This paper is part of the following report:

TITLE: Operational Issues of Aging Crewmembers
[les Consequences operationnelles du vieillissement des equipages]

To order the complete compilation report, use: ADA388423

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP010557 thru ADP010582
GROWTH HORMONE AND AGING

J.A.F. Tresguerres, Perez Romero, N. de las Heras, S. Vazquez, C. Ariznavarreta
Complutense University
Department of Physiology, School of Medicine
28040 Madrid
Spain

Introduction

Growth hormone (GH) is a peptide containing 191 aminoacids that is secreted by the acidofilic cells of the pituitary and has a very important action on growth during infancy and adolescence (Devesa et al 1996). To perform this action GH needs the collaboration of a full series of factors such as, thyroid hormones and sexual hormones together with an appropriate nutrition.

GH is under the hypothalamic control of two peptides, one stimulating, GHRH firstly discovered in 1.982 (Guillemin et al 1982, Rivier et al 1982), and another inhibitory, somatostatin, that is a tetradecapeptide, discovered in 1973 by Brazeau et al (1973).

Interaction between GHRH and somatostatin plays a significant role in the secretion of GH and somatostatin seems to play the major role (Devesa and Tresguerres 1996). GHRH is secreted in peaks as well as somatostatin, both with 180° shift, so that the GH peak appears when GHRH levels are high, and somatostatin levels are low. GH disappears from blood when somatostatin values are high in the hypothalamus and GHRH is low (Tanenbaum and Link 1983). This control is exerted so that GH is secreted every 3h. approximately, with higher amplitude during the night, actually during slow wave sleep. Some of the actions of GH are exerted through an intermediary product, IGF-I, that it is synthetized in the liver and in other tissues under the stimulation of GH (Tresguerres 1996).

IGF-I is a peptide of 70 aminoacids that shows similarities with proinsulin and acts on a paracrine way on the growth plates of the long bones stimulating the multiplication of chondrocytes and determining growth. IGF-I generated in the liver under GH stimulation circulates in the blood bound to a series of transport proteins called IGF-BPS that are also GH dependent, especially IGF-BP 3. However the most important role is exerted by this a peptide, when synthesized locally in a paracrine way (Tresguerres1996).

Aging as a model of GH deficiency

GH stimulates growth when given to children or adolescents as substitution therapy to treat an deficiency so that children are capable of reaching a normal stature if treated conveniently and starting from a very young age (Casado de Frias et al 1996). The therapeutical use with GH started in 1957 (Raven et al 1957) and from that time on an evident beneficial action of GH therapy has been obtained in those patients. However when those children reached puberty and the growth plates became closed, GH therapy was discontinued since it was considered as not playing afterwards any significant role in the body.

However when a very broad study was performed some years ago, investigating the evolution in the adult age of those patients that were treated as children with GH, a significant number of problems were detected that included an abnormal composition of the body, with increase in central fat and muscular weakness with a reduction in bone density, fatigue and reduction of the subjective sensation of well being (Sassolas 1994). In addition an increase in cardiovascular mortality, has been detected (Rosen and Bengtsson 1990, Bates et al 1996). All this facts make evident that GH is also important in a full series of vital functions in our body also after final height has been achieved.

The aging process in man is associated with a reduction in muscular and bone mass together with an increase in body fat (Forbes 1976). Aged people show very reduced GH and GFI values in plasma as compared to young individuals (Toogoot, and Colls 1996), so that the observed metabolic changes have been correlated with body composition and the reduction of GH and IGF-I levels, starting to speak about the existence of a true “somatopause” (Hoffman et al 1993). All these processes are evident after sixty years of age, so that aging itself could be considered as a form of “GH deficiency”. Old people show muscular atrophy, an increase in central fat together with osteoporosis and a reduction in the immunological competence, so that neoplastic processes are favoured (Iglesias et al 1996). All
these changes can be influenced by the exogenous administration of GH, since the substitution therapy with this hormone stimulates muscular development, induces loss of fat tissue and enhances bone density (De Boer et al 1995, Gibney et al 1999).

The mechanisms that could play a role in the reduction of the GH associated with age have been thoroughly investigated and the following ethyologies are possible: 1) Reduction in hypothalamic GHRH, 2) An Increase in somatostatin secretion, 3) Reduction in the number of somatotrophic cells in the pituitary, 4) Increase the sensitivity to the negative feedback of IGF1.

The majority of papers agree that the principal alterations during somatopause should be located in the hypothalamus. A reduction in GHRH secretion (Ono et al 1986, De Gennaro Colonna et al 1989) and/or an increase in somatostatinergic activity (Locatelli et al 1984) seem to be responsible for the appearance of very low plasma GH levels during aging.

Another important fact that needs to be taken into account is, that GH secretion is dependent of slow wave sleep (Van Cauter and Plat 1996). During aging a reduction in this type of sleep has been detected. This is probably motivated by a reduction of the nocturnal melatonin secretion (Copinschy and Van Cauter 1995), that could play also a role in GH diminution.

**Substitution therapy of GH deficiency during aging.**

Since the important work performed by Rudman et al (1990), it has been demonstrated that treatment with GH, in old people can exert a very positive role in the reduction of hormonal and metabolic changes associated with aging. GH administration to men older than sixty years of age is capable of restoring IGF1 levels to approximately those appearing in young persons including an increase in muscular mass, bone density and the reduction in the percentage of body fat (Rudman et al 1990, Holloway et al 1994, Cuttica et al 1997). Adverse side effects can appear if the treatment is prolonged and high dosages of GH are used, but always those secondary effects are of minor entity. When low doses of GH were used for a period of 10 years of treatment side effects were nearly absent (Gibney et al 1999).

Experimental studies have been performed in rats, that were treated over small periods of time, always lower than fifteen days, showing the same positive effects observed in men (Cartee et al 1996): increases in muscular mass and in heart weight (De Gennaro, Colona y Colls 1993).

**Effects on muscular system**

Physiological aging shows a reduction in lean body mass with an increase in body fat that is associated with a reduction in the capacity to perform exercise and also leads to cardiovascular alterations especially by the existence of hyperlipidemia (Rosen and Bengtsson 1990).

These changes are similar to those appearing during GH deficiency (Rosen et al 1993). In all those cases treatment with the biologic synthetic GH increases basal metabolism (Van Wyck et al 1988) with the establishment of a positive nitrogen balance (Valk et al 1994) due to an enhancement of aminoacid absorption in the digestive system (Copeland and Nair 1994). This also stimulates protein synthesis and leads to an increase in muscular mass (Juel 1996), in physical strength (Jorgensen et al 1991) and to the normalization of lean body mass (Salomon et al 1989).

**Effects on the cardiovascular system**

GH has been shown to increase cardiac function (Amato et al 1993), increasing left ventricular mass and left ventricular output (Valcavi et al 1995). As a consequence, there is an increase in the capacity to perform exercise with an increase in oxygen consume (Nass et al 1995). Carotid intima thickness was also reduced (Gibney et al 1999).

GH administration reduces cholesterol levels (Weaver et al 1995), redistributing and reducing body fat and this leading to a reduction in cardiovascular risk.

Substitution therapy with GH has a beneficial effect inducing a lipolitic action on the adipocytes and establishing a better relationship HDL / LDL cholesterol (Beshyah et al 1995 and Angelopoulos et al 1998). All these effects are maintained also when the treatment is maintained for long periods of time. Jorgensen et al (1994) have shown patients treated for more than three years without the appearance of important secondary effects and Gibney et al (1999) for more than 10 years so that recently the treatment of the dilated cardiomiopaty with GH has been proposed (Osterziel et al 1998) as well as other cardiac diseases.

**Actions on the bone**

One of the problems that has direct incidence on the quality of life of aged patients is the reduction of bone mass. This problem is more evident in the woman and can be, at least partially
prevented in those, with the substitution therapy with sexual hormones after menopause. The reduction in bone mass can very markedly limit motility and can also generate pathologies that are potentially very serious, like hip fractures and vertebral crushing (Iglesias et al 1996). GH administration increases calcium, phosphate and osteocalcin levels in plasma. Under GH deficiency there is a reduction in mineral bone density (Dagerblad et al 1995) similar to what happens during aging. Treatment with GH is capable of increasing bone turnover. Thus the rationale for treatment of bone problems with GH seems logical. In the case of women, this treatment can be associated with sexual steroids (Holloway et al 1994), potentiating the beneficial effects of those. In experimental studies GH increases Calcium absorption in old rats and both GH, IGF I are capable of stimulating directly the osteoblastic activity (Kassem et al 1993), so GH treatment is capable of increasing bone mass in patients with GH deficiency (O’Halloran et al 1993).

Experimental studies
Experimental studies performed in our laboratory, using aged rats showed that the daily administration of GH to animals of 24 months of age elicited beneficial effects in the same way as those seen in humans. Animals treated during one month with 2 UI of GH subcutaneously twice a day showed and increase in muscular mass, with an increase in lean body mass, and a reduction of body fat. IGF I levels were increased as well as osteocalcin whereas alcaline phosphate was reduced. Blood cholesterol was not modified but free fatty acids were increased as a result of lipolysis.

Effects on the quality of life
Hypopituitarism is associated with higher cardiovascular mortality (Rosen and Bengtson 1990, Bates et al 1996). In the old population, higher cholesterol and trigliceride levels are present, with an increase in central body fat, that is related to cardiovascular risk. Substitution therapy with GH leads to a significant reduction of those parameters (Rosen et al 1993, Gibney et al 1999), together with an increase in physical capacity (Jorgensen et al 1991) and a better cardiac performance (Amato et al 1993). This is associated with an increase in the sense of well being.

Acknowledgement
This work has been supported by a grant of CAM 08.4/0014/98

REFERENCES


27. Nass R, Huber RM, Klaus V, Müller OA, Schopohl J, Strasburger CJ. Effect of hGH replacement therapy on physical work capacity and cardiac and pulmonary function in patients with hGH deficiency acquired in adulthood.


