UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice
ADP012617

TITLE: Influence of Er and 0 Doses in Er-Related Emission in Al0.70Ga0.30As:Er

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

To order the complete compilation report, use: ADA405047

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012585 thru ADP012685
Influence of Er and O doses in Er-related emission in Al$_0.70$Ga$_0.30$As:Er

Shin-ichiro Uekusa and Tomoyuki Arai
Department of Electrical and Engineering, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, Japan

ABSTRACT

Er ions with doses ranging from 1×10^{13} cm$^{-2}$ to 1×10^{15} cm$^{-2}$ were implanted into Al$_0.70$Ga$_0.30$As on GaAs substrates at 800 °C. Photoluminescence (PL) intensity of Er-related emission around 1.54 μm was enhanced by co-implanted oxygen (O). The optimum dose of Er ion was 1×10^{14} cm$^{-2}$ and O ion was 1×10^{15} cm$^{-2}$, respectively. Furthermore, from the temperature dependence of the PL intensity of sample implanted with the optimum dose, we estimated the values of E_1, E_2, and E_3, the activation energies in order to investigate the rapid thermal quenching of Er ion in Al$_0.70$Ga$_0.30$As. We found that PL intensity of Er-related emission, in addition to O dose, was enhanced approximately twenty two times at room temperature. And from the temperature dependence of the lifetime of the optimum dose of Er and O, the value 245 meV of E_A, the activation energy for the decrease of the lifetime, was nearly equal to the value 235 meV of E_3. Based on the result, the decrease of the lifetime confirms that the radiative efficiency is lower; therefore, we propose that rapid thermal quenching occurs at temperatures above 200 K due to the decrease of the radiative efficiency.

INTRODUCTION

Rare-earth(RE) impurities in III-V semiconductors have attracted much attention due to their potential applications in new emitting devices and based on the internal emission from the 4f levels of the impurity. The intra-4f shell transitions cause sharp and temperature-stable luminescence because of shielding by outer electronic shells. [1,2] Therefore the research on the optical devices, which involves RE element, has been advanced. Er is attractive for obtaining light emitting device in silica-fiber-based optical communication systems. As a matter of fact, the luminescence from Er$^{3+}$ ion occurs at a wavelength of 1.54 μm [3,4], which corresponds to the minimum absorption of silica-based optical fibers.

However Er-doped semiconductors have problems such as low energy transition efficiency from the host semiconductor to the intra-4f-shell of Er$^{3+}$ ions. Therefore it is important that we understand the mechanism of the energy transition. We have
previously reported photoluminescence (PL) properties for the dependence of the composition ratio \(x \) in \(\text{Al}_{x}\text{Ga}_{1-x}\text{As} \), and the influence of light elements (O, N, and C) on the low dosage \(1\times10^{13}\text{cm}^{-2} \) of Er. [4]

In this work, we studied the influence of O on \(\text{Er}^{3+} \)-related emission with the high Er doses ranging from \(1\times10^{14}\text{cm}^{-2} \) to \(1\times10^{15}\text{cm}^{-2} \).

EXPERIMENT

\(\text{Er}^{3+} \) ion of 1 MeV were implanted into undoped \(\text{Al}_{0.70}\text{Ga}_{0.30}\text{As} \) (100) grown by molecular beam epitaxy (MBE) with doses ranging from \(1\times10^{13}\text{cm}^{-2} \) to \(1\times10^{15}\text{cm}^{-2} \) at room temperature. The projected range (\(R_p \)) and straggling (\(\Delta R_p \)) for implant profile were calculated by materials computer program (TRIM) to be 205.7 and 58.4 nm, respectively. O ion were implanted into \(\text{Al}_{0.70}\text{Ga}_{0.30}\text{As}:\text{Er} \) with doses ranging from \(1\times10^{13}\text{cm}^{-2} \) to \(3\times10^{15}\text{cm}^{-2} \) at an energy of 130 keV. The \(R_p \) of the implanted O ions was almost the same as that of Er ions. After implantation, these samples were isochronally annealed for 10 min. at 800 \(^\circ \text{C} \), using the proximity cap method in \(\text{H}_2 \) atmosphere. In order to characterize the specimens, PL measurements were carried out using a 1m focal length double monochromator and photo-multiplier (Hamamatsu Photonics R5509-72). Samples were excited by the 488.0 nm line of an Ar ion laser with a power of 10 mW.

RESULTS AND DISCUSSION

In order to optimize the PL intensity of \(\text{Er}^{3+} \), dose dependence was investigated. Figure 1 shows the \(\text{Er} \)-related PL spectra of \(\text{Al}_{0.70}\text{Ga}_{0.30}\text{As}:\text{Er} \) for doses ranging from \(1\times10^{13}\text{cm}^{-2} \) to \(3\times10^{15}\text{cm}^{-2} \) measured at 15K. The several peaks were observed around 1500 nm, and the dominant peak is located 1539.6 nm. PL intensity of the dominant peak increased for Er doses ranging from \(1\times10^{13} \) to \(1\times10^{14}\text{cm}^{-2} \) and decreased for those from \(3\times10^{14} \) to \(1\times10^{15}\text{cm}^{-2} \). In the sample with Er dose of \(1\times10^{14}\text{cm}^{-2} \), the PL intensity of the dominant peak

![Figure 1](image-url)
at 1539.6 nm was maximum. The dominant peak intensity decreased with increasing the Er doses range above 1×10^{14} cm$^{-2}$.

Figure 2 shows the PL spectra of $\text{Al}_{0.70}\text{Ga}_{0.30}\text{As:Er,O}$ for different O doses and annealed at 800°C measured at 15K. As the O dose increased from 1×10^{14} cm$^{-2}$ to 1×10^{15} cm$^{-2}$, the dominant peak was stronger. In the sample, when O was co-implanted into the $\text{Al}_{0.70}\text{Ga}_{0.30}\text{As:Er}$ with a dose of 1×10^{15} cm$^{-2}$, the PL intensity of the dominant peak became maximum. The peak intensity decreased with increasing the O doses from 1×10^{15} cm$^{-2}$ to 3×10^{15} cm$^{-2}$. We consider that the PL intensity in the sample with the O dose at 3×10^{15} cm$^{-2}$ decreases because the defects attributed to O co-doping disturb the energy transition efficiency from the host material to the intra-4f-shell of Er$^{3+}$ ions. Based on the results, the O dose required to obtain the maximum PL intensity at the dominant peak is concluded to be 1×10^{15} cm$^{-2}$.

Figure 3 shows the temperature dependence of PL intensity for $\text{Al}_{0.70}\text{Ga}_{0.30}\text{As:Er,O}$ at Er dose of 1×10^{14} cm$^{-2}$ and O dose of 1×10^{15} cm$^{-2}$. From Figure 3, we can observe a peculiar three-step quenching process in PL intensity of Er:1×10^{14} cm$^{-2}$ without O and Er:1×10^{14}, O:1×10^{15} cm$^{-2}$. The PL intensity rapidly decreased above 200K. Furthermore, at room temperature the PL intensity of Er-related emission from the sample co-implanted with O at a dose of 1×10^{15} cm$^{-2}$ was twenty two times stronger than that from the sample implanted with
only Er:1x10^{14} \text{cm}^{-2}. The experimental data for Al_{0.7}Ga_{0.3}:Er,O are plotted together with the theoretical lines (solid line) of the best fit obtained using Eq. (1) using parameters (C_1,C_2,C_3,E_1,E_2,E_3) shown in table 1.[6-8]

\[
I = I_0 / \{1 + C_1 \exp(-E_1/kT) + C_2 \exp(-E_2/kT) + C_3 \exp(-E_3/kT)\} \quad (1)
\]

\[
1/\tau(T) = 1/\tau_r + 1/\tau_n \quad (2)
\]

Where \(\tau_n\) (the non-radiative lifetime) was assumed as follows:

\[
1/\tau_n = C_A \exp(-E_A/kT) \quad (3)
\]

Table 1. Activation energies obtained by fitting experimental results to Eqs. (1) and (2).

<table>
<thead>
<tr>
<th>PL Intensity</th>
<th>(C_1) (E_1) (meV)</th>
<th>(C_2) (E_2) (meV)</th>
<th>(C_3) (E_3) (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er:1x10^{14} \text{cm}^{-2}</td>
<td>5.0</td>
<td>14.0</td>
<td>50</td>
</tr>
<tr>
<td>Er:1x10^{14} \text{cm}^{-2}</td>
<td>O:1x10^{15} \text{cm}^{-2}</td>
<td>3.0</td>
<td>11.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lifetime</th>
<th>(C_A) (E_A) (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er:1x10^{14} \text{cm}^{-2}</td>
<td>1.7</td>
</tr>
<tr>
<td>Er:1x10^{14} \text{cm}^{-2}</td>
<td>O:1x10^{15} \text{cm}^{-2}</td>
</tr>
</tbody>
</table>

In the above equation, \(I_0\) is the intensity when the electron emission from the Er-related trap can be neglected. Hence it corresponds to the intensity at a very low temperature. \(T\) is the measuring temperature, \(E_1, E_2, E_3\) and \(E_A\), are activation energies respectively, and \(k\) is the Boltzmann constant. \(C_1, C_2, C_3\) and \(C_A\) are the coupling coefficient at \(E_1, E_2, E_3\) and \(E_A\), respectively. \(\tau\) and \(\tau_r\) are the lifetime and the radiative lifetime, respectively. These \(E_2\), and \(E_3\) values were 50-60 meV and 235 meV, respectively. Moreover, \(E_A\) values were 235-245
meV. On the other hand, the value 235 meV of E_3, the activation energy for rapid thermal quenching, was nearly equal to the value 235-245 meV of E_A, activation energy for the decrease of the lifetime. Based Eq. (2), the decrease of the lifetime confirms that the radiative efficiency is lower; therefore, we propose that rapid thermal quenching occurs above 200 K due to the decrease of the radiative efficiency. In addition, we infer that activation energy E_F is the ionization energies of the e-h pair in the Er$^{3+}$-related trap level because it has been reported that the ionization energy is about 10 meV.[4,7]

CONCLUSION

In order to increase Er-related emission in Al$_{0.70}$Ga$_{0.30}$As, we examined dose dependence of Er and O. It was found that the optimum dose range for Al$_{0.70}$Ga$_{0.30}$As:Er was 1×10^{14} cm$^{-2}$, based on the dose dependence, and the optimum O dose range for Al$_{0.70}$Ga$_{0.30}$As:Er was 1×10^{14} cm$^{-2}$, based on the O dose dependence. The PL intensity of Er-related emission, in addition to O dose, was enhanced approximately twenty two times at room temperature. From the temperature dependence of the PL intensity and the lifetime, E_3 (235 meV), the activation energy for rapid thermal quenching, was nearly equal to E_A (235-245 meV) the activation energy for the decrease of the lifetime. Based on the result, the decrease of the lifetime confirms that the radiative efficiency is lower; therefore, we propose that rapid thermal quenching occurs above 200 K due to the decrease of the radiative efficiency.

ACKNOWLEDGEMENTS

The authors thank Dr. Sato of the Research of Ion Beam Technology Hosei University, and Tosihiko Kanayama of the Electrotechnical Laboratory for technical support on low-energy ion implantation. This work is supported in part by a Grant-in-Aid for Faculty Collaborative Research Grant from the Institute of Science and Technology at Meiji University High-Technology Research Center.

REFERENCES