 6.4 and 6.5 in that surface displacements were 

approximately 7 dB lower due to the gain setting, higher frequencies attenuated faster, 

and lower amplitudes resulted in a more linear frequency response over a greater band of 

frequencies. The frequencies between 800 - 2000 Hz have attenuated into the noise floor 

at x = 160 cm for these drive amplitudes as shown by the flat frequency response in 

Figure 6.6 (e). 

Figure 6.7 shows the surface displacement versus frequency for Frequency 

Response Test 4 (first iteration). This data was taken with the power amplifier on Gain 

Setting 2. The fundamental, for five drive amplitudes at five locations, is shown in the 

graphs of Figure 6.7. The data taken at x = 10 cm (a) showed that doubling the drive 

amplitude doubled the surface displacement throughout the frequency band with the 

exception of frequencies between 1200 Hz and 1300 Hz. The curves were relatively 

smooth with the exception of this null and the lower frequencies that remained near the 

noise floor for these drive amplitudes. As the waves propagated in the sandbox the same 

increase in variability appeared in the higher frequencies. This variability was indicated 

by the dips in the frequency response as seen in the other figures. 

There were two results for Frequency Response Test 4 that differed from 

Frequency Response Tests 2 and 3. First, the frequency band experiencing nonlinear 

effects as the amplitude increased was different. As stated earlier, for Frequency 

Response Test 2, 100 Hz - 600 Hz was the band that continued to double in surface 

displacement as the amplitude doubled at x = 10 cm (Figure 6.4 (a)). At x = 160 cm the 
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frequencies between 400 Hz and 600 Hz had attenuated more and were more variable 

than those between 100 Hz and 400 Hz. For Frequency Response Test 4 however, the 

surface displacements doubled with doubling drive amplitude between 300 Hz and 1200 

Hz at x = 10 cm (Figure 6.7 (a)). At x = 160 cm, with the exception of frequencies lower 

than 400 Hz which were in the noise floor, the surface displacements for frequencies 

through 1200 Hz still doubled as the drive amplitude doubled. The curves showed 

relatively smooth attenuation, without the increasing variability, for all five amplitudes. 

The second difference in Frequency Response Test 4 was that surface 

displacement increased between x = 10 cm and x = 20 cm and between x = 20 cm and x = 

40 cm. This was most likely due to a property of the sand at the time the measurements 

were taken. Because the increase in surface displacement was a broadband effect, it did 

not occur due to interference. This result was inconsistent with other data and 

inconsistent with the expected results. Properties of the sand that may have caused this 

include the water table height, a volume of sand that had a different density, or a volume 

of sand that retained a higher moisture content. 

Figure 6.8 (a) shows the surface displacements versus frequency for Frequency 

Response Test 3 (first iteration) and Frequency Response Test 4 (first iteration). Both 

were measured at x = 10 cm. They were plotted on the same graph in order to see how 

the five lower amplitudes step up into the five higher amplitudes. It is important to note 

that the shaker had been moved, and the sand reconditioned, between the two tests so the 

same shaker foot to sand contact was not present for all ten amplitudes. This result can 

be observed by the nonlinear increase of the lower frequency range between 0.25 V and 

69 



10' 

_icr 
c 

8 10' 
C3 

•g 10 
V) 

10 

10' 

■\T:- 
rV 

r • I    » 

f.v.. 

 0.016 V 
    0.031 V 
  0.063 V I 
    0.125 V Ü 
  0.25 V 
 0.5 V 
   1.0V 
   2.0 V 
  4.0 V 
  8.0 V 

(a) 
200 400 600 800        1000       1200       1400       1600       1800       2000 

Frequency (Hz) 

200   400   600   800   1000  1200  1400  1600  1800  2000 

Frequency (Hz) 

Figure 6.8 -Frequency Response Tests 3 and 4 (Gain Setting 2), First Iteration: 
Fundamental Plotted for 10 Amplitudes (a) Radar measurement at x = 10 cm 
(b)Accelerometermeasurementofcentertaken while radar was atx= 10 cm 

70 



0.50 V. Figure 6.8 (b) shows the frequency response of the shaker foot, measured by the 

center accelerometer, for the same 10 measurements. The dependence of the frequency 

response on the shaker foot to sand contact was evident in this graph, particularly in the 0 

- 400 Hz band. 

In order to determine the degree of nonlinearities present, the harmonics produced 

were examined. Figure 6.9 compares the surface displacements for the fundamental and 

four harmonics at five locations ((a) - (e)) for a constant drive amplitude. The data is 

taken from Frequency Response Test 2 (first iteration) with an amplitude of 2.0 V. These 

results are nonlinear as shown by the harmonics generated. The fundamental and 

harmonics attenuated as they propagated through the sandbox. The higher harmonics 

attenuated the fastest, which showed once again that the higher frequencies did not 

propagate as well. 

Figure 6.10 compares the surface displacements for the fundamental and four 

harmonics for five drive amplitudes ((a) - (e)) at one location. The data is taken from 

Frequency Response Test 2 (first iteration) at x = 40 cm. At the lowest amplitude (0.5 

V), the first harmonic was above the noise floor for the 100 - 1000 Hz band and the 

second harmonic was discernable above the noise floor in the 100 - 700 Hz band. When 

the amplitude was 1.0 V, the first through fourth harmonics were generated in the 30Q - 

600 Hz band. At 4.0 V, at least one harmonic was generated throughout the frequency 

band of interest. These results showed that the wave propagation to 40 cm was nonlinear 

even at the lowest drive amplitude for Frequency Response Test 2. Appendix B contains 

a complete set of data for Frequency Response Test 2 (second iteration). 
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Amplitude Response Data 

As with the frequency response data, the amplitude response data was taken with 

accelerometers mounted on the shaker foot so that any surface displacement read by the 

radar could be related to some foot motion. During Amplitude Response Test 1, the two 

accelerometers recorded throughout the measurements were Kistler accelerometers. 

They were both mounted on the center of the shaker foot, one for vertical acceleration 

and the other for horizontal acceleration. After processing the data, the curves of surface 

displacement versus amplitude for the vertical accelerometer were not repeating 

themselves between measurements of the same frequency. The last curve was rising at 

about one-third the rate of the first curve for 99 Hz. The amplitude response for higher 

frequencies repeated however. 

This unexpected effect led to consultation with a geophysicist. It was 

hypothesized that propagation of lower frequencies was more dependent upon the solid 

matrix structure of the sand, and that propagation of higher frequencies was more 

dependent on the viscous forces of the water content in the sand [13]. It was thought that 

as the measurements were taken, the foot was packing the sand underneath it. If this 

occurred, the sand matrix structure was changing, thus changing the amplitude response 

of the shaker foot for low frequencies. 

In order to confirm that the sand under the foot was being packed during the 

measurements, an accelerometer was buried three inches below the foot. Accelerations 

measured at this point should have changed over time as the volume of sand effectively 

coupled to the foot increased due to packing. Two PCB 352C67 accelerometers were 

74 



used to take the measurements. Besides the one buried, there was one mounted in the 

center of the shaker foot. Amplitude Response Test 2 was taken in this configuration but 

did not record results consistent with Amplitude Response Test 1. The accelerometer 

mounted on the foot did not have decreasing amplitude response curves at 99 Hz. 

Instead, the curves were consistent throughout the measurements as originally expected. 

The accelerations measured by the buried accelerometer did not change over time either. 

This prompted an investigation of the accelerometers. The accelerometer 

measurements for Amplitude Response Test 1 were ruled invalid due to a particular 

Kistler accelerometer used to record vertical foot acceleration. For Amplitude Response 

Tests 3, 4, and 5, PCB 352B22 accelerometers were used. One was mounted on the 

center of the foot to measure vertical acceleration and one was buried 5.5 inches below 

the foot to see if the shaker foot was packing the sand. The hypothesis of lower 

frequencies being dependent on the sand matrix structure and higher frequencies being 

dependent on the viscous forces of the water was never confirmed nor denied. Neither 

did burying an accelerometer under the shaker foot confirm or deny that the sand under 

the foot was packed overtime. Amplitude Response Tests 3, 4, and 5 (all taken on Gain 

Setting 1) are used to present the results. 

Figure 6.11 shows surface displacement versus drive amplitude for Amplitude 

Response Test 3 (first iteration). The fundamental for five frequencies is plotted in each 

graph. Graphs (a) though (e) are the measurements taken at five different positions in the 

sandbox. The portion of the curves that is not smooth is data that was hidden in the noise 
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floor. For example, in (d), 99 Hz less than 10° and 1584 Hz less than 10'1 are in the 

noise. 

Many of the observations made for the frequency response data were confirmed 

with this data. The waves attenuated as they propagated in the sandbox. This was seen 

by the surface displacement curves, for a given frequency, decreasing from one position 

to the next (from (a) to (e)). All of the curves began in a linear region. The curves 

entered a nonlinear region, as expected, when amplitude increased. The point at which 

these frequencies began to saturate was different for each of them, showing the frequency 

and amplitude dependence of saturation. The higher frequencies were less predictable 

than the lower frequencies. For Figure 6.11, 1584 Hz showed a particularly large amount 

of variability as it propagated through the sandbox. The largest surface displacements 

occurred for 396 Hz, which was also consistent with the frequency response tests. 

Figure 6.12 shows the surface displacement versus drive amplitude for 

Amplitude Response Test 3 (second iteration). The fundamental of five frequencies was 

plotted for five locations just as it was in Figure 6.12. Approximately 8.5 hours elapsed 

between the beginning of the first iteration and the beginning of the second iteration. 

Because the shaker was not moved between these two iterations, the results were 

repeatable as seen in the figures. The degree of repeatability was frequency dependent 

however. 99 Hz, 198 Hz, and 396 Hz, at all five locations for the second iteration, were 

similar to those of the first iteration. 792 Hz was repeatable for x = 10 cm, 20 cm, and 40 

cm. After 40 cm, the results were not repeatable in the nonlinear region. The variability 
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of 1584 Hz was not reproducible in the second iteration. Although it still varied, the 

amplitude where the variation occurred and the extent of the variation was not repeatable. 

Figure 6.13 shows surface displacement versus drive amplitude for Amplitude 

Response Test 4 (first iteration). The fundamental of five frequencies measured at five 

locations was plotted just as in the previous two figures. Although the relative magnitude 

of surface displacements shown in Figure 6.13 were similar to those of Amplitude 

Response Test 3, the shape of the curves was somewhat different due to the different 

shaker foot to sand contact that resulted from moving the shaker and reconditioning the 

sand. The differences are more apparent in the higher frequencies than in the lower 

frequencies. 

Figure 6.14 shows surface displacement versus drive amplitude for Amplitude 

Response Test 5. The fundamental of five frequencies at five locations was once again 

plotted. A comparison of Figure 6.14 with either Figure 6.11 or Figure 6.13 confirms the 

results stated above. The results of Amplitude Test 5 were more similar to those of 

Amplitude Test 4 however. These two tests were done a day apart whereas Amplitude 

Test 5 and Amplitude Test 3 were done two days apart. The changed properties of the 

sand were more noticeable in the data that was taken two days apart. 

As previously mentioned, data from two accelerometers was recorded throughout 

the amplitude response tests. Figure 6.15 is a side-by-side comparison of the surface 

displacement measured at some distance in the sandbox and the acceleration of the shaker 

foot for that measurement. This data was taken from Amplitude Response Test 5. Graph 

(a) shows the surface displacement versus drive amplitude for the fundamental of five 
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frequencies measured at x = 10 cm. Graph (b) was the amplitude response as measured 

in acceleration by the accelerometer mounted on the center of the shaker foot for the 

same five frequencies. Graph (c) showed the surface displacement versus amplitude 

measured at x = 40 cm and (d) was the corresponding amplitude response of the shaker 

foot, (b) and (d) showed that the amplitude response of the shaker foot was almost 

identical from measurement to measurement. They also showed that the shaker foot 

applied the most force at 792 Hz and 1584 Hz. By the time the wave propagated to x = 

10 cm however, 792 Hz and 15S4 Hz had attenuated to the point that 99 Hz, 19S Hz, and 

396 Hz produced the largest surface displacements. This result emphasized how much 

more high frequencies attenuated than low frequencies. 

Just as in the frequency response tests, the harmonics being produced were 

examined to determine the extent of nonlinearities present. Instead of showing the 

fundamental and its harmonics as seen for the frequency response tests however, this 

section of the results normalized the harmonics by the fundamental in order to show 

relative harmonic generation. 

Figure 6.16 shows the first four harmonics of 396 Hz normalized by the amplitude 

response of the fundamental. The data is taken from Amplitude Response Test 5 (first 

iteration). Each graph ((a) - (e)) shows the amplitude response at a different location. At 

x = 10 cm, the first harmonic rose above the noise floor when the amplitude was 2e-l V, 

the second harmonic rose above the noise floor when the amplitude was 6e-l V, and the 

third harmonic rose above the noise floor when the amplitude was leO V. The fourth 
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harmonic just began to rise above the noise at an amplitude of 7e0 V. The harmonics 

showed signs of saturation, but more harmonics were produced, as amplitude increased. 

Graphs (b) and (c) showed that the harmonics attenuated with respect to the 

fundamental as the wave propagated in the sandbox. This was expected because high 

frequencies (harmonics of 396 Hz) attenuated faster than low frequencies (396 Hz). The 

fourth harmonic rose above the noise floor at an amplitude of 3e0 V at x = 20 cm 

however.   This meant that at constant amplitude (3e0 V) and frequency (396 Hz), the 

fourth harmonic was generated at 20 cm but not at 10 cm. This result showed that the 

propagation path contributed to nonlinearity between x = 10 cm and x = 20 cm. From 40 

cm to 160 cm this effect was not seen. The propagation was still nonlinear, but the 

attenuation of the harmonic frequencies dominated the effect of nonlinear propagation. 

Figure 6.17 shows four harmonics normalized by the fundamental versus 

amplitude. The data came from Amplitude Response Test 5 (first iteration). All of the 

graphs represent data measured at x = 40 cm. Each one was for a different frequency. 99 

Hz, 198 Hz, and 396 Hz all produced significant harmonics at this point in the sand. The 

frequency that had a harmonic rise above the noise floor first, as the amplitude increased, 

was 396 Hz. The next frequency to generate a harmonic, as amplitude increased, was 

198 Hz. This result was consistent with the frequency response tests showing the largest 

surface displacements in the 100 Hz - 600 Hz band. The fist harmonic of 792 Hz rose 

above the noise at 3e0 V and no harmonics were generated at 40 cm for 1584 Hz. Once 

again this showed the effects of attenuation on the higher frequencies. Appendix C 

contains a complete set of data for Amplitude Response Test 5 (second iteration). 
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Nonlinearities at the Source 

An important part of the results was what happened at the shaker for both the 

frequency response and amplitude response tests. It was shown that both variability and 

nonlinearity occur during propagation but the source also contributed to the overall 

effects seen in the data. Of the three shaker - shaker foot combinations tested, the 100 

pound shaker with rectangular foot had the fewest modes of foot motion excited at the 

frequencies and amplitudes used, it had fewer resonances, and it produced fewer 

harmonics as recorded by the accelerometers. Despite this, there were still source 

considerations to take into account. 

First, there was the matter of the shaker foot to sand contact. Every time the 

shaker foot was placed on the sand the foot-sand coupling was different. The data 

collected in Experiment Two showed that by leaving the shaker on the sand throughout 

the measurements, the results repeated well. The frequency response changed slightly 

whenever the shaker was moved and placed back on the sand. 

This effect is more noticeable when viewed in the time-domain. Figure 6.18 (a) 

shows seven different waveforms from Experiment One (201b shaker with rectangular 

foot) plotted on top of each other. They were all measured at x = 120 cm but the 

amplitudes increased linearly (increment = 0.04 V) from 0.14 V to 0.38 V. The first six 

amplitudes were recorded without moving the shaker. The waveforms were almost 

identical with the exception of the increased amplitude. Prior to the seventh 

measurement (drive amplitude = 0.38 V), the shaker was removed, the sand was watered 

and packed, and the shaker was placed back on the sand. The shape of this waveform 
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Figure 6.18- (a) Waveform of 7 amplitudes (0.14 V - 0.3 8 V) from Experiment One, 
201b shaker with rectangular foot, shaker moved prior to recording 0.38 V (dotted 
line) (b) Waveform of 2.0 V and 4.0 V from Frequency Response Test 2 (first 
iteration) for 5 locations (c) Waveform of 0.5 V (scaled x4) and 8.0 V (scaled x0.5) 
from Frequency Response Test 2 (first iteration) for 5 locations 
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(dotted line) was significantly different due to the new shaker foot to sand contact. This 

showed that it was very important to understand whether or not the data being compared 

in Experiment Two was taken with or without moving the shaker. 

Careful inspection of the waveforms plotted in Figure 6.18 (a) revealed another 

interesting feature. As the drive amplitude increased, the waveforms were recorded later 

in time at the same point in the sandbox. The cause of this was either a delay at the 

source, a decreased propagation speed, or a combination of both. Another possibility was 

that as the drive amplitude increased, the frequency content due to harmonic generation 

changed. When the frequency spectrum, which used a linear assumption, was convolved 

with the differentiated Gaussian and taken into the time-domain it may have filtered 

frequencies that resulted in a delay of the waveform. 

Figure 6.18 (b) shows ten waveforms plotted for data recorded in Frequency 

Response Test 2 (first iteration). The two plotted at the bottom of the graph were 

recorded at x = 10 cm. The two above that were recorded at x = 20 cm, then x = 40 cm, x 

= 80 cm, and finally x = 160 cm is at the top of the graph. At each position there is a 

waveform that had a drive amplitude of 2.0 V (solid line) and one that had a drive 

amplitude of 4.0 V (dotted line). Using the highest peak as a reference, there was 

approximately 0.25 ms between the two waveforms at x = 10 cm. At x = 80 cm there 

was approximately 0.64 ms between the waveforms. This indicated that the waveform 

generated by the larger drive amplitude was propagating slower between these two 

points. 
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Figure 6.18 (c) shows ten waveforms plotted for data recorded in Frequency 

Response Test 2 (first iteration). The two plotted at the bottom of the graph were 

recorded at x = 10 cm. The two above that were recorded at x = 20 cm, then x = 40 cm, x 

= 80 cm, and finally x = 160 cm is at the top of the graph. At each position there is a 

waveform that had a drive amplitude of 0.5 V (solid line) and one that had a drive 

amplitude of 8.0 V (dotted line). The waveform with the drive amplitude of 0.5 V was 

scaled up by a factor of 4 and the waveform with the drive amplitude of 8.0 V was scaled 

down by a factor of 2. This was done so that the two waveforms could be plotted on the 

same graph for comparison. Using the highest peak as a reference, there was 

approximately 1.0 ms between the two waveforms at x = 10 cm. At x = 80 cm there was 

approximately 2.4 ms between the waveforms. This verified that the waveform with the 

greater drive amplitude was propagating slower between these two points. 

Figure 6.19 shows data recorded by the accelerometer mounted in the center of 

the shaker foot for Amplitude Response Test 5 (first iteration), (a) through (e) are the 

five frequencies (99 Hz, 198 Hz, 396 Hz, 792 Hz, and 1584 Hz respectively) measured 

while the radar was at x = 10 cm. The graphs show four harmonics normalized by the 

fundamental. This figure indicates that there was a significant contribution of harmonics 

generated at the source in addition to that generated by the propagation path. 
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CHAPTER VII 

CONCLUSIONS 

The shaker foot and propagation path contributed to the nonlinearities of the 

investigated system. The source created nonlinearities as indicated by the harmonics 

recorded with accelerometers mounted on the shaker foot. The propagation path created 

nonlinearities due to a complex, three-dimensional crystalline matrix with pockets of 

varying amounts of water and air. This was seen by the number of generated harmonics 

increasing from one point to another in some of the data, despite attenuation being the 

dominant effect. The propagation path contributed to nonlinearities because of the 

changing solid particle wave paths and fluctuating viscous and cohesive properties. 

The shaker foot to sand coupling was an important contributor to the results 

recorded. The results showed that once the shaker foot to sand contact was changed the 

results were not repeatable with the same degree of precision. When comparing sets of 

data taken before and after moving the shaker, it was seen that the different fundamentals 

and harmonics for the frequency responses behaved similarly with respect to each other, 

but changed slightly every time the shaker was moved. This difference was more 

pronounced in the time-domain. The surface displacements measured by the radar for 

higher frequencies, which were already variable, showed the biggest changes after 

changing the shaker foot to sand coupling. 
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When looking at the frequency response of the shaker foot, as measured by the 

accelerometers, the frequency band that was most susceptible to change due to the shaker 

foot to sand contact was 30 - 400 Hz. This was seen in Figure 6.8 (b) where two sets of 

data, with different shaker foot to sand contact, were plotted on the same graph. The 

frequency response of the 30 - 400 Hz band was significantly different. The changing 

frequency response in this band was consistent throughout the data. For example, Figure 

5.8 (b) showed a null around 100 Hz that did not appear anywhere else in the data. 

The degree to which the sources of nonlinearities affect the propagation of 

compressional, surface, and shear waves was dependent upon the type of shaker foot, the 

frequencies, and the amplitudes utilized. By carefully selecting these three things a wide 

variety of results were produced. These results ranged from near-linear responses to 

highly non-linear responses. 

Different types of shakers and shaker feet affect the results. Of the combinations 

investigated a rectangular foot with a length to width ratio of approximately 10:1, and 

enough surface area to support the shaker without burying, produced the most linear 

results. The degree of nonlinearity was measured by the amount of harmonic generation 

recorded by the accelerometers mounted on the foot. Although the foot had a square 

cross section, the length to thickness ratio was still such that a bending-about-the-center 

mode of vibration was excited. 

The circular foot produced amplitude responses which approached saturation and 

then began rising again. Because the amplitude at which this second rise began changed 

depending on where the measurement was taken, the result was affected by the 
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propagation path. This was not seen on the other two shaker feet. The likely cause of 

this was that the pressure wave and surface wave had different saturation thresholds. As 

the dominating wave saturated, the amplitude response had a decreased slope until the 

other wave, which was still increasing with drive amplitude, began to dominate. This 

would also account for some of the dips in the amplitude responses of the higher 

frequencies. 

The difference between the round foot and the two rectangular feet was the 

surface area to frontal length ratio. If the surface wave was dependent on the frontal 

length while the compressional wave was dependent on the surface area, the saturation 

curves could behave as measured due to the dominating wave changing from 

compressional to surface during propagation. The other shaker feet would have a surface 

wave that dominated the curve from the beginning and therefore did not produce this 

two-rise effect. The foot motion must be well documented in order to accurately 

represent the source in the computer model. It is also important to ensure that the power 

amplifier and shaker are properly matched so that an impedance mismatch does not 

increase the nonlinearity of the source. 

The range of frequencies used to generate the wave also impacted the results. 

Frequencies less than 600 Hz propagated well through the sand. Frequencies higher than 

600 Hz were highly vulnerable to attenuation, particularly once the surface of the sand 

dried. A flatter frequency response, with less variability of the higher frequencies, was 

achieved with lower amplitudes as seen in Figure 6.8 (a). Doubling the amplitude 

doubled the surface displacement for the 100 - 1200 Hz frequency band. The 1300 - 
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2000 Hz frequency band also showed this behavior up to x = 20 cm where the 0.25 V 

amplitude began to exhibit the variability of the higher frequencies. 

The 30 Hz - 2000 Hz frequency range used for the acousto-electromagnetic mine 

detection technique appears to be very well suited for this task. The generation of 

harmonics by the lower frequencies helps to increase the surface displacements of the 

higher frequency range. Anything above 2000 Hz however, would attenuate so quickly 

that no matter how much contribution from lower frequency harmonics was present there 

would not be enough energy in these frequencies to propagate an appreciable distance. 

The higher frequencies are also less useful in that the variability of their amplitude 

responses would produce nulls at unpredictable locations. 

Increasing the drive amplitude caused system nonlinearities as expected. The 

threshold of linearity changed as a function of distance and frequency. Small amplitudes 

propagated well enough to be measured by the radar at the furthest point tested. These 

smaller amplitudes had a much flatter frequency response, although there was a null 

around 1250 Hz for the two smallest amplitudes tested. This null was due to the 

frequency response of the foot and what appeared to be some destructive interference. 

As the amplitude increased however, the surface displacements due to the lower 

frequencies rose faster than surface displacements due to the higher frequencies. This 

was important to note when trying to make the computer model match the actual 

experiments. Increasing the drive amplitude increased nonlinearity by first driving the 

shaker foot such that harmonics were generated and also caused the wave to propagate in 

a nonlinear way through the unconsolidated soil matrix. 
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The threshold of surface displacement for these experiments was approximately 

3000 nm as measured at x = 10 cm. These displacements occurred in the 200 - 400 Hz 

frequency band, despite the accelerations measured on the shaker foot being greatest 

around 1500 Hz. Regardless of the amplitude or frequency used, the radar never 

measured any surface displacements greater than 3000 nm. The threshold did not change 

for different shakers and shaker feet combinations. The 20 pound shaker with small 

rectangular foot also saturated the sand at this point even though the surface area of the 

smaller shaker foot was almost 3.5 times less than that of the shaker foot used in 

Experiment Two. The larger shaker and shaker foot used more current without burying 

into the sand, but the additional current was used to drive the heavier foot and did not 

increase the magnitude of displacement in the sand. 

96 



CHAPTER Vin 

RECOMMENDATIONS 

There are many different shaker feet that could be used in the acousto- 

electromagnetic mine detection technique. A study of these possibilities should be 

conducted. The three possibilities examined as part of this research produced very 

different results that indicated that the many other possibilities could turn up a 

configuration much more suited for mine detection. Shaker feet could also be made that 

did not have resonances and had only one mode of vibration excited for the frequencies 

and drive amplitudes used. A shaker foot very similar to the one used in Experiment 

Two could be made with the same surface area but thicker cross section in order to 

achieve this. 

If an investigation of shaker feet was conducted, it should focus on those with a 

large (> 10:1) length to width ratio. The amplitude response of the 20 pound shaker with 

circular foot showed that the small length to width ratio (1:1 in this case) resulted in a 

greater degree of nonlinearity. Making a large round foot for the 100 pound shaker 

would create the same nonlinearites. 

The way that the shaker foot couples with the sand could also be changed. The 

only technique examined thus far was placing the foot on top of the sand surface and 

relying on the weight of the shaker to keep shaker foot to sand contact steady. Different 

foot - sand couplings should be investigated to determine if another technique is more 
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suited for the production of surface waves. One example would be something on the foot 

that penetrates the sand, such as nails, which is one configuration used by researchers at 

the University of Texas [4]. 

This research looked at what was happening only along the x-axis of the sandbox. 

At this point it would be beneficial to expand the research to looking in two dimensions. 

Very little is known about the directivity of the various shaker - shaker feet 

combinations. This directivity changes depending on which foot is used because of the 

unique shaker foot motions, sizes, and shapes. Since mine detection dwells in a limited 

three-dimensional space, which is very large on the surface, determining the directivity of 

these sources will become important. 

The near-field radiation pattern of the shaker is very complicated. The reason for 

increasing surface displacements for the fundamental, between 10 cm and 40 cm, in 

Frequency Response Test 4, is still unknown. The low frequencies used and the size of 

the shaker foot resulted in a near-field of appreciable size. It could be worth the effort to 

try and characterize this near-field. If an array of sources is ever planned for 

implementation, determining what the behavior of frequencies in the near-field is will be 

even more important. 

Some mine detection tests should be conducted with much lower drive 

amplitudes. Frequency Response Test 4 showed that lower drive levels produced a flatter 

frequency response. There was not as much variability in the form of frequency response 

nulls. The surface displacements due to higher frequencies were also greater with respect 

to the displacements of the lower frequencies than they were in the other frequency 
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response tests. It might be beneficial, for interrogation of very small objects, to lower the 

drive amplitude so that higher frequencies do not become variable as they do for higher 

amplitudes. If this were done, the incident signal duration would probably have to be 

lengthened to improve the signal to noise ratio. This would result in a trade-off of time to 

conduct a scan for better high frequency propagation. 

Finally, two-dimensional scans for mines using an incident signal of reduced 

bandwidth should be tested in the event that time is more important than interrogation 

with frequencies greater than 1200 Hz. Because of the rapid attenuation of higher 

frequencies, it may not be worth using a chirp that contains frequencies between 1200 Hz 

and 2000 Hz. More than a second could be saved for each measurement by utilizing a 30 

- 1200 Hz chirp. Under the current procedure for conducting two-dimensional scans, this 

would reduce the 9.5 hour scan by about 10 percent. This will become more and more 

important in the future as the research heads towards practical implementation. If neither 

time nor frequencies above 1200 Hz were critical, then the same length signal using a 30 

Hz to 1200 Hz chirp could be used to improve the signal to noise ratio. 
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APPENDIX A 

EXPERIMENT ONE DETAILS 

Design of Experiments 

In order to determine what type of experiments would be the most effective and 

efficient for this research, some initial tests were run on the sandbox. There were three 

specific factors that needed to be found. First, the maximum amplitude that the shaker 

could be driven without burying itself in the sand, and the minimum amplitude appearing 

above the noise floor needed to be found out. This would set the upper and lower limits 

of input voltages for the experiments. Second, the maximum duration a scan could be 

run, without experiencing nonlinearities due to the sand drying, was needed. This would 

determine how often the scans needed to be stopped in order to rewet and recompact the 

sand. Third, the minimum duration of the input signal, while still recording accurate 

data, needed to be found in order to minimize scan time. 

Shaker Amplitude Range 

Total amplitude in this experimental setup was produced by a combination of the 

DAC and an amplifier. In order to find the low end of the amplitude range the gain on 

the amplifier was turned all the way up. Lower and lower values of amplitude were then 

entered into the computer for the board until a value of 0.03 volts was found to be the 

smallest value that would still register above the noise floor. Harmonics were not seen, 

however, until the value entered in the computer was approximately 0.15 volts. The 
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lower end value of the amplitude range was then chosen as 0.06 volts entered in the 

computer and the amplifier set at maximum gain. This ensured that the data collected 

began in the linear region (no harmonics produced). 

The goal for the experiment was to use approximately 24 different amplitudes at 

each point tested. About 10% of the amplitudes on the upper end of the range would 

cause the shaker foot to settle into the ground during a scan. A series of trials was run in 

order to determine where the amplitude would have to be set for the shaker foot to settle 

into the sand. It was determined that if the voltage entered into the computer was greater 

than 0.86 V, with the gain on the amplifier all the way up, this occurred. Therefore, 0.9S 

V was chosen as the upper end of the entered value of voltage. 

Maximum Scan Duration 

Drying Test Number 1 An experiment was conducted in order to determine how 

long the sand's propagation properties remained constant before drying effects became 

noticeable in the data. A program was written to conduct a 41 point scan (0-120 cm at 

3 cm increment) along the x-axis every hour. A 3.5 second chirp from 30 Hz to 2000 Hz 

was used as the input signal. The sand was prepared for scanning and the program was 

executed. This data was recorded for a 72 hour period (73 scans). 

The velocity of the surface wave remained at approximately 91 m/s during the 

entire 72 hour period. This velocity was calculated by measuring points on the waterfall 

graphs so a great deal of precision could not be achieved. The velocity most likely 

decreased at a rate that was too small to detect as the sand dried, however the surface 

wave velocity did remain somewhere in the 90.5 m/s - 92 m/s range. 
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Frequency propagation was also studied. During the first ten hours of drying 

there was no significant loss of frequency propagation. After ten hours however, 

frequencies greater than 900 Hz appeared to show a decrease in ability to propagate over 

the full 120 cm of the scan region. At the time, this was taken to mean that the sandbox 

would need to be rewetted and recompacted every eight to ten hours to ensure 

propagation of the higher frequencies. 

The interpretation of the drying tests was not precisely correct due to the fact that 

a chirp was being used as the incident signal. This prevented a lot of energy being placed 

into any one frequency band and the signal to noise ratio was not as good as it should 

have been. Also, by the time Experiment Two was conducted, it was realized that the 

higher frequency's propagation ability actually drops off within the first couple of hours 

due to drying and the lower frequencies remain able to propagate regardless of moisture 

conditions. 

Drying Test Number 2 It was determined through several sample data collections 

that drying effects might be affecting some of the frequencies when a sinusoidal input is 

used instead of the 30 - 2000 Hz chirp. A second drying test was conducted to examine 

this. The radar was positioned at point (40,0). Every 15 minutes a scan was taken from 

100 - 2000 Hz, at 100 Hz increments, and amplitude equal to 0.5 V. Each frequency 

input was a 3.5 second sinusoid with a 0.5 second settling time. Only two seconds of the 

3.5 available was used for data processing in order to minimize the impact of any start-up 

or shut-down transient signal. 
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Once this data had been collected, the effects of the sand drying were examined 

by looking at the frequency response of the surface displacements for the fundamental 

and harmonics. The changes were compared over time. The results were also examined 

for 200, 500, 800, 1100, 1400, and 1700 Hz by comparing surface displacements for the 

fundamentals as a function of time. 

The results of the second drying test showed that certain frequencies were more 

susceptible to effects of drying than others. For example, the low range of frequencies 

(100 - 500 Hz) experience very little change from drying effects. In the mid-range of 

frequencies (600 - 1500 Hz), drying caused most of the frequency displacements to 

diminish. In the high range of frequencies (1600 - 2000 Hz), a variety of things took 

place.  1600 Hz remained about the same, 1700 and 1800 Hz increased as the sand dried, 

and 1900 and 2000 Hz decreased as the sand dried. The harmonics behaved similar to 

the fundamental frequencies but were less predictable. 

The displacement of the frequencies remained relatively constant over a ten hour 

period. The largest changes occurred within the first hour after preparing the sand. With 

the exception of 500 Hz, the harmonics supported this observation. These results 

indicated that if the sand was reconditioned about every eight hours, the effects of drying 

would be minimized. Also, the sand would be allowed to reach a quasi-equilibrium by 

waiting one hour from the time of reconditioning before data collection would 

commence. 
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Minimum Input Signal Duration 

A program was written to test 20 different frequencies (100-2000 Hz in 100 Hz 

increments), with amplitude equal to 0.5 V, at two different points (x = 40 cm and x = 

120 cm). These tests were run three different times to determine if the signal duration 

had an effect on the output. The three time windows used were 4.096 seconds, 2.048 

seconds, and 1.024 seconds. The time windows were composed of the signal followed by 

approximately 0.5 seconds of settling time. The settling time changed slightly depending 

on the frequency being tested so that the input sine wave ended after an integer number of 

periods each time. 

The fundamental frequencies and some of the harmonics were seen using each 

one of these signal durations. However, the longer input signal yielded more harmonics 

registering outside of the noise level. It was suspected that the one second signal would 

yield the same results as the two and four second signal with slight differences in the 

signal to noise ratio. Because different signal lengths were producing a different number 

of harmonics, the data indicated that there might be a start-up and/or a shut-down 

transient present which was having less of an impact as it was averaged out over the 

longer signal duration. 

The experiment was run again but this time the time-domain data was saved. This 

allowed the fast Fourier transform to be taken over different time windows. This was 

done two different ways. First, a one second time window, shifted a half second at a 

time, was used. Then a half second time window, shifted a half second at a time, was 
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used. In both cases the results were different for the first time window which verified the 

presence of a start-up transient. 

As a result of this, the decision was made to use a 4.096 second time window. 

Approximately 3.5 seconds would be the signal and the remaining would be settling time. 

Only 2.048 seconds of the data collected would be used however, so that any start-up and 

shut-down transients could be eliminated before processing. 

Data Collection 

The data was collected in two different phases. The first phase was to get the data 

for the frequency and amplitude responses. The second phase gathered data in order to 

separate the pressure wave from the surface wave so that individual contributions could 

be studied. The third phase was gathering information for altered relative energy 

contents in the pressure and surface waves. Experiment One ended and planning for 

Experiment Two began before the third phase was completed. 

Phase I 

For this phase, a "scan" consisted of measuring 180 different frequencies at a 

certain amplitude and point. The frequencies ranged from 33 Hz to 2002 Hz by steps of 

11 Hz. A scan was taken for 24 different amplitudes, at each of three different positions, 

for a total of 72 scans. The 24 amplitudes ranged from 0.06 volts to 0.96 volts on the 

board, in steps of 0.04 volts, with the gain on the amplifier all the way up. 

The first 24 scans were taken with the radar at x = 40 cm, y = 0 cm, and z = 0 cm 

on the positioner. The distance from the lead edge of the shaker foot to the center of the 

waveguide was actually 71.2 cm. The actual distance from the surface of the sand to the 
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bottom edge of the waveguide was 2.0 cm. The power meter on the radar read -33 dBm 

(+/- 0.8 dBm) when it was raised to z = 30 cm on the positioner and microwave scattering 

foam was placed under the waveguide. The power meter read -1.55 dBm at the actual 

position where the data was taken. 

The sand was watered down, compacted, and allowed to dry for one hour prior to 

beginning the data collection. The scans were done in order of increasing amplitude so as 

not to disturb the sand under the shaker foot. 15 scans were completed in 8.25 hours at 

which point a pause was taken to rewater and recompact the sand. Prior to starting again, 

the radar power was checked. It was -52 dBm (+/- 4 dBm) at z = 30 cm over the foam 

and -0.91 dBm at the measuring position. Five more scans were completed before the 

rewatering and recompacting procedure was once again performed. At this point the 

radar power meter read -32 dBm (+/- 1.5 dBm) at z = 30 cm over the foam and -0.94 

dBm (+/- 1.5 dBm) at the measuring point. From this point on, the data collection had to 

be stopped after every scan in order to compact under the shaker foot because the 

amplitude was such that the shaker foot was burying itself in the sand. The power meter 

on the radar read -2.53 dBm, -2.59 dBm, and -2.74 dBm at the measuring position prior 

to the last three scans. 

Throughout the entire process described above, calibration scans were taken 

before and after each data collection scan. These consisted of measuring 20 frequencies 

(100 Hz to 2000 FIz by 100 Hz increments) at the same amplitude (0.5 on the computer 

with the amplifier gain all the way up) and same position (x = 40 cm, y = 0 cm, and z = 0 

cm on the positioner) each time. By measuring the exact same thing before and after 

106 



each scan, a comparison between the two could be made to see how much effect drying 

had during the scan. These calibration scans could be used to compare the condition of 

the sand during any scan regardless of when it was taken. 

The second 24 scans were taken with the radar at x = 80 cm, y = 0 cm, and z = 0 

cm on the positioner. The distance from the lead edge of the shaker foot to the center of 

the waveguide was actually 111.7 cm. The actual distance from the surface of the sand to 

the bottom edge of the waveguide was 2.1 cm. The power meter on the radar read -32.6 

dBm (+/- 0.4 dBm) when it was raised to z = 30 cm on the positioner and microwave 

scattering foam was placed under the waveguide. The power meter read -2.19 dBm (H- 

0.01 dBm) at the actual position where the data was taken. 

The sand was watered down, compacted, and allowed to dry for one hour prior to 

beginning the data collection just as it had been done for the scans at x = 40 cm. The 

scans were again done in order of increasing amplitude so as not to disturb the sand under 

the shaker foot. 15 scans were completed in 8.5 hours at which point the sand was 

rewatered and recompacted. Prior to starting again, the radar power was checked. It was 

-36.6 dBm (+/- 0.5 dBm) at z = 30 cm over the foam and -3.00 dBm (+/- 0.01 dBm) at 

the measuring position. Three more scans were completed before the rewatering and 

recompacting procedure was once again performed. At this point the radar power meter 

read -3.52 dBm (+/- 0.01 dBm) at the measuring point. One scan was completed and the 

reconditioning procedure was repeated with the radar power meter reading -3.70 dBm 

(+/- 0.01 dBm) at the measuring point. Two more scans were completed and then the 

data collection had to be stopped after every scan in order to compact under the shaker 
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foot because the amplitude was such that the shaker foot was burying itself in the sand. 

The power meter on the radar read -3.77 dBm, -3.80 dBm, and -3.86 dBm (+/- 0.01 dBm 

for each) at the measuring position prior to the last three scans. 

Throughout the entire process described above, calibration scans were again taken 

before and after each data collection scan. The procedure for these calibration scans was 

exactly like the procedure described above for the point at x = 40 cm. 

The final 24 scans were taken with the radar at x = 120 cm, y = 0 cm, and z = 0 

cm on the positioner. The distance from the lead edge of the shaker foot to the center of 

the waveguide was actually 151.5 cm. The actual distance from the surface of the sand to 

the bottom edge of the waveguide was 1.5 cm. The power meter on the radar read -30.5 

dBm (+/- 0.5 dBm) when it was raised to z = 30 cm on the positioner and microwave 

scattering foam was placed under the waveguide. The power meter read +0.69 dBm (+/- 

0.01 dBm) at the actual position where the data was taken. 

The sand was watered down, compacted, and allowed to dry for one hour and 20 

minutes prior to beginning the data collection to once again allow it to reach a state of 

quasi-equilibrium. Beginning again with the lowest amplitude, 8 scans were completed 

in 4.5 hours at which point the sand was rewatered and recompacted. Prior to starting 

again, the radar power was checked. It was +0.85 dBm (+/- 0.01 dBm) at the measuring 

position. Ten more scans were completed in 5.75 hours before the sand had to be 

rewatered and recompacted. At this point the radar power meter read +2.90 dBm (+/- 

0.01 dBm) at the measuring point.' Three more scans were then completed before the 

data collection had to be stopped after every scan in order to compact under the shaker 
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foot to prevent it from burying itself in the sand. The power meter on the radar read 

+1.41 dBm, 0.93 dBm, and 0.79 dBm (+/- 0.01 dBm for each) at the measuring position 

prior to the last three scans. 

Once again, calibration scans were taken before and after each data collection 

scan during the entire process described above. The procedure for these calibration scans 

was exactly like the procedure described above for the point at x = 40 cm. 

Phase II 

The data for this phase was collected in the same fashion as the data for the points 

at 40, 80, and 120 cm in Phase I. The only difference was the point at which the data was 

collected. During this part of the experiment, the point at x = 190 cm was used in order 

to allow the pressure wave and surface wave to separate in time. This point is at the far 

limit of the positioner in the experimental setup. By allowing the pressure wave and 

surface wave to separate, the contributions of each to the overall displacement were to be 

measured separately. The frequencies and amplitudes used were the same as those in 

Phase I of the data collection. 

The distance from the lead edge of the shaker foot to the center of the waveguide 

was actually 220.7 cm. The actual distance from the surface of the sand to the bottom 

edge of the waveguide was 1.9 cm. The power meter on the radar read -29.9 dBm (+/- 

0.4 dBm) when it was raised to z = 30 cm on the positioner and microwave scattering 

foam was placed under the waveguide. The power meter read +0.16 dBm at the actual 

position where the data was taken. 
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The sand was watered down, compacted, and allowed to dry for one hour and five 

minutes prior to beginning the data collection. 10 scans (amplitudes 0.30 - 0.66) were 

completed before pausing to rewater and recompact the sand. Prior to starting again, the 

radar power was checked. It was -28.15 dBm (+/- 0.1 dBm) at z = 30 cm over the foam 

and +2.29 dBm (+/- 0.01 dBm) at the measuring position. Five more scans (amplitudes 

0.06 - 0.22) were completed before the rewatering and recompacting procedure was once 

again performed. At this point the radar power meter read -27.5 dBm (+/- 0.1 dBm) at z 

= 30 cm over the foam and -0.14 dBm (+/- 0.01 dBm) at the measuring point. This time 

four scans (amplitudes 0.26 and 0.70 - 0.78) were completed before reconditioning the 

sand. The radar power meter then read -25.15 dBm (+/- 0.1 dBm) at Z = 30 cm over the 

foam and +0.96 dBm at the measuring point. From this point on, the data collection had 

to be stopped after every scan (amplitudes 0.82 - 0.98) in order to compact under the 

shaker foot because the amplitude was such that the shaker foot was burying itself in the 

sand. 

Throughout the entire process described above, calibration scans were taken 

before and after each data collection scan. These calibration scans were conducted in an 

identical manner to those described in Phase I of the data collection. 

Results 

As mentioned in Chapter IV, the reoccurring problems with the data were the 

increasing noise floor as amplitude increased, the erratic ends of the amplitude response 

curves as the shaker buried or was moved, and not enough amplitudes measured to 
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produce a smooth curve beginning in the linear region near the noise floor and increasing 

to saturation. 
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APPENDIX B 

ADDITIONAL FREQUENCY RESPONSE GRAPHS 

This appendix contains a complete set of data for one of the frequency response 

measurements. The five figures come from the second iteration of the second frequency 

response test. This data was taken on Gain Setting 1. Figure B.l shows the fundamental 

and four harmonics taken at x = 10 cm. The five graphs in this figure show the results for 

the following five amplitudes: 0.5 V, 1.0 V, 2.0 V, 4.0 V, and 8.0 V. Figures B.2 

through B.5 show data taken at x = 20 cm, 40 cm, 80 cm, and 160 cm respectively. The 

same five amplitudes were used in each of these figures. 

112 



10' • 

|io2 

c 
o 

iio1 

"5. 

— Fund 
— Harml 
  Harm 2 
— Harm 3 
— Harm 4 

810° 

IQ-' 

Iff' 

10J 

!ioJ 

c 
o 

iio1 
c 
a 

5 
810° 
n 
5 

C/3 

10" 

"ir sili' sir       «    ^.     "-..    ..       \<\ H   I"1 ! 

10' «(c) 

10' 

iio2 

c o 

S101 

a 
D 
8100 

3 
CO 

^V--:,    \ir\. 

10' 

10' 

"'.«•V!:;- I 

(d) * fli  i fill 
500 1000 

Frequency (Hz) 
1500 2000 

Figure B.l - Frequency Response Test 2 
(Gain Setting 1), Second Iteration: 
Fundamental and 4 Harmonics at x = 10 
cm (a)Amplitude = 0.5V(b)Amplitude = 
1.0V(c) Amplitude = 2.0 V(d) Amplitude 
= 4.0V(e)Amplitude = 8.0V 

1000 
Frequency (Hz) 

2000 

113 



I.JI"« i'C     :  \A 

10' M 
1      i} i tu? <\ 

1000 
Frequency (Hz) 

Figure B.2 - Frequency Response Test 2 
(Gain Setting 1), Second Iteration: 
Fundamental and 4 Harmonics at x = 20 
cm (a)Amplitude = 0.5V(b)Amplitude = 
1.0V(c) Amplitude=2.0 V(d) Amplitude 
= 4.0 V (e) Amplitude = 8.0 V 

500 1000 
Frequency (Hz) 

1500 2000 

114 



10* 

Iio: 

c 
« 

8101 

810" 
o 

3 
w 

10"1 

c 

iio1 
(3 

Q 

810" 

5 
w 

10" 

10 

r/*>.V 

:  if 

li 

<ty ^\ hA/iv IAMKA/IH 

1000 
Frequency (Hz) 

2000 

Figure B.3 - Frequency Response Test 2 
(Gain Setting 1), Second Iteration: 
Fundamental and 4 Harmonics at x = 40 
cm (a)Amplitude = 0.5V(b)Amplitude = 
1.0 V(c) Amplitude = 2.0 V(d) Amplitude 
= 4.0 V(e) Amplitude = 8.0 V 

1000 
Frequency (Hz) 

2000 

115 



20-00 

Figure B.4 - Frequency Response Test 2 
(Gain Setting 1), Second Iteration: 
Fundamental and 4 Harmonics at x = 80 
cm (a)Amplitude = 0.5 V(b)Amplitude = 
1.0V(c) Amplitude=2.0 V(d) Amplitude 
= 4.0 V(e) Amplitude = 8.0 V 

1000 
Frequency (Hz) 

116 



c 
e 

ilO1 

D. 

810 
E t 
3 

W 

\r%\ 
w|j|^/w^v 

2000 

Figure B.5 - Frequency Response Test 2 
(Gain Setting 1), Second Iteration: 
Fundamental and 4 Harmonics at x = 160 
cm (a)Amplitude=0.5 V(b)Amplitude = 
1.0 V (c) Amplitude = 2.0 V (d) Amplitude 
= 4.0 V(e) Amplitude = 8.0 V 

1000 
Frequency (Hz) 

2000 

117 



APPENDIX C 

ADDITIONAL AMPLITUDE RESPONSE GRAPHS 

This appendix contains a complete set of data for one of the amplitude response 

measurements. The five figures come from the second iteration of the fifth amplitude 

response test. This data was taken on Gain Setting 1. Figure C.l shows four harmonics 

normalized by the fundamental at x = 10 cm. The five graphs ((a) - (e)) are the data 

taken for 99 Hz, 198 Hz, 396 Hz, 792 Hz, and 1584 Hz respectively. Figures C.2 through 

C.5 show the same information for x = 20 cm, 40 cm, 80 cm, and 160 cm respectively. 
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APPENDIX D 

MATLAB CODE 

This appendix contains some of the MATLAB code used to process the data 

during Experiment Two. Program 1 is an example of how the Lab VIEW files were read 

into MATLAB for the frequency response graphs and how they were broken into 

subgroups and saved as *.mat files. Program 2 is an example of how the saved *.mat 

files were used to plot five different positions on a graph of displacement versus 

frequency for a given amplitude. Program 3 is an example of how plots were generated 

of displacement versus frequency for the fundamental and five harmonics at a given 

position and amplitude. 

In addition to the program examples contained in this appendix, programs were 

written to plot five different amplitudes on a graph of displacement versus frequency for 

a given position, plot the fundamental (with or without a comparison to a second 

experiment) at a given position and amplitude, plot the fundamental and harmonics 

normalized by the drive signal at a given position and amplitude, and plot the harmonics 

normalized by the fundamental at a given position and amplitude. The same types of 

programs were written to process the accelerometer data. All of these above mentioned 

programs were written for four different frequency response data sets. Similar programs 

were also written for the amplitude response data. 
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Program 1 

% This program takes a transfer {unction measurement and breaks all of the data into five 
% matrices (amplitude groups) for the six .bin files saved. 

% FIRST TRANSFUN MEASUREMENT 

clear all 

",'a Open and read files 
pathrume-strc<c:\bIace\daunies\F20000126-145314V); 
fileF=strcat(palhname,,parameters.bin'); 
fileG=strcat(pathriame,'fund_harm.bin'); 

fileH=strcal(pathnarne>'noise.bin,)°. 
fileJ=strcat(pathname,'acceI_A.bin'); 
fileK-=strcal(palhname,'acctl_B.bin'); 
fileL=strcat(palhname,,accel_noise.bin'); 
fidF=fopen(fileF,Y,'ieee-be'); 
fidG^openCfileG.V.'ieee-be'); 
fldH=fopen(fileH,'r7ieee-be•); 
fidJ=fopen(fileJ,V,,ieee-be'); 
fidK=fopen(fileK,V,'ieee-be'); 
fidL=fopen(fi]eL,'r7ieee-be'); 
F=fread(fidF,,float32'); 
G=fread(fidG,,fioat32'); 
H=fread(fidH,,noat32'); 
J=fread(fidJ,Tioat32'); 
K-freadCfidJCfloam1); 
L^eadCfidUTloam1); 

% Initialize matrices 
parameters0_5(l :5400,1}=0; 
parametersl~0(l :5400,1)=0; 
parameters2~0(l :5400,1)=0; 
parameters4_0(l:5400,l)=0; 
parameters8J)(l :5400,1 )=0; 
fund_harm0_5(l:21600,l)=0; 
fundjurml 0(1:21600,1)=0; 
fund_harm2~0(l:21600,l)=0; 
fund_harm4_0(l :21600.1 >=0; 
fund_haim8 O(l:21600,l)=0; 
noiseO 5(1:H>800,1)=0; 
noiser0(l:10800,l)=0; 
noise2~0(l:10800,l)=0; 
noise4_0(l:10800,l)=0; 
noise8_0(l:10800,l)=0; 
accel_A0 5(1:10800.1)=0; 
accel_Al_0(l:10800,l)=0; 
accel_A2 0(1:10800,1)=0; 
accel_A4~0(l:10800.1)=0; 
accel A8_0(l:10800,l)=O; 
accel~B0 5(l:10800,l)=O; 
accel_Bl 0(1:10800,1)=0; 
accel B2 0(1:10800,1)=0; 
accel~B4~0(l:10800,l)=O; 
accefB8 0(1:10800,1)=0; 
accel noüeO_5(l:10800,l)=0; 
accefnoisel_0(l:10800,l)=0; 
accel noise2_0(l:10800,l)=0; 
accefnoise4_0(l :10800,1 )=0; 
acceI_noise8 J)(l: 10800,1 )=0; 

% Load matrices by amplitude 
parameters0_5(l:1080.1)=F(l:1080,l); %x=10 
parameters0_5(1081:2160,l)=F(5401:6480.1); %x=20 
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parametos0_5(2161:3240,l)=F(10801:l 1880,1); %x=40 
parametCTsO_5(3241:4320,l)=F(16201:17280,l); %x=80 
parameter^ 5(4321:5400,1)=F(21601:22680,1); <5i\-=160 
parametOTrO(l:1080,l)=F(1081:2160,l); %\-=10 
parametasl~0(1081:2160,l)=F(6481:7560,l); %x=20 
paramet«sl_0(2161:3240,l)=F(l 1881:12960,1); %x=40 
parametasl 0(3241:4320,1)=F(17281:18360,1); %x=80 
parameterero(4321:5400,l)=F(22681:23760,l); "/ix=160 
parametCTs2J>(l:1080,l)=F(2161:3240,l); %x=10 
parameter^ 0(1081:2160,1)=F(7561:8640,1); %x=20 
paramet«52~0(2161:3240,l)=F(12961:14040,l); %v=40 
parameter 0(3241:4320,1)=F(18361:19440,1); %x=80 
pararoetere2J)(4321:5400,l)=F(23761:24840,l); %x=160 
parametos4 0(1:1080,1)=F(3241:4320,1); °/ix=10 
parameters4~0(1081:2160,l)=F(8641:9720,l); "iix=20 
parameten4_0(2161:3240,l)=F(14041:15120,l); %x=40 
parameten>4_0(3241:4320,l)=F(19441:20520,l); %x=80 
parameter^ 0(4321:5400,1)=F(24841:25920,1); ^x=160 
parameters? J)(1:1080,1)=F(4321:5400,1); %\-=10 
parametsrs8_0(1081:2160,l)=F(9721:10800,l); "üx-20 
pararnetirs8_0(2161:3240,l)=F(15121:16200,l); %x=40 
parametCTs8_0(3241:4320,l)=F(20521:21600,l); %\"=80 
parametosS 0(4321:5400,1)=F(25921:27000,1); °ix=160 
fund_hann0~5(l:4320,l)=G<l:4320>l); %x=10 
fund_harm0_5(4321:8640,l)=G(21601:25920,l); %x=20 
fund harmO 5(8641:12960,1)=G(43201:47520,1); %x=40 
fbnd~harm0~5(12961:17280,l)=G(64801:69120,l); %x=80 
fund_harmO_5(17281:21600,l)=G(86401:90720,l); %x=160 
fund_harml 0(1:4320,1)=G<4321:8640,1); %x=10 
fund_hamil_0(4321:8640,l)=G(25921:30240,l); %x=20 
rund_harml_0(8S41:12960,l)=G(47521:51840,l); %.v=40 
fundjiarml 0(12961:17280,1)-G(69121:73440,1); %x=80 
fund_harmrO(17281:21600,l)=G<90721:95040>l); %x=160 
fund_harm2_0(l:4320,l)=G(8641:12960,l); %x=10 
fund_harm2_0(4321:8640,l)=G(30241:34560)l); %\-=20 
fund harm2_0(8641:12960,l)=G(51841:56160,l); %x=40 
fund~hann2_0(12961:17280,l)=G(73441:77760,l); %\"=80 
fund_harm2_0(17281:21600,l)=G<95041:99360,l); °.ix=160 
fund_harm4 0(1:4320.1)=G<12961:17280>1); %x=10 
fund_harm4~0(4321:8640,l)=G(34561:38880,l); %x=20 
fund_harm4~0(8641:12960,l)=G(56161:60480,l); %x=40 
rund_harm4_0(12961:17280,l)=G<77761:82080,l); %x=80 
fund_harrn4_0(17281:21600,l)=G(99361:103680,l); %x=160 
fund harm8_0(l:4320,l)=G(17281:21600,l); %x=10 
fund2harm8_0(4321:8640,l)=G<38881:43200,l); %x=20 
fund_harm8_0(8641:12960,l)=G(60481:64800,l); %x=40 
fund_harm8 0(12961:17280,1)=G<82081:86400,1); %x=80 
fjnd_harm8~0<17281:21600,l)=G(103681:108000,l); %x=160 
noiseO 5(1:2160,1)=H(1:2160,1); %x=10 
noiseO~5(2161:4320,l)=H(10801:12960,l); %x=20 
noiseO_5(4321:6480,l)=H(21601:23760,l); %x=40 
noiseO 5(6481:8640,1)=H(32401:34560,1); %x=80 
noiseO~5(8641:10800,l)=H(43201:45360,l); %x=160 
noisel~0(l:2160,l)=H(2161:4320,l); %x-10 
noisel~0(2161:4320,l)=H(12961:15120,l); %x=20 
noisel 0(4321:6480,1)=H(23761:25920>1); %x=40 
noisero(6481:8640,l)=H(34561:36720,l); "^80 
nobel~0(8641:10800,l)=H(45361:47520,l); %x=160 
noise2 0(1:2160,1)=H(4321:6480,1); %x=10 
noise2J)(2161:4320,l)=H(15121:17280,l); %x=20 
noise2_0(4321:6480,l)=H(25921:28080,l); %x=40 
noise2_0(6481:8640,1)=H(36721:38880,1); %x=80 
noise2_0(8641:10800,l)=H(47521:49680,l); %x=160 
noise4_0(l:2160,l)=H(6481:8640,l); %x=10 
nobe4_0(2161:4320,l)=H(17281:19440,l); %x=20 
noise4 0(4321:6480,1)=H(28081:30240,1); %x=40 
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noise4_0(6481:8640,l)=H(38881:41040,l); '/.x=SO 
noise4 0(8641:10800,1)=H(49681:51840,1); %x=160 
noise8~0(l:2160.1)-H(8641:10800.1); %x=10 
nolse8 0(2161:4320.1)=H(19441:21600,1); %x=20 
noise8~0(4321:6480,l)=H(30241:32400,l); c/i.v=40 
noise8~0(6481:8640,l)=H(41041:43200,l); %x-80 
noise8~0(8641:10800,l)-H(51841:54000,l); %x=160 
accel AO 5(1:2160,1)=J(1:2160,1); %x-10 
accel AO 5(2161:4320,1)=J(10801:12960,1); %x=20 
accefA0_5(4321:6480,l)=J(21601:23760,l); %x=40 
accefAO~5(6481:8640,l)=J(32401:34560>l); %x=80 
aicerA0[5(8641:108O0,l)=J(43201:453601l); '/ox-160 
accel~Al_0(l:2160,l)=J(2161:4320,l); V>x=10 
accel Al 0(2161:4320,1)=J(12961:15120,1); %x=20 
a^efAr0(4321:6480,l)=J(23761:25920,l); %x=40 
iccefAr0(6481:8640,l)=J(34561J6720,I); %x=80 
accefAr0(8641:10800,l>=J(4J361:47520>l); %x=160 
accef A2 0(l:2160,l)=J(432I:6480.I); %x=10 
accef A2~O(2161:4320,l)=J(15121:17280.1); %x=20 
accel A2~0(4321:6480,1)=J(25921:28080,1); %x-40 
accefA2_O(6481:8640,l)=J(36721:38880,I); "Ux-SO 
accel A2_0(8641:10800,1)=J(47521:49680,1); %x=160 
accef A4 0(1:2160,1)=J(6481:8640,I); %x=10 
accel A4J)(2161:4320,1)=J(17281:19440.1); %x=20 
accef A4 0(4321:6480.1)=J(28081:30240,l); %.v=40 
accel A4~0(6481:8640,1)=J(3S881:41040,1); "iix-80 
accefA4~O(8641:1080O,lH(49681:51840.1); ^ix=160 
accel_A8~0(l:2160,l)=J(8641:10800,l); %\"=10 
accel_A8~0(2161:4320.1>=J(19441:21600,l); %X"=20 
accel_A8_0(4321:6480,l)=J(30241:32400.1); °.i.v=40 
accel A8_0(6481:8640,l)=J(41041:43200,l); %x=80 
accefA8_O(8641:10800,l)=J(51841:54000,l); »,ix-160 
accel_B0_5(l:2160,l)=H(l:2160,l); %x=IO 
accel_BO 5(2161:4320,1)=K(10801:12960.1); °/ix=20 
accel_BO~5(4321:6480,l)=K(21601:23760,l); :»x^O 
accel_BO 5(6481:8640,1)=K(32401:34560,1); "üx-80 
accel_BO~5(8S41:10800,l)=K(43201:45360,l); %x=160 
accil_Bl~0(l:2160,l)=K(2161:4320,l); lix=10 
accel B1J)(2161:4320,1)=K(12961:15120,1); °-ix=20 
accef B1_0(4321:6480,1)=K(23761:25920.1); %x-=40 
accel_Bl 0(6481:8640,1)=K(34561:36720,1); %x=80 
accel B1~0(8641:10800,1)=K(45361:47520,1); %x«160 
accef B2_0(1:2160,1)=K(4321:6480,1); ?iv-10 
accel_B2 0(2161:4320,1)=K(15121:I7280,1); %x=20 
accel_B2~0(4321:6480,l)=K(25921:28080,l); «/ijc=40 
accel_B2~0(6481:8640,l)=K(36721:38880,l); %x=80 
accel_B2 0(8641:10800,1)=K(47521:49680,1); »,ox-=160 
accel_B4~0(l:2160,l)=K(6481:8640,l); %x=10 
accel B4~0(2161:4320,1)=K(17281:19440,1); %x=20 
accef B4_0(4321.-6480,1 )=K(2808130240,1); */ix=40 
accel_B4 0(6481:8640,1)=K(38881:41040,1); %x>=80 
accel_B4~0(8641:10800,l)=K(49681:51840.1); %x=160 
accel B8_0(1:2160.1)=K(8641:10800,1); Vox-10 
accefB8_0(2161:4320,1)=K(19441:21600,1); %x=20 
accel B8 0(4321:6480,1)=K(30241:32400.1); o/ix=40 
accef B8~0(6481:8640.1)=K(41041:43200,I); %x=80 
accel_B8 0(8641:10800,1)=K(51841:54000,1); •,ix=160 
accel_nobeO 5(1:2160,1)=L(1:2160.1); *-«x=10 
accel noiseO 5(2161:4320.1)=L(10801:12960,1); %x=20 
accefnoiseOl3(4321:6480,l)=L(21601:23760,l); %x=40 
accel noiseO_5(6481:8640,l)=L(32401:34560,l); %x=80 
accefnoiseO_5(8641:10800.1)=L(43201:45360,l);       %x=160 
accefnoisel 0(1:2160,1)=L(2161:4320,1); %x=10 
accef noisefo(216l:4320.1>=L(12961:15120,l); %x=20 
accel noisel_0(4321:6480,l)=L(23761:25920,l); %x=40 
accefnoisel_0(6481:8640,l)=L(34561:36720,l); %x=80 
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accel noisel_0(8641:10800,l)=L(45361:47520,l); %x=160 
accefnoise2 0(1:2160,1)=L(4321:6480,1); %x=10 
acce! noise2~0(2161:4320,l)=L(15121:17280,l); %x=20 
accefnoise2 0(4321:6480,1)=1<25921:28080,1); «,ix=40 
accel"noise2~0(6481:8640,1)=L(36721:38880,1); %x=80 
accefnoise2~0(8641:10800,1 )=L(47521:49680.1); °/ix= 160 
accefnoise4~0(l:2160,l)=L(6481:8640,l); %x=10 
accefnoise4~0(2161:4320,l)=L(17281:19440,l); %x=20 
accel_nobe4~0(4321:6480,l)=L(280Sl:30240,l); "/ix=40 
accel_noise4 0(6481:8640,1)=L(38881:41040,1); %x=80 
accel noise4~0(8641:10800,l)=L(49681:51840>l); %x=160 
accefnoise8~0(l:2160,l)=L(8641:10800>l); %x=10 
accefnoise8 0(2161:4320,1)=L(19441:21600,1); %x=20 
accef noise8~0(4321:6480,l)=L(30241:32400,l); %x=40 
accefnoise8_0(6481:8640,l)=L(41041:43200>l); %x=80 
accel_nois«8_0(8641:10800,l)=L(51841:54000,l); %\-=160 

% Save matrices as .mat files 
save parameters0_5 1 parameters0_5; 
saveparametersl_01 parametersl_0; 
save parameters2_01 parameters2_0; 
saveparameters4_01 parameters4_0; 
saveparameters8_01 parameters8_0; 
save fund_harm0_51 fund_harm0_5; 
save fund_harml_01 ftind_harml_0; 
save fund_harm2_01 fund_harm2_0; 
save fiind_harm4_01 fund_harm4_0; 
savefund_harm8_01 fund_harm8_0; 
save noiseO_51 noiseO_5; 
save noisel_01 noisel_0; 
save noise2_01 noise2_0; 
save noise4_01 noise4_0; 
save noise8_01 noise8_0; 
save accel_A0_51 acce!_A0_5; 
save accel_Al_01 accel_Al_0; 
save acceI_A2_01 accel_A2_0; 
save accel_A4_01 accel_A4_0; 
saveaccel_A8_01 accel_A8_0; 
save accel_B0_51 accel_B0_5; 
saveaccel_Bl_01 accel_Bl_0; 
saveacce]_B2_01 accel_B2_0; 
save accel_B4_01 accel_B4_0; 
save accel_B8_01 accel_B8_0; 
save accel_noise0_51 accel_noiseO_5; 
saveacce!_noisel_01 accel_noisel_0; 
save acce!_noise2_01 accel_noise2_0; 
save accel_noise4_01 accel_noise4_0; 
save accel noise8 01 accel_noise8_0; 
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Program 2 

% This program will ask for an amplitude and call up the appropriate transfer function data. 
% It will then plot the five different positions for that amplitude on the same graph. 

displ freql0_fund(l:1801l)=0: 
dispffreq20_fund(l:180,l)=0: 
displ_freq40_fund( 1:180, l)=0 
displ_freq80~fund( 1:180,1 )=0 
displ_freql6Ö_fund(l:180,l)=0; 
freqlO(l:180,T)=0; 
freq20(l:180,l)=0; 
freq40(l:180,l)=0; 
freq80(l:180,l)=O; 
freql60(l:180,l>=0; 

ifexistCiteration')==0 
iteration=input£lst or 2d iteration (type "1" or "2"): '.'sj, 

end; 
if ileration==T 

ifexist('amplitude')==0 
amplitude=ir.putCAmplitude (enter 3 char): '.V); 

end; 
if amplitude=='0.5' 

load parameters0_51; 
load fund_harm0_51; 
loadnoiseO_51; 
load accel_A0_51; 
loadaccel_B0_51; 
load accel_noiseO_51; 
% Combine real and imaginary parts of displ_frtq 
•^FUNDAMENTAL 
forloop2=0:179 
displ_freql0_fund((Kloop2),l)=fund_harm0_5((13-loop:,24),l)-i,fund_harm0_J((14-loop2,24).l); 

di< 
di: 
dii 
end 
% Write out frequencies recorded 
freql0(l:180,l)=parameters0_5((3:6:1080),l); 
freq20(l: 180,1 )=parameter50_5(( 1083:6:2160), 1); 
freq40(l:180,l)=parameters0_5((2163:6:3240).l); 
freq80(l:180,l)=parameters0_5((3243:6:4320),l); 
freql60(l:180,l)=parameters0_5((4323:6:5400),l); 

else if amplitude—'1.0' 
load parameters 1_01; 
load fund_harml_01; 
loadnoisel_01; 
loadaccel_Al_01; 
loadaccefBMH; 
load acce!_noise 1 _01; 
% Combine real and imaginary parts of displ_freq 
VoFUNDAMENTAL 
forloop2=0:179 ,     ..... 
displ freql0_fund((l+Ioop2),lHund_harml_0((13+loop2'24),l)+i'fund_harml_0((14+loop2'24),l); 
displ_freq20_fund((l+loop2),lHund_harml_0((4333+loop2,24),l>+i'fund_harml_0((4334+Ioop2«24),l); 

end 
% Write out amplitudes recorded 
freql0(l:180,l>=parametersl_0((3:6:1080),l); 
freq20(l:180.1)=parametersl~0((1083:6:2160),l); 
freq40(l:180,l)=parametersl_0((2163:6:3240),l); 
freq80(l:180,l)=parametersl_0((3243:6:4320),l); 
freql60(l:180,l)=parametersl_0((4323:6:5400),l); 

elseif ampl itude==7.0' 
load parameters2_01; 
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load fund_harm2_01; 
loadnoise2_01; 
load accel_A2_01; 
loadaccel_B2~01; 
load accel_noise2_01; 
% Combine real and imaginary parts of displ_freq 
%FUNDAMENTAL 
forlooP2=0:179 
displ freqlO Rind((l+loop2),l)=rund harm2 0((13+loop2,24),l)+i'rund_harm2_0((14+loop2*24),l); 
displ freq20_rund((l+l(»p2)J)=rund~kinrJ_0((4333+Ioop2'24)J)+i,rund>arrn2_0((4334+loop2«24),l); 
displ fre<j40"rund((l+loop2)>l)=fund harm2_0((8653+loop2,24),l)+i*rund_harm2_0((8654+loop2*24),l); 
dispffreq80"rund((l+loop2),l)^nd~hanra_0((12973+loop2'24)J)+i'rund_rüiLrm2_0((12974+loop2*24),l); 
displ_fr:ql6Ö>nd((l+loop2)J)=*nd_hann2_0((17293+l(X)p2'24),l)+i'rund_harm2_0((17294+Ioop2,24),l); 

end 
% Write out amplitudes recorded 
freql0(l:180,l)=parameters2_0((3:6:1080),l); 
freq20(l:180,l)=parameters2_0((1083:6:2160),l); 
freq40( 1:180,l)=parameters2_0((2163:6:3240), 1); 
freq80(l:180,l)=parameters2_0((3243.-€:4320),l); 
freql60(l:180,l)=parameters2_0((4323:6:5400),l); 

e!seifamplitude=,4.0' 
load parameters4_01; 
load fund_harm4_01; 
loadnoise4_01; 
loadaccel_A4_01; 
loadaccel_B4_01; 
load accel_noise4_01; 
% Combine real and imaginary parts of displ_freq 
%FUNDAMENTAL 
forloop2=0:179 
displ freql0_fund((l+loop2),l)=fund_harm4_0((13-loop2*24),l)+i,fund_harm4_0((14^1oop2,24),l); 
displ freq20_fund((l+Ioop2),l)=fund_hami4_0((4333^1oop:*24).l)-i,fand_harm4_0((4334-loop2'24),l); 
dispffreq40_fund((l+loop2).l)=fund_harm4 0((S653^Ioop2'24),lhi'fund_harm4_0((8654+loop2'24),l); 
displ freqSO fund((l+loop2),l)=fijnd harm4_0((12973-rloop2'24),l)^i'fund_harm4_0((12974-loop2'24).l); 
dispffreql6Ö>nd((l+loop2),l)^nd_harm4_0((17293+loop2'24)J)-i«fund_harm4_0((17294Moop2'24),l); 

end 
°i Write out amplitudes recorded 
freql0(l:180,l>=parametCTs4_O((3:6:1080),l); 
freq20(l:180,l)=pararneters4_0((1083:6:2160),l); 
freq40(l:180,l)=parameters4_0((2163:6:3240),l); 
freq80(l:180,l)=parameters4_0((3243:6:4320),l); 
freql60(l:180,l)=parameters4_0((4323:6:5400),l); 

elseif amplitude='8.0' 
load parameters8_01; 
load fund_harm8_01; 
loadnoise8_01; 
loadaccel_A8_01; 
loadaccel_B8_01; 
load accel_noise8_01; 
% Combine real and imaginary parts of displ_freq 
^FUNDAMENTAL 
forlcop2=0:179 ,       
displ freqlO rund((l+loop2),l>=rund_harm8_0((13+loop2*24),l)+i'rund_harrn8_0((14+loop2'24),l); 
dispffreq20>nd((l+loop2),l)=rund harm8_0((4333+loop2'24),l)^i'rund_harrn8_0((4334+loop2*24),l); 
displ freq40 rund((l+loop2),l)=fund_harm8_0((8653+loop2*24).l)+i'fund_harm8_0((8654+Ioop2'24),l); 
dispffreq80_rund((l+loop2)J)^nd_harm8_0((12973+l(X>p2«24),l)+i'fund_harm8_0((12974-rloop2'24),l); 
displ>eql6Ö>noX(l+lcoP2)J)^nd_harm8_0((17293+Ioop2'24),l)+i'rund_harm8_0((17294+loop2'24),l); 

end 
% Write out amplitudes recorded 
freql0(l:180,l>=parametrrs8_0((3:6:10S0),l); 
freq20(l:180,l)=parameters8_0((1083:6:2160),l); 
freq40(l:180,l)=parameters8_0((2163:6:3240),l)-, 
freq80(l:180,l)=parameters8_0((3243:6:4320),l); 
freql60(l:180,l)=parametersl_0((4323:6:5400),l); 

end; 

elseif iteration=="2' 
if existCamplitude')==0 

amplitude=input<'Amplitude (enter 3 char): '.V); 
end; 
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ifamplitude=="0.5' 
load parameters0_52; 
load fund_harm0_52; 
load noiseO_J2; 
load accel_A0_32; 
load accef B0~52; 
load accel_noiseO_52; 
% Comb'ine real and imaginary parts of displ_freq 
%FUNDAMENTAL 
forloop2-0:179 
displ_freqlO fiind((l+loop2),lHund_harm0_5((13+loop2,24),l)+i,njnd_harm0_5((14+loop2,24),l); 
displ_freq20lfund((l+loop2),lHund_harm0_5((4333+loop2,24),l)+i,ftind_harni0_5((4334+loop2,24),l); 
displ_freq40_funo^(l+loop2),l)=fund~harm0_5((8653+loop2,24),l)+i,ftind_harm0_5((8654+loop2,24),l); 
displ_freq80 fund((l+loop2)JHund~harm0_5((12973+loop2,24Xl)+i,fiind_harm0_5((12974+loop2,24),l); 
displ_freql60_fund((l+loop2)J)=*nd_hajm0_5((17293+loop2,24),l)+i,njnd_harm0_5((17294+loop2,24),l); 

end 
% Writ« out frequencies recorded 
freql0(l:180,l)=paramet£rs0_5((3:6:1080),l); 
freq20(l:180,l)=paramelers0_5((1083:6:2160),l); 
freq40(l:180J)=pararnetersO_5((2163:6:3240),l); 
freq80(l:180,l)=parameters0~5((3243:6:4320),l); 
freql60(l:180,l)=parametersÖ_5((4323:6:5400),l); 

e!seifamplitude='1.0' 
load parametersl_02; 
load fund_harml_02; 
load noisel_02; 
load acceI_Al_02; 
loadacceI_Bl_02; 
load accel_noisel_02; 
% Combine real and imaginary parts of disp!_freq 
%FUNDAMENTAL 
forloop2=0:179 
displ_freql0_fund((l+loop2)J)=fund_harml_0((n^lc)op:,24).l)^i,fund_harml_0((14*loop2*24),l); 
displ_freq20 fund((l+Ioop2),l)=fund_harml 0((4333-loop2,24),l)-i*fund_harml_0((4334^1oop:,24),l); 
displ_freq40~ründ((l+loop2)J)=fond_harml~0((8653iloop2,24),l)+i*fund_harml_0((8654^1oop2,24).l); 
displ_freq80_funoX(l+loop2)J)=fond_harrnl_0((12973-rlc>op:,24).l)^i,rund_harml_0((12974-loop2,24),l); 
displ_freql60_fund((l+loop2),l)=fund_harml_0((17:93-loop2'24),l)-i,fand_harml_0((17294-loop2,24),l); 

end 
% Write out amplitudes recorded 
freqlO(l:180,l)=pa.-ametersl_0((3:6:10SO),l); 
freq20(l:180.1)=parametersl_0((1083:6:2160).l); 
freq40(l:180,l)=parametersl_0((2163:6:3240),l); 
freq80(l:180,l)=parametersr0((3243:6:4320),l); 
freql60(l:180,l)=pirametersl_0((4323:6:5400),l); 

elseifamplitude==7.0' 
load parameters2_02; 
load fund_harm2_02; 
load noise2_02; 
load accel_Ä2_02; 
load accel_B2_02; 
load accel_noise2_02; 
% Combine real and imaginary parts of displjreq 
%FUNDAMENTAL 
forloop2=0:179 
displ_freqlO rund((l+loop2)J)=*nd_harm2_0((13+loop2,24),iyi-i*fund_harm2_0((14+loop2,24),l); 
displ_freq20~fund((l+loop2),lHund harm2 0((4333+loop2,24),l)+i'fund_harm2_0((4334+Ioop2,24),l); 
displ_freq40~fund((l+loop2)J)^nd_hanra_0((8653+l<X)p2'24),l)+i'fund_harm2_0((8654+Ioop2,24),l); 
displ_freq80~fund((l+loop2),l)=fund harm2_0((12973+loop2,24),l)+i'fund_harm2_0((12974+loop2'24).l); 
displ_freq 16Ö_fund((l+loop2), 1 )=fund_harm2_0(( 17293+loop2 *24), 1 )+i'fund_harm2_0(( 17294 -Moop2 ,24),1); 
end 
% Write out amplitudes recorded 
freql0(l:180,l>=parameters2_0((3:6:1080),l)-. 
freq20(l:180,l)=paramet«"2_0((1083:6:2160),l); 
freq40(l:180,l)=parameters2_0((2163:6:3240),l); 
freq80(l:180,l)=parameters2_0((3243:6:4320),l); 
freql60(l:180,l)=parameters2_0((4323:6:5400),I); 

elseif amplitude=='4.0' 
load paramelers4_02; 
load fund_harm4_02; 
load noise4 02; 
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load accel_A4_02;   
load acceI_B4_02; 
load accel_noise4_02; 
% Combine real and imaginary parts of displjreq 
%FUNDAMENTAL 
forloop2=0:179 
displ freql0_rund((l+loop2)J)=fund_harm4_0((13+loop2»24).l)+i,fund_harm4_0((14+loop2,24),l); 
dispffreq20_rund((l+loop2),lHund_harm4 0((4333+loop2»24),l)+i,rund_harm4_0((4334+loop2'24),l); 
dispffreq40 funoX(l+lo<^2),l)^nd_harm4_0((8653+loop2*24),l)+i,ründ_harrn4_0((8654+loop2,24),l); 
dispffreq80~fund((l+loop2)J)=*nd_harm4_0((12973+loop2,24),l)+i,fund_harm4_0((12974+loop2'24),l); 
displ>eql60>nd((l+loop2)JHund_harrn4_0((17293+loop2,24),l)+i'fund_harm4_0((17294+loop2'24),l); 

end 
% Write out amplitudes recorded 
freql0(l:180,l)=paramet£rs4_0((3:6:1080),l); 
freq20(l:180,l)=parameters4~0((1083:6:2160),l); 
freq40(l:180,l)=parameters4_0((2163:6:3240).l); 
freq80(l: 180,1 )=parameters4_0((3243:6:4320), 1); 
freql60(l:180,l)=parameters4_0((4323:6:5400),l); 

elseif amplitude=='8.0' 
load parameters8_02; 
load fund_harm8_02; 
load noise8_02; 
load accel_Ä8_02; 
load accel_B8_02; 
load acce!_noise8_02; 
% Combine real and imaginary parts of displ_freq 
^FUNDAMENTAL 
forloop2=0:179 ,      „ „„,, 
displ_freql0>nd((l+loop2),l)=fund_harmS_0((13-loop2'24),l)-i'fiind_harm8_0((14^1oop2«24),l); 
displ freq20 fund((l-floop2),l)=fi:nd_harmS_0((4333-loop2':4),l)-i'fund_harm8_0((4334-loop:':4),l); 
dispffreq40"rund((l+loop2),lHund harm8_0((8653-loop2'24),l)^i'fund_harm8_0((8654-loop2«24),l); 
displ freqS0_fund((l+loop2).l)=fund_harm8_0((12973-loop2'24),lhi'fund_harm8_0((12974-loop2'24),l); 
dispffreql60>nd((Kl<x.p2)J)=fund_harm8_0((17293-loop2,24),l)-i'fund_harm8_0((17294-loop2'24),l); 

end 
% Write out amplitudes recorded 
freql0(l:180,l)=parameters8_0((3:6:1080),l); 
freq20(l:180,l)=parameters8_0((1083:6:2160),l); 
freq40(l:180,l)=parameters8_0((2163:6:3240).l); 
freq80(l:180,l)=parameters8_0((3243:6:4320),l); 
freql60(l:180,l)=parameters8_0((4323:6:5400).l); 

end; 
end; 

% Plot results 
figure(l) 
serniIogy(freqlO,abs(displ_freqlO_fund),'-') 
hold on 
semilogy(freq20,abs(displjreq20_fund),'-') 
semilogy(£req40,abs(displ_freq40_fund),'-.') 
semilog><£req80,abs(displ_freq80_fund),':') 
semilogy(freql 60,abs(displ_freql 60_fund),'-') 
titlel=,Displacement vs Frequency"; 
title2-   Amplitude ='; 
title2=strcat(title2,amplitude,'Volts'); 
title3-   Iteration = '; 
title3=strcat(title3,iteration); 
title_data=char({titlel,title2,title3}); 
title(title_data); 
ylabelCDisplacement') 
xlabel(Trequency (Hz)") 
legendCIO cm720 cm','40 cmV80 cm','160 cm") 
hold off 
orient landscape 

figure(2) 
plot(freqlO,abs(displJreqlO_fund),'-') 
hold on 
plot(freq20,abs(displ_freq20_rund),'-') 
plottfi^O.ab^displJJ^OJund),'-.') 
plot(freq80,abs(displ_freq80_fund),':') 
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plot(freq 160,abs<displ_freq 1eOJund),'-1) 
titIel='DispIacementvs Frequency'; 
title2-   Amplitude ■="; 
title2=streat(title2,amplitude,'Volts'); 
title3-   Iteration = "; 
tit!e3=strcal<titIe3,iteration); 
title_chta=char({tillel,title2.title3}); 
title<tit]e_data); 
ylabelCDisplacemenf) 
xlabelCFrequency (Hz)") 
legendCIO cm720 cm','40 cm','80 cm','160 cm") 
hold off 
orient landscape 

figure(3) 
loglog(freqlO,abs(displ_freqlO_fund),'-') 
hold on 
logIog(fieq20,abs{displ_freq20_fund),'-,) 
Ioglog(freq40,abs(displ_freq40_fund),'-.') 
loglog (freq80,abs(displ_freq80_fijnd),':') 
Ioglog(freql60,abs(dispi_freql60_rund),'-') 
title l='DispIaeementvs Frequency"; 
title2-   Amplitude ='; 
tit1^2=strcat(til]e2.amplitud^,'Yolts,); 
tille3=*  Iteration ='; 
title3=su-cat(litle3,iteration); 
tit!e_daU=char({titlel,tille2,tille3)); 
tille(litle_data); 
ylabelCDisplacemenf) 
xlabelCFrequency (Hz)1) 
legendCIO cm',70 cm','40 cm','80 cm'.'160 cm') 
hold off 
orient landscape 
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Program 3 

% This program will ask for an amplitude and a position and call up the appropriate 
% transfer function data. It will then plot the transfer function for that location 
% and amplitude showing the fundamental and five harmonics on the same graph. 

% Initialize matrices 
displ freql0_fund(l:180,l)=0; 
dispffreq20Jund(l:180,l)=0; 
displ freq40Jund(l:180,l)=0; 
dispffreq80Jund(l: 180,1 )=0; 
displ_freql60_fund(l:180,l)=0; 
displ_freql0_harml(l:180,l)=0; 
displ_freq20~harml(l:180,l)=0; 
displ_freq40~hannl(l: 180,1)=0; 
displ freq80~harml(l:180,l)=0; 
dispffreql6Ö_harml(l:180,l)=0; 
dispf freql0_harm2(l:180,l)=0; 
displ_freq20_harm2( 1:180,1 )=0; 
displ_freq40_harm2(l:180,l)=0; 
displ_freq80_harm2(l:180,l)=0; 
displ_freql 60_harm2(l: 180,1)=0; 
displ_freql0_harm3(l:180,l)=0; 
displ_freq20~harm3(l:180,l)=0; 
displ_freq40_harm3(l:180,l)=0; 
displ_freq80~harm3(l:180,l)=0; 
displ_freql 6Ö_harm3(l: 180,1)=0; 
displ freql0_harm4(l:180,l)=0; 
dispf freq20~harm4<l:180.1)=0; 
displ_freq40_harm4( 1:180,1 )=0; 
displ_freq80~harm4(l: 180,1)=0; 
displ_freq 160_harm4{l: 180,1 )=0; 
displ_freql0_harm5(l:180,l)=0; 
displ_freq20_harm5(l:180,l)=0; 
displ_freq40_harm5(l: 180,1 )=0; 
displ_freq80_harm5( 1: 180,1 )=0; 
displ_freql60_harm5(l:180,l)=0; 
freql0(l:180,T)=O; 
freq20(l:180,l)=0; 
freq40(l:180,l)=0; 
freq80(l:180,l)=0; 
freql60(l:180,l)=0; 

if existCiteration")==0 
iteration=input('lst or 2d iteration (t>pe "1" or "2"): ',Y); 

end; 
if iteration==T 

if exist('amplitude')==0 
amplitude=inputCAmplitude (enter 3 char): ',¥); 

end; 
if amplitude=-0.5' 

load parameters0_51; 
load fund_harm0_51; 
loadnoise0_51; 
load accel_A0_51; 
loadaccel_B0_51; 
load accel_noise0_51; 
% Combine real and imaginary parts of displ_freq 
•/•FUNDAMENTAL 
forloop2=0:179 
displJreqlO fund((l+loop2),l)=fünd_harm0_5((13+loop2,24),l)-i-i»fund_harm0_5((14+loop2,24),l); 
displ Jreq20~fund((l+loop2),lHund~harmO 5((4333+loop2,24),l)+i'fund_harm0_5((4334+loop2,24),l); 
displ freq40>nd((l+loop2),lHund_harm0_5((8653+loop2'24),l)+i*fund_harm0_5((8654+loop2'24),l); 
displ freq80 fund((l+loop2),l)=fiind_harm0_5((12973+loop2'24),l)+i'fund_harm0_5((12974+loop2'24),l); 
dUpffreql6Ö_fund((l+loop2),lHund_harrn0 5((17293+loop2,24),l)+i'fund_harm0_5((17294+loop2'24),l); 
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end 
•/.HARMONIC 1 
forloop2=0:179 
displ freqlO_hamil((l+loop2),lHund_hamiO 5((15+loop2,24),l)+i'fUnd_harm0_5((16^1oop2,24),l); 
dispffreq20 harml((l+loop2).l)=fi]nd harmO 5((4335+loop2'24)J)+i,rundJurmO_5((4336+loop2,24),l); 
displ freq40~hamil((l+loop2),lHiind~hanii0_5((8655+loop2,24),l>+i*fijnd_hanm0_5((8656+Ioop2,24),l); 
displ freq80"hamil((l+loop2),lHundIharm0_5((12975+loop2'24),l)+i*fiind_hann0_5((12976+loop2,24),l); 
dispffreql6Ö_hannl((l+loop2Xl)=fiind_hann0_5((17295+loop2'24),l>+i,fund_hann0_5((17296+loop2'24).l); 

end 
•/iHARMONIC 2 
forloop2-0:179 
displ_freqlO_harm2((l+loop2),lHund_haimO J((17+loop2*24),l)+i,fund_harm0_3((18+loop2,24).l); 
displ_fixq20_hann2((l+loop2)1lHund_hann0~5((4337+loop2,24),l)*i,fijnd_hann0_5((4338+loop2,24).l); 
disp1_freq40 harm2((l+Ioop2),l)=fiind harm0_5((8657-rloop2,24).l)+i,iund_hann0_j((8658+loop2,24),l); 
displ freq8(fharm2(( 1 +loop2), 1 )=fund~harmO 5(( 12977+loop2'24), 1 )+i'fund_harmO_5(( 12978+loop2'24). 1); 
dUpffreql60_hann2((l+loop2),l)=fiind_hannÖ_5((17297+loop2,24),l)-ri,fund_hanii0_5((17298+loop2,24),l); 

end 
•.iHARMONIC 3 
forloop2=0:179 
displ_freqlO harm3((l-rloop2).l)=fund harni0_5((19-loop2,24),l)+i,fund_hami0_5((20+loop2,24).l); 
displ freq20~harm3((KlooP2),l)=fiind_hann0_5((4339+loop2':4),l)-i'ftind_hann0_5((4340-loop2'24),l); 
displ freq40_hann3((l+loop2),l>=fiind_hamiO_5((8659-rloop2,24),l)Ti*fiind_hannO_5((8660-rloop2,24),l); 
dispffrtq80_hann3((l+loop2),lHund_hamiO_5((12979-tloop2'24),l)-i'fijnd_hamiO_5((12980*loop2'24),l); 
dispffreql60_hann3((l+loop2),l)=fi;nd_harm0_5((17299+lc)op2'24),l)-i,fund_harm0_5((17300^1oop2'24).l); 

end 
%HARMONIC 4 
forloop2=0:179 
displ freqlO hami4<(l+Ioop2).lHbnd_hannO_5((21fl(X)p2'24).l)+i,fund_hannOJ((:2-loop:'24).l); 
displ_freq20~harm4((l+loop2),l)=njnd harni0_5((4341+loop2,24),l)-i,ftind_harm0_5((4342+loop2'24).l); 
displ freq40 harm4((l-Moop2),l)=fund haim0_5((8661+loop2,24).l)+i,fijnd_harm0_5((8662+loop2,24),l); 
displ freq80~hami4((l+loop2),l)=fiind"hann0_5((12981+loop2'24),lhi,njnd_hann0_5((12982-loop2'24),l); 
disprfreql60_hann4((l+loop2),l)=fund_hami0_5((1730Kloop2'24),lhi*fijnd_hann0_5((17302+loop2'24),l); 

end 
%HARMONIC 5 
forloop2=0:179 
displ_&eqlO_hami5((Kloop2),l)=fiind_hamiO_5((23-loop:,24),l)-i,flind_harmO_5((24^1oop2,24),l); 
displ freq20_harm5((l+loop2),l)=fund_hannO_5((4343T]oop2'24),l)-i'fund_harmO_5((4344-loop2'24),l); 
displ freq40_harm5((l+loop2),l)=fUnd_hann0_$((8663-loop:'24),l)-i'fund_hx-m0_5((S664-loop2'24).l); 
disPrfreq80_harm5((l+loop2),lHund_hamiO_5((129S3-loop2,24),l)-i'fiind_ham10_5((12984+loop2'24),l); 
displ_&eql60_hann5((l+Ioop2).l)=fund_ham10_5((17303+loop2'24).l)-i'ftind_harm0_5((17304-Ioop2'24),l); 

end 
% Writs out frequencies recorded 
freqlO(l:180,l)=parametersO_5((3:6:1080),l); 
freq20(l:180,l)=parametcrs0_5((1083:6:2160),l); 
freq40(l:180,l)=paramelers0_5((2163:6:3240),l); 
freq80(l:180,l)=parameters0_5((3243:6:4320),l); 
freql60(l:180,l)=parameters0_5((4323:6:5400),l); 

elseif amplitude=- 1.0' 
load parameters 1_01; 
load fund_harml_01; 
load noise 1_01; 
loadaccel Al_01; 
load accef Bl_01; 
load accel_noisel_01; 
% Combine real and imaginary parts of displ Jireq 
^FUNDAMENTAL 
forloop2-0:179 
disp! freql0_fund((l+loop2),l)=lund_harml_0((13-*-loop2'24),l)+i*fund_harml_0((14+loop2'24),l); 
dispffreq20_rund((l+loop2),lHund_hannl 0((4333+loop2'24),l)+i'rund_harml_0((4334+loop2'24).l); 
dispffreq40 fund((l+loop2),l)=fund_harml 0((8653+loop2'24).l)+i,fund_harml_0((8654+Ioop2'24),l); 
dispffreqSO fund((l+loop2).l)=fund_harml 0((12973+loop2'24),l)+i'fund_harml_0((12974+loop2'24).l); 
dispffreql6Ö_fijnd((l+loop2)J)^nd_hannT_0((17293+loop2'24),l)+i,fund_harml_0((17294+loop2,24),l); 

end 
•/»HARMONIC 1 
forloop2=0:179 
displ^eql0_harml((l+loop2),l)=fund_harml_0((15+loop2'24),l)-i'fund_harml_0((16+loop2'24),l); 
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displ freq20hannl((l+Ioop2).l)^nd>annl_0((4335+loop2'24).l)+i'fund_harml_0((4336+oop2 24.   ; 
disPrfreq40_hannl((l+loop2)JHund_ham1l_0((8655+loop2'24),l)+i'fiind_harml_0((8656+loop2 24)>l); 

dispffreq80l,arml((l+loop2y)^ndj,annlj>((12975+loop2'24)^ 
dUpffreql6Ö_hannl((l+loop2)J)^nd_haniil_0((17295+loop2'24),l)+i'fund_hannl_0((17296+looP2'24),l); 

end 
•/ÖHARM0N1C 2 

displ freqlO hann2((l+loop2),l)=fijnd_hannl 0((17+loop2'24),l)+i'fund_harml_0((18+]oop2'24),l); 
disprfrtq20~hann2((l+loop2),lHünd_hannl 0((4337+loop2'24),l)+i'iund_harml_0((4338+Ioop2*24),l); 
dispffreq40"harm2((l+loop2).l)=fiind_hannl 0((8657+loop2'24),l)+i«fund_hannl_0((86J8+loop2'24) 1); 
dispffreq80liann2((l+loop2),lHundharrnl 0((12977+loop2'24),l)+i,fund_haiml_0((12978+loop2'24),l); 
dispI>eql6Ö_hann2((l+lcx)p2),l)^nd_harmT_0((17297+looP2'24),l)+i'fund_hannl_0((17298+loop2'24),l); 

end 
%HARMONIC 3 

displ freqlÖ haim3((l+loop2),lHund hannl O((19+loop2'24),l)+i,njnd_hannl_0((20+loop2,24),l); 
dispffreq20"hann3((l+loop2XlHiindIhannl 0((4339+loop2'24).l)+i'fund_hannl_0((4340+loop2'24),l); 
dispf^40"hann3((l+]oop2),l)Hund_ham,l_0((8659+!oop2'24)J)+i'fiind>arml_0((8660+loop2'24)l); 

dUPnreq80l1amCK(l+l°°p2)4)^ndJ,armlJ)((12979+l^^ 
displ>eql6Ö_hann3((l+loop2),l)=fiind_hamil_0((17299^oop2'24),l)+i'fiind_hannl_0((17300+!oop2>24),l); 

end 
%HARM0N1C 4 

dM^frealÖ hann4((l+lc>op2)J)=fund_hannl_0((21+loop2'24)J)+i'fund_harml_0((22-looP2'24)l); 
dispffreq20 harm4<(l+loop2),lHUnd_ha™l_0((434Kloop2'24),l)-i'fund_hannl_0((4342- oop2 .4 ,   ; 
d;spffrea40"hann4{(l+loop2),l)=fund_harml_0((8661-looP2'24),l)+i'fiind_hannl_0((8662+loop2'24),l); 

dispf^S0"h«n^(l+loop2).l)^nd:h^ 
dispffrcql6Ö^ann4((l+loop2)4)=*nd_hannl_0((17301+loop2'24),l)-i'fond_hanTil_0((17302-loop2«24),l); 

end 
%HARMON'IC 5 

dlsplTeqlO harm3((l-IooP2),l)=fiind_hannl_0«23-loop2':4).lhi«nJnd_hanTil_0((24-loop2»24),l); 
disprfr;q20"harm5((l+loop2)J)=fund_hannl_0((4343-Ioop2'24)J)+i'fund_hannl_0((4344-loop2'24),l); 
dispffreq40"hann5((l+IooP2)J)=fund_haxml_0((8663-loop2'24)JH'{und_harTnl_0((8664^1oop2 24)   ); 
disprfreq80_haim5((Kloop2),l)=aind_hannl_0((12983-loop2«24),l^i'fund_hannl_0((12984^1oop2'24),l); 
displ>eql6Ö_hann5((l+loop2)J)=fund_hanTil_0((I7303-loop2'24).lhi'fiind_hamil_0((17304+loop2*24),l); 

end 
% Write out frequencies recorded 
freql0(l:180,l)=parametersl_0((3:6:1080),l); 
freq20(l:180,l)=parametersl_0((1083:6:2160),l); 
freq40(l:180,l)=parametersl_0((2163:6:3240),l); 
freq80(l:180,l)=parametersl_0((3243:6:4320),l); 
freql60(l:180,l)=parametersl_0((4323:6:5400),l); 

elseif amplitude==7.0' 
load parameters2_01; 
load fund_harm2_01; 
loadnoise2_01; 
loada<xel_Ä2_01; 
!oadaccel_B2_01; 
load accel_noise2_01; 
% Combine real and imaginary parts of displ_freq 
%FUNDAMENTAL 
fnr lr*ftn5=0*179 
displ freqlÖ fund((l+loop2)J)^nd_harm2_0((13+loop2'24),l)+i'rund_harm2_0((14+loop2«24),l); 
disnrfreq20"fund((l+loop2).lHund_harm2 0((4333+loop2*24),l)+i'fund_hann2_0((4334+loop2«24),l); 
dis^rfreq40"fund((l+loop2),l)^nd_hann2_0((8653+lcK)P2'24)J)+i'fund_hann2_0((8654+loop2'24),l); 
dispffrM80~fund((l+lc<»2)J)^nd_hann2_0((12973+loop2'24)J>+i'fund_harna_0((12974+loop2'2 
dlspl>eql6Ö>nd((l+loop2)J)^nd_hani12_0((17293+loop2*24)J)+i'fund_harm2_0((17294+loop2'24),l); 

end 
•/iHARMONIC 1 

dLrfreqlt) rarml((l+!oop2)J)^nd_hann2_0((15+loop2'24)4)+i'fund_harm2_0((16+loop2'24),l); 
disprfreq20:harml((l+loop2)J)^nd>arm2J((4335+loop2*24),l)+i'fund_harrn2_0((4336+looP2'24).l); 
dispffreq40 harml((l+looP2)J)^nd_Urm2J((8655+lcop2'24)J)+i'njnd_harm2_0((8656+loop2'24),l); 
disprfreq80_harml((l+loop2)J)^nd_hania_0((12975+loop2'24)J)+i«fUnd_harrn2_0((12976+loop2'24)J 

dispffreqlöÖ harml((l+loop2)J)^nd l*mn2J>((17295 
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end 
•/iHARMONIC 2 
forloop2-0:179 
displ freqlO haim2((l+loop2),lHund_hann2_0((17+loop:'24),l)+i,fiind_haim2_0((18+looP2,24),l); 
dispf freq20 harm2((l+loop2),l)=fund harm2 0((4337+loop2'24).l)+i'fundjurm2_0((4338+loop2'24),l); 

dispffiwH0~hwn2((l+loop2M)^n^^^ 
dispf toS0~h«iiia((l+loop2).lHü^ 
dispf^l6Ö_hann2((l+lc>op2)J)^nd_hania_0((17297+loop2'24)J)+i'fiind_haim2_0((17298+loop2'24),l); 

end 
•/iHARMONIC 3 
forloop2=0:179 
displ freqlO hann3((l+1oop2),l)=fiind_hann2 0((19+loop2'24),l)+i'fiind_hann2_0((20+loop2'24),l); 
disPrfrM20_haiTn3((l+loop2),l)^nd_harnx2_0((4339+loop2'24)J)+i'fund_hann2_0((4340-loop2'24). ); 
dispffreq40~hann3((l+loop2),lHund harm2 0((8659+loop2'24),l>+i,rundjiann2_0((8660+loop2'24),l); 
d^ffreq80_K»nn3((l+loop2),l)^ndIhaim2l0((12979+loop2'24)J^i'fund_harm2_0((12980+loop2'24),l); 

dispffreqieOJiamrfCCl+^^fundJ,^ 
end 
•/iHARMONIC 4 

d^lXqlo' hanii4((l+loop2).l)=fiind_hann2_0((21*loop:,24).l)-i'ftind_hanT12_0((22*loop2'24),l); 
dispf freq20 hami4<(I-floop2),l)=fijnd_harm2_0((4341+Ioop2«24),l)+i'fund_hanT12_0((4342-Ioop2'24),l); 
dispffreq40"hann4<(l+lcK3p2)J)=fond_hanTi2_0((8661+loop2'24),lhi'fiind_haim2_0((8662-]oop2'24),l); 
di5pffreq80_hann4{(l+Ioop2),lHund_haml2 0((1298I+Ioop2'24),l)-i'fund_hann2_0((12982-loop2'24),l); 
dlsprfreql6Ö_ha™4{(l+loop2)JHund_hann2_0((17301-Ioop:'24),lhi'fund_hann2_0((17302-loop2'24),l); 

end 
«UHARMONIC 5 

dLrfreqlO haiTn5((l-Ioop2)J)^nd>amü_0((23-IooP2'24)Jhi'fund_hann2_0((24-IooP2'24),l); 
d^ffreq20_hann5((l+loop2),lhfund_hann2J((4343-loop2'24)J)+i'fund_hann2_0((4344^1oop2'24).l); 
dispffreq40 hami5((KIoop2),l)=fiind_hann2_0((8663+loop2'24),l)+i,fund_harm2_0((8664^Ioop2,24),l); 
disPffreq80luiTO5((Hloop2),l)^nd>rn^J>((12983+loop2'24),l^ 
dispf freqieÖJurmSKl+^J.l^ndJumrfJW^ 

end 
•,i Write out frequencies recorded 
freql0(l:180,l)=parameters2_0((3:6:1080).l); 
freq20(l:180,l)=parameters2_0((1083:6:2160),I); 
freq40(l:180,l)=paramelers2_0((2163:6:3240),l); 
freq80(l:180,l)=paramelen2_0((3243:6:4320),l); 
freql60(l:180,l)=paramelers2_0((4323:6:5400).I); 

eIseifamp!itude=-4.0' 
load parameters4_01; 
load fund_harm4_01; 
Ioadnoise4_01; 
loadacceI_A4_01; 
loadaccel_B4_01; 
load suxel_noise4_01; 
°/i Combine real and imaginary parts of displ_freq 
•/'»FUNDAMENTAL 

dLlXqlo' fund((l+Ioop2),l)=fund harm4 0((13+loop2'24),l)+i'rund_harm4_0((14+loop2,24),l); 
dispffreq20lund((l+loop2),l)=fijnd_hann4 0((4333+loop2'24),l)+i,rund_harm4_0((4334+loop2'24),l); 
dispffre^"fund<(l+loop2)J)^nd_hann4_0((8653+to^ 
dispffreq80~fiind((l+loop2),l)=fund harm4 0((12973+loop2'24),l)+i'nind_harm4_0((12974+IooP2'24),l); 
dispI>eqt6Ö>nd((l+loop2Xl)^nd_rULrm4_0((17293+loop2'24)a)+i'rund_hann4_0((17294+lcop2'24),l); 

end 
•/iHARMONIC 1 
forIoop2-O:179 ....       . „,„, ,     „.,,*,v 
displ freqlO hannl((l+loop2).l)^nd_haTTn4_0((lS+loop2'24).l)+i'fUnd_rann4_0((16+lcK5p2'24) 1); 
diiffreq20_hannl((l+Ioop2),l)^nd_hann4_0((4335+lc<)p2'24).l)+i'iUnd_rann4_0((4336+loop2'24).l); 
dispffreq40"harml((l+IooP2),l)^nd_r^nn4_0((8655+loop2'24),l)+i'fond_r^nn4_0((8656+loop2'24).l); 

dispMreq80"hannl((l+loop2),l)^nd>^^ 
displ>eql6Ö>u™l((l+Ic<>p2),l)^nd>nn4^ 

end 
•/iHARMONIC 2 

d°fcpl%ql0>irm2((l+i™p2),l)^nd_h^ 
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displ_freq20_hann2((l+loop2),l)=fiind_hann4_0((4337+Ioop2,24),l)+i'fiind_hami4_0((4338+loop2,24),l); 
displ_freq40 harm2(( 1 +loop2),l)=fund harm4~0((8657+loop2*24), 1 )+i»fund_harm4_0((865 8+loop2'24), I); 
displ freq80~haiTO2((l+loop2XlHund~hann4~0((12977+]oop2,24),l)+i,fiind_hann4_0((12978+loop2,24),l); 
dispffreql6Ö_hann2((l+loop2),l}=fund_hann4_0((17297+loop2,24),l)+i,fund_hann4_0((17298+loop2,24),l); 

end 
•«HARMONIC 3 
forloop2-0:179 
displ_freqlO hann3((l+loop2)1lHund_hann4_0((19+loop2*24),l)+t,iünd_hann4_0((20+loop2'24),l); 
displ freq20Jurm3((l+loop2),l)=fund~harrn4 0((4339+loop2,24),l)+i«fund_harm4_0((4340+loop2,24),l); 
dispffreq40 harm3((l+loop2),l)=fund hami4~0((8659+loop2,24),l)+i*fiind_harm4_0((8660+loop2,24),l); 
dlspffreq80~hann3((l+loop2),lHünd~hann4_0((12979+loop2,24),l)+i,flind_hami4_0((12980+!oop2,24),l); 
dispf^l6Ö_hann3((l+l<Mp2Xl)=tod_hann4_0((17299+loop2,24),l)+i*fünd_hamv«_0((17300+loop2,24),l); 

end 
•/„HARMONIC 4 
forloop2=0:179 
displ freqlOJunn4((l+loop2),l)=fund_hann4 0((21+loop2*24),l)+i,fund_harm4_0((22+loop2,24),l); 
dispffreq20 harm4((l+loop2Xl)=fijnd_hanii4~0((4341+Ioop2»24),l)+i,fund_hann4_0((4342+loop2,24),l); 
dispffreq40_hanii4((l+loop2),lHund harm4~0((8661+loop2,24),l)+i,fund_harm4_0((8662+loop2,24),l); 
displ_freq80~hann4((l+lc>op2),l)=fijnd~harm4~0((12981+loop2,24),l)+i,fiind_hann4_0((12982+loop2,24),l); 
displ_freql60_hann4<(l+loop2),l)=fiind_haim4_0((17301+loop2,24),l)+i»fiind_harm4_0((17302+loop2'24),l); 

end 
•«HARMONIC 5 
forloop2=0:179 
displ_freql0_hann5((l+loop2),l)=&nd_harm4_0((23+loop2,24),l)+i*fund_hami4_0((24iloop2*24),l); 
displ_freq20_hann5((l+loop2),lHund_harm4_0((4343^1c>op2*24),l)-i-i'fijnd_harm4_0((4344-lcx3p2'24),l); 
displ freq40 haim5((l+loop2),l)=fund_harm4_0((8663+loop2'24),I)+i,fund_harm4_0((S664^1oop2,24),l); 
dispffre^80~hann5((l+loop2),l)=*nd_harm4~0((12983i-loop2,24),l)+i»fund_hann4_0((12984+loop2,24),l); 
displ_freql60_harm5((l+loop2),l)=fijnd_hann4_0((17303+loop2,24),l)-*-i*fiind_hann4_0((17304^1oop2,24),l); 

end 
% Write out frequencies recorded 
freql0(l:180,l)=parameters4_0((3:6:1080),l); 
freq20(l:180,l)=parameters4_0((1083:6:2160),l); 
freq40(l:180,l)=parameters4~0((2163:6:3240),l); 
freq80(l:180,l)=parameters4_0((3243:6:4320).l); 
freql60(l:180,l)=parameters4_0((4323:6:5400),l); 

elseif amplitude='8.0' 
load parameters8_01; 
load fund_harm8_01; 
loadnoise8_01; 
loadaccel_A8_01; 
loadaccel~B8~01; 
load accel_noise8_01; 
% Combine real and imaginary parts of displ_freq 
•«FUNDAMENTAL 
forloop2=0:179 
displ_freql0_funaX(l+loop2),l)==fund_harrn8_0((13+loop2,24),l)+i*fund_hann8_0((14+loop2,24),l); 
displ_freq20Jund((l+1oop2),l)=fund_harm8 0((4333+loop2,24),l)+i,fund_harm8_0((4334+loop2'24),l); 

end 
%HARMONIC 1 
forloop2=0:179 
displ freqlO harml((l+loop2),l)=fund harm8 0((15+loop2*24),l)+i*fund_harm8_0((16+loop2*24).l); 
dUpffreq20liarml((l+loop2),lHund_harm8 0((4335+loop2*24).l)+i'fund_harm8_0((4336+loop2'24),l); 
displ freq40~harml((l+Ioop2),lHund harm« 0((8655+loop2*24),l)+i«fund_harm8_0((8656+loop2'24),l); 
dispffreqSO harml((l+loop2),l)=fund harmS 0((12975+loop2'24),l)+i*fund_harm8_0((12976+loop2'24),l); 
dispffreql60jwml((l+Ioop2),l)^nd>inn8J)((17295+^^ 

end 
•/.HARMONIC 2 
forloop2=0:179 
displ_freql0 harm2((l+loop2),l)=fund harm8_0((17+Ioop2'24),l)+i,fund_harm8_0((18+loop2'24),l); 
displ freq20lharrrJ((l+loop2)4)=*nd~harm8_0((4337+loop2'24),l)+i,fund_harm8_0((4338-rlooP2'24),l); 
dispffreq40 harm2((l+loop2),l)=fund_hann8_0((8657+Ioop2,24),l)+i*fund_hann8_0((8658+Ioop2,24),l); 
displ freq80~hami2((l+Ioop2),l)=fund harm8_0((12977+loop2»24),l)+i'rund_harm8_0((12978+loop2'24),l); 
displ freql60 harm2((l+loop2),l)=fund_harm8 0((17297+loop2'24),l)+i,fund_harm8_0((17298+loop2'24),l); 
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end 
VoHARMONIC 3 

SrieqlO hann3((l+loop2)J)^nd_hann8_0((19+loop2'24)J)-i«fond_hann8_0((20+Ioop2'24)l); 

displfrcq20lunn3((l+loop2M)^nd>^^^ 
disPlfreVhann3((l+looP2).l>^ndJwrn8J>((8659+l^ 
di?ffrc480"hann3((l+loop2),l)^nd_hann8_0((12979+IooP2-24),l)+1-fi:ndharm8 0((V^W'W). 
,lispi:fi^l6Ö_hann3((l+loop2Xl)=fiind_ham8_0((17299+loop2'24),l)+i'fund_hann8_0((17300+Ioop2'24Xl). 

end 
%HARMONIC 4 

diSpf^20"hann4<(l+looP2),l)^nd_hann8_0((4341+looP2'24)J>+i'fund_ham>8_0((4342+oop22^ 
diSpf^40"hann4<(l+!oop2).l>^nd_hann8_0((8661+loop2'24).l>+i-ftind_hann8_0((8662^p2^ 

disPlfreVha™^0+l~P2)-1>^nd>™8-0^ disJi:Sl6Ö_han^(l+looP2)J)^nd_haTO8_0((17301+looP2'24)J)+i'fUnd_hann8_0((17302+IooP2'24).l); 

end 
••.HARMONICS 

Sr&eq"lO harTO5((l+loop2),l)={und_ham18_0((23-looP2'24).l)-i'fund_hani1S_0((24-loop2'24]1,1); 

displfreqVhann5((l+looP2y)^ndJunn8J>((8663+^^ 
dispMreqVharrn5((l+l<>op2).l>^ndJunn8J)((129S3M^^ 
disPI>eql6Ö_hann5((l+looP2)J)^nd_hann8_0((17303+1ooP2'24),l)-i'fund_hamS_0((17304^ooP2'^ 

end 
% Write out frequencies recorded 
freql0(l:180,l)=parameters8_0((3:6:1080),l); 
freq20(l:180,l)=Parameters8_0((1083:6:2160),l); 
freq40(l:180,l)=parameters8_0((2163:6:3240),l); 
freq80(l:180,I)=l)ajanieten8_0((3243:6:4320),l); 
freql60(l:180,l)=Parameters8_0((4323:6:5400),l); 

end; 

elseifiteration=='2' 
ifexist('amplimde,)==0 
ampIitude=inputC Amplitude (enter 3 char): 70'. 
end; 

if amplitude='0.5' 
load parameters0_52; 
load fund_harm0_52; 
load noise0_52; 
load accel_Ä0_52; 
load accef B0_32; 
load accel_noise0_52; 
% Combine real and imaginary parts of displ_freq 
•/.FUNDAMENTAL 

SSo fiind«l+loop2),l)=fondjurm0J((13+IooP2-24).lH'rundJ,armO_5^^ 
dispMreqVfundtfl+lc^^^ndJia^^^ 
dis£ffreVfund((l+looP2)J)^nd_r^0_5((8653+l^^ 
disiffreq80"fund((l+looP2),lHundharmO 5((12973+looP2'24).l)-i'rund_harm0_5((12974+looP2'24),l); 

end 
•/.HARMONIC 1 

dTsp^e^nLlCCl^^^^ 
d5ffre^20-hannl((l+looP2).l>^nd>ann0J((4335Moop2-24),l)+:-fund_harm0_5  4336+ ooP2 24 .   . 

d3ffr^0"hannl((l+looP2),l>^nd_ha™0J((865 
dSffr«80"hannl((l+loop2),lHundharTnO 5((12975+loop2'24),l)^1'fund_harm0_J((12976+loop2'24),l); 

end 
VoHARMONIC 2 

SspTfreqlO harm2((i+loop2),l)=fund harm0_5((17+looP2'24),l)+i'rund_harm0_5((18+loop2'24) 1); 
SSlÄo-tamfl   W00J2 ,lUnd:harmOJ((4337+looP2-24).l)+i.fund_hannOJ((43    +oop .   ; 

dispffreqVhamrfttHl^.l^nd^^^ 
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displ frcqSO han^((l+loop2),l)=fiind_hann0J((12977+loop2'24y)+i'fund harmO-W™*^2'^* 
displ>4l6Ö_han^((l+looP2)J)^nd_hann0J((17297+loop2'24),l)+i'fund_harm0_5((17298+loop2'24),l). 

end 
•«HARMONIC 3 

toHäUlO hann3((l+Ioop2),l)=fünd harmO 5((19+loop2'24),l)+i*ftind_harm0_5((20+loop2'24) 1); 
dispffrTqVhanrfKl+lo^l^ndlha^^ 
diiffi^0"hann3((l+Ioop2).l)^nd_hann0J((8659+Ioop2'24),l)+.'fund_hann0J((8660+loop2'24^ 

d^ff^0-hama((l+loop2),l)^nd_ha^^ 
dispffr^l6Ö_hann3((l+loop2),l)=fond_hanii0_5((17299+loop2'24),l)+I'fund_harm0_5((17300TlooP2'24),l), 

end 
•«HARMONIC 4 

Sll^narm4<(l+looP2),l)^ndJ^ 
diSpffreq20"harm4((l+looP2),lHund_ham,0_5((4341+loop2'24).l)+i'fiind_hann0_5  4342+oop2 24 ,   ; 
d^ffreq40"hann4<(l+loop2),l)^nd_ha™0J((8661+loop2'24),l)+i'fund>^0 5((8662+loop2'24^^^^ 

däspÜ^16Ö>nn4((l+lo<*2Xl)^^ 
end 
%HARMONIC 5 

dJffreqVharmS   l+loop2).l)HUnd_hS™0_5((4343+loop2«24).l)+,'&nd_hann _<"f °°P; ?,1 '   ! 
disPllreqVharm5((l+loop2).lH"ndJnrm0J((8663+looP2'24)^ 
diJffreJlO-hannS   l+loop2).l)=fiind_hann0_5((12983+loop2-24),l)+i-fiJnd harmO 5«^ 298^loop2'24) 1 

dJlfr^ÖJ^SCCl+lo^ 
end 
% Write out frequencies recorded 
freqlO(l:180,l)=parametCTsO_5((3:6:1080),l); 
freq20(l: 180,l)=parameters0_5((l 083:6:2160), 1); 
freq40(l:180,l)=parameters0_3((2163:6:3240),l); 
freq80(l:180.1)=parameters0_S((3243:6:4320),l); 
freql60(l:180,l)=parameters0_5((4323:6:5400),l); 

elseif amplitude"-1 .0' 
load parameters 1_0 2; 
load fund_harml_02; 
loadnoisel_02; 
load accel_Al_02; 
loadaccefBl_02; 
load accel_noisel_02; 
% Combine real and imaginary parts of displ_freq 
^FUNDAMENTAL 

SrieqlVfun^^^ 
dispHreqVfund((l+loop2).l)^ndJ1armlJ>((4333+looP2«24)^^ 
dispffreq40"fund((l+Io<3p2),l)=fi1nd>annl_0((8653+loop2'24),l)+1'iUndhannl -°«*"£^2 *£]* 
dSffrio-ft.ndC l+Ioop2),lHund_harml_0((12973+looP2-24).l)+i'fund harml-O«/"7?^2*2^ '. 
dispffreql6Ö>ndX(l+looP2),l)=fund_hannl_0((17293+lc»op2*24)J)+,'£Und_harml_0((17294+loop2'24),l), 

end 
•«HARMONIC 1 

dSffitqao'tannl l+looP2),lHund_harml_0((4335+looP2«24),l)+i«fiind_harm _0 «36+toop2'WX 
tol freVharml l+lcop2).l)=fiind harml 0((8655+loop2'24),l)+i'fund_harml_0((8656+loop2*24).l); 
dS   frSo-hZ      +looP2 l^nd-hanni:0((12975+loop2.24),l)+i.fund_harml_0((12976+lrP2'24)l) 

end 
•/.HARMONIC 2 

Slle^WW+loo^l^nd.^^ 
dUyfreq20harna((l+loop2),l)^nd_r^l_0((4337+l<>oP2'24),l)+.'fund_hannl_0((4338+oop2^ 
S   frSo"harm2   l+looP2 .IHund^^haHnl_0((8657+looP2'24),l)+i-fund_harml_0((8658+looP2-24) 1 ; 

fcpffre^Junni«!*^^ 
end 
•/»HARMONIC 3 
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forloop2=0:179 
displ freqlO harm3((l+loop2),l)=fund_harml 0((19+loop2,24),l)+i'fiind_haiml_0((20+loop2,24),l); 
dispffr«120_hann3((l+Ioop2),lHUnd_hannl_0((4339+loop2,24),l)+i'fiind_haniil_0((4340+]oop2,24),l); 
displ^eq40"hann3((l+loop2),l>=fiind_harnil_0((8659+loop2,24),l)+i'fiind_hannl_0((8660+loop2,24),l); 
dispffreq80lhami3((l+loop2).IHund_hannl 0((12979+l<x,p2'24)J)+i'fund_harrnl_0((12980+loop2'24),l); 
dispf^l60_hann3((l+loop2)J)^nd_hamiT_0((17299+loop2'24).l)+i'fiind_haiTOl_0((17300+loop2,24),l); 

end 
«HARMONIC 4 
forloop2=0:179 ,     ,.,„,. 
displ freql0_hamv4{(l+]oop2)>l)=fiind hannl 0((21+loop2'24),l)+i,fund_harml_0((22+loop2,24),l); 
dispffreq20 hann4<(l+loop2),lHund_hannl_0((4341+loop2,24),l)+i*fiind_hamil_0((4342+1oop2,24),l); 
dlspffre<i40~hann4{(l+loop2),lHund_hamil O((8661+loop2'24),l)+i,ftind_harml_0((8662+loop2'24),l); 
di5pffreq80"harm4{(l+loop2),lHiind hannfO((12981+loop2'24),l)+i'fundjunnlj>((12982+loop2'24),l); 
dispf^l6Ö_hann4{(l+loop2)J)^nd_hamT_0((17301+looP2'24)J)+i«fund_hanTil_0((17302+!oop2«24).l); 

end 
«HARMONIC 5 
forloop2=0:179 ,     „.„„„ 
displ freql0_hami5((l+looP2),lHiind_himil_0((23-loop2'24),lhi*fijnd_haniil_0((24+loop2'24),l); 
dispffreq20 harm5((l+loop2),l)=fund haml J)((4343+loop2'24)J)-i'rundJurrnl_0((4344-Moop2'24),l); 
dispffreq40 hann5((l+loop2).l)=fund harml 0((8663+loop2,24),lH'fund_hannI_0((8664-Ioop2'24),l); 
disPrfreq80_hann5((l+loop2),l)=fund>arml_0((i:983+loop:'24),l)-i«ftind_harml_0((12984-loop2*24).l); 
dispffreql60_hann5((l+loop2),lHund_haniil_0((17303*loop2,24).l)ri'fund_harml_0((17304+loop2'24),l); 

end 
« Write out frequencies recorded 
freql0(l:180,l)=parametersl_0((3:6:1080),l); 
freq20(l:180,l)=parametersl_0((10S3:6:2160),l); 
freq4O(l:180,l)=parametersl_O((2I63:6:3240),l); 
freq80(l:180,l)=parametersl_0((3243:6:4320),l); 
freql60(l:180,l)=parametersl_0((4323:6:5400),l); 

elseifamplitude=7.0' 
load parameters2_02; 
load rund_harm2_02; 
load noise2_02; 
load accel_A2_02; 
load accel_B2_02; 
load accet_noise2_02; 
« Combine real and imaginary pans of displ_freq 
«FUNDAMENTAL 
forloop2=0:179 ,     , ,^„ 
displ_freql0>nd((l+loop2),l)=fund_hann2_0((13-!oop2'24),l>-i'rund_harTn2_0((14^oop2'24),l); 
displ freq20>nd((l+loop2),l>^nd_harrn2_0((4333+loop2'24)J)^i'fund_hann2_0((4334^loop2'24),l); 
displ freq40 rund((l+loop2),l)^nd_harm2_0((8653+loop2,24).l)-i'rund_harm2_0((8654-*-loop2,24),l); 
dispffreq80>nd((l+loop2)J)^nd_hann2_0((12973+loop2'24).l)-i'rund_harm2_0((12974+loop2'24).l); 
displ_freql60>nd((l+loop2)J)^nd_hann2_0((17293+loop2'24)Jhi'fund_harm2_0((17294-rloop2'24),l); 

end 
«HARMONIC 1 
forloop2=0:179 „.,.,,„ 
displ freqlO hannl((l+loop2),l)^nd_ham12_0((13+loop2'24).l)+i'fund_hann2_0((16+loop2'24),l); 
dispffre<i20~harml((l+loop2),lHund harrn2_0((4335+loop2'24),l)+i'fund_hann2_0((4336+loop2'24),l); 
dispffreq40_hannl((l+IcK3p2)4)^nd"hani12_0((8655+loop2'24)J)+i'rund_hann2_0((8656+loop2'24),l); 
disprfreq80"haml((l+looP2)J>^ndIhanii2_0((12975+loop2'24)J)+i'fund_harm2_0((12976+loop2'24),l); 

dispf^l6Ö_hinnl((l+loqp2).I)-foi^^^ 
end 
«HARMONIC 2 
forloop2-0:179 
displ frealO harm2((l+Ioop2),l)=fund harm2 0((17+loop2,24).l)+i'fund_harm2_0((18+loop2'24).l); 
dispffreq20_hann2((l+l(>op2),l)^nd_harm2_0((4337+loop2'24).l)+i'rund_hann2_0((4338+loop2'24).l); 
disprfreq40"hanra((l+loop2),l)^nd_hanTÜ_0((8657+loop2'24)J)+i'rund_hann2_0((8658+loop2'24),l); 

diipfto80~tann2((l+loop2).l)^iidj^^ 
dispI>eql6ÖJiann2((l+loop2y)^nd>n^J)((1729 

end 
«HARMONIC 3 
forloop2=0:179 
displ freqlO ranrJ((l+loop2).l)^nd_hann2_0((19+Ioop2'24).l)+i,fund_hann2_0((20+loop2,24).l); 
dispffreq20 hanr3((l+loop2)JHUnd_hanii2_0((4339+l(>op2,24)J)+i,fund_harm2_0((4340+loop2,24),l); 
displ freq40lharm3((l+loop2),l)=fund harm2_0((8659+loop2'24).l)+i,fund_harm2_0((8660+loop2,24).l); 
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displ freqSO hann3((l+loop2).lHund_hann2_0((12979+loop2'24),l)+i'fiind_harm2_0((12980+loop2'24),l); 
dispffreql6Ö_hann3((l+loop2),lHund_hann2_0((17299+loop2'24),l)+i'fiind_hann2_0((17300+loop2'24),l); 

end 
%HARMONIC 4 
forloop2=0:179 , 
displ freqlO_hann4{(l+loop2),lHund harm2 0((21+loop2*24)J)+i,fund_harm2_0((22+loop2,24),l); 
dispffreq20 harm4{(l+loop2),lHund harni2_0((4341+loop2'24),l)+i,fund_hami2_0((4342+loop2,24),l); 
dispffr«^"hani^(l+loop2),l)^nd_hanTi2_0((8661+loop2*24),l)+i'fund_hann2_0((8662+loop2,24Xl); 
dispffreq80~harm4<(l+Ioop2),lHund hann2_0((12981+loop2'24),l)+i'fund_harm2_0((12982+loop2'24),l); 
dispI>eql6Ö_hann4<(l+lc)op2Xl)=*nd_hann2_0((17301+loop2'24),l)+i'fiind_harm2_0((17302+loop2*24),l); 

end 
•/iHARMONIC 5 

displ freqlÖ haim5((l+loop2),l)=fiind_hann2 0((23+!oop2'24),l>+i'fund_hann2_0((24+loop2'24),l); 
dispffre<j20~hann5((l+loop2),l)=fund harm2J>((4343+looP2'24),l^i'fundJurm2J)((4344+Ioop2'24),l); 
diSpr^40~haim5((l+looP2XlHundIhann2_0((8663+loop2'24),l)+i'fund_haim2_0((8664+loop2'24)>l); 
dispr^80"hann5((l+Ioop2),lHUndhanii2_0((12983+loop2«24),l>+i'iund_hann2_0((12984+loop2'24),l); 
dispffreql6Ö_hann5((l+loop2)J)^nd_harm2_0((17303+loop2'24),l)+i'fund_hanii2_0((17304+loop2'24),l); 

end 
% Write out frequencies recorded 
freql0(l:180,l)=parameters2_0((3:6:1080),l); 
freq20(l:180,l)=parameters2_0((1083:6:2160),l); 
freq40(l:180,l)=parameters2_0((2163:6:3240),l); 
freq80(l:180,l)=parameters2_0((3243:6:4320),l); 
freql60(l:180,l)=paiameters2_0((4323:6:5400),l); 

elseif amplitude='4.0' 
load parameters4_02; 
load fund_harm4_02; 
load noise4_02; 
load accel_A4_02; 
load aecef B4_02; 
load accel_noise4_02; 
% Combbe real and imaginary parts of displ_freq 
%FUNDAMENTAL 
forloop2=0:179 ,„lvn displ_freql0>nd((l+loop2)J)^nd_harm4_0((13^oop2'24),l)-i«fund_harm4_0((14^1oop2'24),l); 
displ freq20 funaX(l+loop2),l)=tund_harm4_0((4333+loop2'24),l)-*-i*fund_harm4_0((4334+loop2'24),l); 
dispffreq40~fund((l+loop2),l)=fund_harm4 0((8653+loop2'24),lhi'fund_harm4_0((8654-loop2'24),l); 
dispffreq8olund((l+loop2),l)=iund_harm4 0((12973+loop2'24),l)+i'fund_harm4_0((12974+loop2*24),l); 
dispffreql6Ö>nd((l+l(x3p2)J)^nd_harTn4_0((17293+lc)op2'24),l)+i'fund_hann4_0((17294+loop2'24),l); 

end 
••iHARMONIC 1 
forloop2=0:179 
displ freqlO harml((l+Ioop2),lHund harm4_0((15+!oop2'24),l)-i*fund_harm4_0((16+loop2'24),l); 
dispffreq20 harml((l+loop2),l)=fund harra4_0((4335+loop2«24),l)+i'fund_harm4_0((4336+Ioop2'24),l); 
dispffreq40~hannl((l+loop2),l>^nd_hann4_0((8655+loop2'24),l)+i'fund_harm4_0((8S56+loop2'24),l); 
disprfreq80"hannl((l+Ic>op2)J)^nd_harnyt_0((12975+loop2'24)4)+i,fund_harm4_0((12976+loop2'24),l); 

displ>e4l6<Lharml((l+looP2)J)^nd>nn4J>((17295 

end 
^HARMONIC 2 

diLrfreq'lÖ harm2((l+loop2),lHund harm4_0((17+loop2'24),l)+i'fund_harm4_0((18+loop2'24),l); 
disprfreq20-harn^((l+loop2)J)^nd"harnvt_0((4337+Ioop2'24)J>+i'rund_harm4_0((4338+l()op2'24),n^^ 
dispffreq40~harm2((l+loop2)J)^nd:harm4_0((8657+l()op2'24)J)+i*rund>ann4_0((8658+Ioop2'24),l); 
disprfreq80"harm2((l+loop2),lHundharm4 0((12977+Ioop2'24),l)+i'fund_hann4_0((12978+loop2'24),l); 
displ>e^l6Ö_hann2((l+loop2),l)^nd_harm4_0((17297+l(x3p2'24)4)+i*fund_harm4_0((17298+Ioop2'24 

end 
%HARMONIC 3 
forloop2=0:179 
displ freqlO_harm3((l+loop2),lHund_harm4 0((19+loop2«24),l)+i*fund_harm4_0((20+loop2'24),l); 
dispffreq20 harm3((l+loop2),l)=fiind_harm4_0((4339+loop2«24),l)+i'fund_hann4_0((4340+loop2'24),l); 
dispffreq40"harm3((l+Ioop2),lHund_hann4 0((8659+loop2,24),l)+i'fund_harm4_0((8660+Ioop2,24),l); 
disPrfreq80"harm3((l+looP2),lHundharm4 0((12979+loop2'24),l)+i'fiind_harm4_0((12980+loop2'24),l); 
displ>eql60_harm3((l+loop2)J)^nd_haTm4_0((17299+loop2'24)J)+i'fund_harm4_0((17300+looP2'24),l); 

end 
%HARMONIC 4 
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forloop2=0:179 n/ni+lnoD2'24HHi*fund harnv» 0((22+loop2*24),l); 
displjreql0>nn4((l+oop2) £&«J*m4_0 C^ ; 7'^ f^i-^d h^4 0((4342+loop2-24),l); 
displjreq20_harrn4«l+oop2) ^nj-^-° «JJJ 13-24 l+i'fund-ha™4-0((8662+loop2'24).l); 
displ_freq40_harm4((l+ ooP2 , H™_hann4_0  8«^ ^2 f^     ^.^ ,^7 0((12982+Ioop2'24).l); 

end 
•/.HARMONIC 5 
for loop2=0:179 n,oi.l.i,wv'Ml n+i'fund harm4 0((24+loop2'24),l); 

dJffaqJO.tannSai+loop^lV*«>™4_0 «f; ^//^ g.^^ 0( 8664+looP2.24).l); 

end 
% Write out frequencies recorded 
freql0(l:180,l)=parameters4_0((3:6:1080),l>; 
freq20Cl:180,l)=paramelm4_0((1083:6:2160),l); 
freq40(l:180,l)=T)arameters4_0((2163:6:3240),l); 
freq80(l:180,l)=parameters4_0((3243:6:4320),l); 
£reql60(l:180J)=paramelen4_0((4323:6:5400).l); 

else if amplitude=='8.0' 
load parameters8_02; 
load fund_harm8_02; 
load noise8_02; 
load accel_Ä8_02; 
load accel_B8_02; 
load accel_noise8_02; 
% Combine real and imaginary parts of displ_freq 
^FUNDAMENTAL 
forloop2=0:179 nrfl3MooD-"24UVi,fund harmS 0((14-Ioop2'24),l); 
displ_freql0jund«l+ooP2 . 0^>™-°   »3 7" ^  ^i-^d harmS 0((4334+looP2-24),l); 
displ_freq20>nd((H oop2 ,«-fi-n _hannLJ«^^.$5 ' f i.fiind-tann8:0((8654-loop2'24).l); 
displ_freq40_fund((l+oop2.   ^>™8-°   ^"„^..zi    )^i-rand harml_0((12974+loop2-24).l); 
displ_freq80_fund((l+Ioop2  1 =W hann8 0«.1»      ^* 2 y^.^ J*n,8_0((17294+loop2'24).l); 
displ_freql60_fund((lt-loop2),l)=fand_harm8_0((17.yj  loop-      ;. ; 

end 
%HARMONIC 1 
forloop2=0:179 nrM5+looD2"4UV-i,fund harmS 0((16+loop2'24),l); 
displ_freql0_harml((l+oop2.   ^>™-    J 3 Topj.^   ^-i.^d harrnS 0((4336+loop2'24).l); 
displ_freq20_harml((l+ooP2 , )=fon_h»nn-J  ^/5,3.24^ +i.fund-hann8_0((8656+loop2-24),l); 
diSpl_freq40_harml((l+oop2, ^-^"!-?} !g„lÄ.2Vl)+i'fi.nd hannl_0«12976+loop2'24).l); 
displ_freq80_harml((l+loop2)l =fond harmS/« "^^^ ^      foni harmi 0((17296+loOp:.24).l); 
displ_freql60_harml((l+loop2),lHund_harm8_0((17295. loopi ^).i) 

end 
%HARMONIC 2 
forloop2=0:179 ^ h,mR <vn7+looD2*24) n+i'fund harmS 0((18-loop2'24),l); 
displ_freql0_harm2((l+oop2.gun_harm- ^ g^iXp^ ,l)-i-fund hann8_0((4338+loop2-24).l); 
displjreq20_harm2((l+oop2, ^.tam _0 4" J ~P;/24-^i-^d-h^g 0((8658+loop2-24).l); 
displ_freq40_hann2((l+ oop2 .^»J>™-      £Ä-jl^i-fUnd tannl_0((12978+loop2'24).l>; 

end 
•/.HARMONIC 3 
forloop2=0:179 offl9+looo2,24H)+i,fund harmS 0((20+loop2*24).l); 
disp!J^10Junrf(<l+loop2). >^>™J-J43„~P' 2.24 ,l)+i-fund harrnS 0((4340+loop2'24).l); 
dispU^uJu^CO+oop^^nd-^ displ_freq40_harnO((l+oop2^ ^nd_^8 0  8659.^ 

end 
•/iHARMONIC 4 
forloop2=0:179       ■ n^l+looD2'24U)+i*fund harm8 0((22+loop2'24),l); 
displ_freql0_harm4«l+ oop2 , H™*>™-° g t Xp2.24 D^fund harm8 0((4342+loop2-24).l); 
disPl_freq20_harm4«l+looP2)H^-*1™^g^ 13*24 l+i-fund-harm8 0((8662+looP2-24).l); 
dispffreq40_hann4((l+loop2),lHund_harm8_0((8661+Ioopi ^,U 
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displ freq80_harm4{(l+loop2),l)=fund_hann8_0((12981+loop2'24),l)+i»fund_harm8_0((12982+loop2,24),l); 
disyffi^l60>ann4<(l+loop2)4)=^nd_harm8_0((17301+loop2'24),l)+i'fiind_hanTi8_0((17302+Ioop2,24),l); 

end 
%HARMONIC 5 
forloop2=0:179 
displ freqlO harm5((l+loop2),lHund harm8 0((23+loop2'24).l)+i,fund_haim8_0((24+loop2,24),l); 
dispffreq20~haim5((l+loop2),lHund harm8 0((4343+loop2'24),l)+i,fundjiarm8_0((4344+loop2,24),l); 
displ_freq40~hann5((l+loop2),lHund hann8_0((8663+loop2,24),l)+i,fund_hann8_0((8664+!oop2'24),l); 
displ freq8oliarrn5((l+loop2),l)=rund_harrn8 0((12983+loop2,24)J)+i,fund_harrn8_0((12984+loop2,24),l); 
displ~^16Ö>anii5((l+loop2),l)=fund_haimI_0((17303+loop2,24),l)+i'fiind_hann8_0((17304+Ioop2,24),l); 

end 
% Write out frequencies recorded 
freql0(l:180,l)=parameters8_0((3:6:1080),l); 
freq20(l:180,l)=parameters83o((1083:6:2160),l); 
freq4O(l:180,l)=parameters830((2163:6:3240),l); 
freq80(l: 180,1 )=parameters8~0((3243:6:43 20),1); 
freql60(l:180,l)=parametersl_0((4323:6:5400),l); 

end; 
end; 

% Plot results 
ifexistCposition')==0 

position=inputCPosition in cm (enter 5 char): ','s.y, 
end; 
ifposition=='10.00' 

figure(l) 
semilogy(freqlO,abs(displ_freqlO_fund),'-') 
hold on 
semilogj-(freqlO,abs(disp!_freqlO_harml),'-') 
serni!ogy(freql0,abs(displjreql0_harm2),'-.') 
semilog>(freql0,abs(displ_freql0_hann3 ),':■) 
semilogy(freql0,abs(disp!_freql0_harm4),'-') 
semilogy(freql0,abs(displjreql0_harm5),'-') 
titIel=,Displacement vs Frequency*; 
title2='  Amplitude ='; 
title3-   Position = '; 
title2=strcat(title2,amplitu da/Volts'); 
title3=strcat(title3,position,'cm'); 
title4='  Iteration ='; 
title4=strcat(title4,iteration); 
title_data=char({titlel,title2,title3,title4}); 
title(title_data); 
ylabelCDisplaeement') 
x3abel(Trequency (Hz)") 
legendCFund/Harm 1','Harm 2','Harm 3','Harm 4',,Harm 5") 
hold off 
orient landscape 
figure(2) 
plot(freqlO,abs(displ_freqlO_rund),'-') 
hold on 
plot(freqlO,abs(displ_freqlO_harml),'-') 
plot(fr eq 10,abs(displ_freq 10_harm2),'-.') 
plot(freq 10,abs(displ_freq 10_harm3 ),':■) 
plot(freql0,abs(displ_freql0_harrn4),'-') 
plot(freq 10,abs(displ_freq 10_harm5 ),'-*) 
titlel=,Disp!acement vs Frequency"; 
Iitle2-   Amplitude = *; 
title3="  Position = "; 
titIe2=strcal(title2,amplitude,'Volts'); 
title3=strcat(title3,position,'cm'); 
title4-   Iteration = '; 
title4=strcat(tilIe4,iteration); 
tille_daU=char({lilIel,title2,tit1e3,title4}); 
title(title_data); 
ylabelODisplacemenf) 
xlabelCFrequency (Hz)1) 
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legend(Tund','Harm 1','Harm 27Harm S'.Harm 4','Harm J") 
hold off 
orient landscape 

elseif position—"20.00' 
figure(l) 
sernilog><freq20,abs(displ_freq20jund),'-') 
hold on 
senvilog>Xfreq20,abs(displ_freq20_harrn 1),'-") 
semilog>{freq20,abs(dUplJrcq20_harm2),'--') 
semilogy<freq20,abs(displ_freq20_harm3),':') 
S«milogy(£req20,abs(displ_freq20_hann4),'-') 
semilog>-(freq20,abs(displ_freq20_harm5),-') 
titkl-Displacement vs Frequency'; 
title2='  Amplitude -1 
title3-   Position-*; 
thle2-=strcal(title2,amplitude,'Volts'); 
title3=strcat(tille3,position,'cm'); 
title-4-   Iteration"'; 
tilIe4=strcat(title4,rteration); 
title jiau=char({titlel,title2.thl;3,tiüe4}); 
title(tille_data); 
ylabelCDisplacement') 
xIabel(Trequency (Hz)") 
legend('Fund','Harm 1','Harm 27Harm 3','Hirm 4','Harm 5') 
hold off 
orient landscape 
figure(2) 
plot(freq20,abs(displ_freq20_rund).'-') 
hold on 
p!ot(freq20,abs(displ_freq20_harml),'-') 
plot(freq201abs(displ_freq20_hann2 ),'-.■) 
p!ot(freq20,abs(displ_fi-eq20_harm3).':') 
plot(freq20,abs(disp!Jreq20_harra4),'-') 
plot(freq20,abs(displ_freq20_harm5),'-') 
tilIel='Displacement vs Frequency"; 
title2="  Amplitude = *; 
title3-   Position = '; 
lille2=strcat(title2,amplitude,'Volts'); 
title3=strcat(title3,position,,cm'); 
title4="  Iteration -'; 
title4=strcat(title4,iteration); 
title_data=char({titlel,title2,title3,title4}); 
title(title_data); 
ylabelCDisplacemenf) 
xlabelfFrequency (Hz)1) 
legend(Tund','Harm 1','Harm 2',"Harm 3','Harm 4','Harm 51) 
hold off 
orient landscape 

elself position='40.00' 
figur<l) 
semilogy(freq40>abs(displ_fi•eq40_rund),'-,) 
hold on 
serrdlog><n-eq40,abs(displjreq40_riarml),'-') 
semilogy(freq40,abs(displ_freq40_harm2),'-.') 
semilogy(freq40,abs(displ_freq40_harm3).':') 
semilogy(freq40,abs<displ_freq40_harm4),'-') 
semilogy(freq401abs(displ_freq40_harm3),'-') 
title 1 "displacement vs Frequency*; 
title2-   Amplitude ='; 
title3=' Position-1; 
title2=strcat(titIe2,amplitude,'Volls'); 
title3 =strcat(title3,position,'cm'); 
title4="  Iteration-'; 
title4=strcat^title4,iteration); 
title_data=char({titlel1title2,title3,title4}); 
title(title_data); 
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ylabelCDispIacement") 
xlabelCFrequency (Hz)") 
legendCFunJ/Harm l'/Harm 2','Hami 3','Harm 4\Warm 5") 

hold off 
orient landscape 
figure(2) 
plot(freq40,abs(displ_freq40Jund),'-') 

hold on 
plot(freq40,abs(displ_freq40_harmiy-') 
plot(freq40,abs(displ_freq40_ha^m2),'-.,) 
plot(freq40,abs(displ_freq40_harrn3),':') 
plot{freq40,abs(displ_fi-eq40_harm4).'-') 
plot(freq40,abs(displ_freq40_ha^m5),'-,) 
titlel='Displacement vs Frequency"; 
title2-   Amplitude «'; 
title3="  Position = *; 
ulle2=strcat(title2,arnplitude,'Vohs'); 
title3=strcat(title3,position,'cm'); 
tit!e4-   Iteration = "; 
title4=strcat(titte4,it£ration); 
tiile_data=char({titlel,title2,title3,title4}); 

title<title_data); 
ylabelCDispIacement") 
xlabelCFrequency (Hz)1) 
legendCFundVHaim 1'.'Harm 2\'Harm 3','Harm 4', Harm 5") 

hold off 
orient landscape 

elseif position=='80.00' 
figure<l) 
semiIogy(freq80,abs(displ_freqS0_fund),'-") 

hold on 
sermlogytfreqSO.ab^disp^freqSOJurml),'-') 
senuMogy(freq80,abs(displJreqS0_harm2),"-.') 
semilog\-(freq80,abs(displ_£reqS0_harm3),':") 
semilogy(freq80,abs(displ_freq80_harm4),'-") 
semilog%-(fi'eq80,abs(displ_freqS0_harm5),'-') 
titlel-Displacement vs Frequency"; 
title2='  Amplitude ='; 
title3="  Position = '; 
title2=strcat(title2,amplitude,'Vo!ts'); 
title3=strcat(title3,position,'cm'); 
title4="  Iteration ='; 
title4=strcat(title4,iteration)-, 
title data=char({title 1 ,titls2,title3,title4}); 
title(title_data); 
ylabelCDispIacement") 
xlabelCFrequency (Hz)1) 
legendCFundVHarm l'.'Harm 2',"Harm 3','Harm 4','Harm 51) 

hold off 
orient landscape 
figure(2) 
plotCfreqSO.absCdisplJreqSOJund),"-") 

hold on 
plou;fi•eq80,abs(displ_^•eq80_harml),,-') 
plotCfreqSO.absCdispLfreqSOJamtfy-.') 
Plot(freq80,abs(displ_freq80_harm3V:') 
plot(freq80,abs(displ_n-eq80_harm4),'-') 
plot(fi-eq80,abs(displ_freq80_harm5),'-') 
titlel-Displacement vs Frequency"; 
title2="  Amplitude-*; 
title3="  Position"'; 
title2=strcat(title2,amplitude,'Volts"); 
title3=strcat(title3,position,'cm'); 
title4-   Iteration = '; 
title4=strcal(title4,iteration); 
title data=char({titlel,title2,title3,title4}); 
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title(tiüe_data); 
ylabelCDisplacement') 
xlabel(Trequency (Hz)1) 
legendOFundVHarm l',*Harm 27Harm 3VHarm 4','Harm 5") 

hold off 
orient landscape 

elselfposition=-'160.0' 
£igure(l) 
tetnilog>•(fi•eql60>abs(displ_fi■eql60_filnd),'-,) 
hold on 
semilogy(freql 60,abs(displ_freql 60_harm 1),'-') 
serrülog><freql60,abs(displ_freql60JmTn2),'-.') 
semilogy(freql60,abs(dUpl_freql60Jiarm3),'0 
scnulogyCfreqieO.ab^disp^fixqieOJurn^),'-') 
semilog><freql 60,abs(displ_freql 60_harm5V-') 
titlel-Displacement \s Frequency; 
title2rf  Amplitude-1; 
titlc3=*  Position-"; 
title2=strcat(title2>amplitude,,Volts'); 
title3=strcat(tit!e3,positiori,,cm'); 
title4='  Iteration-'; 
title4=strcat(title4,iteration); 
thle_data=char({titlel,titie2,title3,titl;4}); 

title(title_data); 
vlabelCDisplacement") 
xlabelCFrequency (Hz)") 
legendCFund'/Harm l'/Harm Z.'Harm 37Harm 4','Harm 5') 
hold off 
orient landscape 
figure(2) 
plot(freql60,abs(displ_freql60_fund),'-') 
hold on 
plot(freql 60,abs(displjreq 160_harm 1V-*) 
plot(freql 60,abs(displ_freql 60_harm2).'-.') 
plot(freql60,abs(displ_freql60Jurm3).':') 
plot(freq 160,abs(displjreq 1 60_h arm4).'-') 
plot(freql 60,abs(displ_freql 60_harm5),'-') 
title 1-Displacement vs Frequent; 
title2-   Amplitude-'; 
title3-   Position-'; 
title2=strcat(title2,amplitude,,Volls'); 
title3=strcat(title3,position,'cm')-, 
title4='  Iteration ='; 
tit!e4=strcat(title4,iteration); 
title jiata=char({tillel,title2,title3,tit!e4}); 
title(title_daU); 
ylabelCDisplacement') 
xlabelCFrequency (Hz)") 
legendCFund'/Harm l'/Harm 2'/Harm 3','Harm 4','Harm 5") 
hold off 
orient landscape 

end 
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APPENDIXE 

LAB VIEW CODE 

Lab VIEW programming was done by Dr. Gregg D. Larson, a research engineer 

assigned to the investigation of acousto-electromagnetic mine detection at the Georgia 

Institute of Technology. The software evolved from existing code and continued to 

evolve over the year that data was collected for this thesis. This appendix includes only a 

couple of the numerous subroutines utilized for taking data in Experiment 2. 

The program found on pages 149 and 150 was the major program collecting the 

radar data. This code drove several subroutines and was driven itself by other programs. 

The overall controlling code is found in the second program (page 151). From this code, 

all of the data for Experiment 2 was collected. This included the four-accelerometer 

measurements and the alternating two-accelerometer/radar measurements for both the 

frequency response tests and the saturation curve tests. 
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