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A NEW BEAM FINITE ELEMENT WITH SEVEN DEGREES OF FREEDOM
AT EACH NODE FOR THE STUDY OF COUPLED BENDING-TORSION VIBRATIONS
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1. INTRODUCTION AD"'P003 648

E§The subject matter of the first part or tnis study 1s the deri-
vation of coupled bending-torsion relations characterizing the dyna-
mical behaviour of unsymetrical cross-section beams. This allows for
the further definition of a beam element with seven degrees of free-
dom per node. The numerical results obtained with the FEM are compa-
red to experiment in some section shape cases.

In order to characterize the displacement field of considered
beams, the method of integrated displacements allows us to consider
the so-called secondary effects: longitudinal warping inertia, and
shear deformation due to both shearing forces and nonuniform warping.
The literature on dynamical flexure and torsion of beams is extensi-
ve. Cowper {I3 for flexure and Gay-Boudet f2P>for torsion introduce
integrated displacements, We extendin the following this notion to
the study of coupled bending-torsion of an homogeneous straight beam.
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2. BASIC THEORY /T\

2.1 Displacement Field

1 is the domain occupied by the cross-section. I' is the bounda-
ry, and G is the centroid. In the plane of the section, the principal
axis are noted Gx2,Gx3. C (c2,c3) is the shear center, as defined by
Trefftz [3] (figure 1).

The displacement of any point M of the beam is noted x (x1),
with components Xj (i=1,2,3). Let us define the seven d1sp1acement
parameters:

Three angular parameters: 0j(x;,t) = %;f(GQX§M).§i aQ (1-a)
1Q
Three linear parameters: Uj(x;,t) = é éim';i dQ (1-b)
. 1
A warping parameter: é(xl,t) = E} f¢.x1 dQ (1-¢)
Q

¢(x2,%x3) is the Saint-Venant warping function defined in C, and

Iy = f@z dQ is the quadratic warping moment,
Q _
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X =T + GMx§ + 0dx, + 7 (2)

According to the above definitions, necessary orthogonality conditi-~
ons hold in the domain § for the functions 1, x2, x3, &, n;, together

with: ‘._,_ ®
[n, 42 = fn, dQ = [(x,n; - x;n,) dQ = 0 (3)
Q Q a2

2.2 Equations of Motion @ o

Assuming the lateral surface of the beam free of any force, we
take into account as first hypothesis (H,1) the assumption that nor-
mal stresses U, and O33 are expected to be negligible compared to
011. Then, the principle of virtual work associated with the displa-

ne—

cement field (2) leads to the classical set of motion equations: 9 L
> -+ -+
psuttt = Fyl +p (4-a,b,c)
p[l]g'tt * ﬁ!x +m o+ ;le (5-a,b,c) -
D’ .
And the seventh motion equation is the bimoment one: S
PI1g8,t¢ = B,, + b + (M;=GJB,,,) = c,Fy + c;F, (6) o
CRY )

dQ is the generalized bimoment,

in which B = [¢0,,
Q

2.3 Constitutive Equations

In order to obtain a technical formulation for the constitutive .
equations, we asgume as second hypothesis (H.,2) that the change in K L4
the deformation n of two infinitely near adjacent cross sections is
neglected in order to evaluate the longitudinal and shear stresses
01§, j = 1,2,3. Thus, startiag from the Hooke's law for a linear elas-
tic body, the constitutive equations below are deduced from integra-
tions over the domain of the section:

F M o B
up,; = Eg ;3 02,1 = E% ;3 B3,y = —% i O, = - (7-a,b,c,d)
2 3 ¢

4

Moreover, noting that the first component Nn; of ; (2) is essentially

due to the shear forces F,, F3 and nonuniform warping moment noted ‘® °
Magw = (M1-GJ61,1), we obtain the three followed coupled relations
written in matrix form:

01,0 -0 1 [ X,, =K, -Ki3 ] [Maw/G(I;=3)]

U2,1 ~ 93' ‘.3é = -Kzl Kzz ~K23 FZ/GS * (8-a,b,c)

U3,1 + 62+ Czé -K3l 'K32 K33 F3/GS
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In (8) appear nine shear coefficients with the symmetryproper-

ties:

K,s = K,,

J

K1‘=K

........
........

I,-J
jrE

U
N

Starting from the local equilibrium of continuous media, we

show that the shear coefficients K

can be computed after solving

three Poisson's problems in the cross section, namely:

‘ Vig = f(x,,%x;) over Q, with successively f = x,,x,,9,

dg/on = 0 along the bcundary T

with [g dQ = 0

Q

For the complete expressions of K.

tioned relations (Ij, J, lg, KIJ,
a boundary element method [4].

3. FINITE ELEMENT FORMULATION

For the setting up of a finite element formulation,

jj» see appendix A, The effective
calculus of all bending-torsion constants involved in the aforemen-
cij) has been performed by means of

let us

first look at the technical expressions of potential and kinetic

energies.

3.1 Potentiul Strz2in Energy V(x),t)

For a team element of length dx,,

general form »{ strain energy:

reduces to:

Consideraticr

in which:

1
vy = {2

1
Vo1 = 5 1(011511 +
fl

of (2) and H.2 leads

and according to H.!, the

foijside}dxl
Q

20 (1)

12612 ¥ 20,3€,;) 4dQ

to the practical expressions:

Voy = Vgay * Vi (12)
F3 M3 MZ B2
Vc’l = ; { ! + — + —-3 + — } (13—3)
ES EI, EI, EI,
2 2 2
1 F F MAuw
v = =~ {K -2 4 ~3 + —
Tl T2 T2 g 33 6s Hog(r,-n)
(GJGJ’1)2 F3 Mnuw {
- T (Kza*Kaz)‘EE - EYII_J) 2 (Kot Koy + 0

e
I

'3 (9-a,b,c)

(10-a,b,c)
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Fs(!(13+1—é— K;;)} (13-b)
3.2 Kinetic Energy
In the same way, we retain the simple expression:
T,, =2 o5(T,e)%+ 3 pLeBiy + 1 018, Y118, ) (14)
3.3 Definition of the Element

Seven displacements per node k characterize the motion of
two-nodes beam element, In a matricial form: \

T
{wk} - [“1:“2nean“3'ezoe1oé]k

Substituting the static case for the quasi-static dynamiz
leads to an interpolation matrix [A] not detailed here, allowin  a
displacement field in the form of:

one

fW(x, )} = [A(x)]{W(E)) (15)

- o)

Stiffness Matrix

{(W(e)}

where

3.4

Introducing the displacement field (15), the element strain
energy is obtained after integration of (13) over the length & of the
element, and written in the matrix form:

2v = {WF[p] (W}

We detail in Appendix B the stiffness matrix [D] in the simpli-
fied case 1#J+K-JNO. It can be noted that, for symetrical section sha-
pe cases and for uniform warping (Saint-Venant torsion), this stif-
fness matrix reduces to the classical one derived by Przemieniecki [5].

3.5 Mass Matrix

The calculus of the kinetic energy for the whole element by
means of (15) leads to the form:

= {ﬁat}T[M] {&’t}

in which [M] is a consistent mass matrix, reached after very heavy
calculus. In the much more simpler case of lumped mass approximation,
the kinetic energy reduces to:
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2T = P -2—2 { Z (SURj,t + Ijekj’t) + Iéék’t}
k=l,2 J=1.2.3

from which a simple diagonal mass-matrix is easily derived.

4, APPLICATIONS

Numerical and experimental tests have been performed on several
cantilever beams. For the dynamical fleuiure and torsion of a rectan-
gular section beam, numerical values of frequencies provided by FEM
and analytical ones are in good agreement with the experiment, espe-
cially for high frequencies. The dynamical torsicu of amI-section
beam has been likewise investigated. In such a case, exact analytical
values of torsional constants cannot be reached, needing a previous
computational wock., The results for dynamical case are detailed in
reference [6], and some of them are recalled in appendix C. In a same
manner, we have also tested two U-section beams (thick and thin). Here
coupling between flexure and torsion occurs, and the whole theory abo-
ve applies. We shall present both numerical and experimental frequen-
cies. Rather good agreement can ve noted for all tests,the rank of
the modes concerned depending can the number of elements of the discre=-
tization,

5. CONCLUSION

The study of coupled bending-torsion can be performed with ac-
ceptable accuracy by means of the formulation above, starting from
the definition of seven displacements parameters in each section of
the beam, The finite element derived allows a simple numerical pre-
diction of the dynamical behaviour of beams with any cross sections.
Nevertheless, we must keep in mind that an accurate computation of
courled bending-torsion constants is the first stage when using this
elemant,

NOMENCLATURE

E,G Young's and shear mocdulus.

$,1,,{,,I; Cross section area and quadratic moments of inertia in G.

Iy Quadratic warping moment.

J Saint-Venant's torsional rigidity.

F,,F,,F, Normal and shear forces.

M,,M,,H, Torsion torque and bending moments.

ﬁ,g Linear and angular displacement vectors (components:u; and Gi).
;i Unit vectcrs of principal axis.

p Mass per unit volume.

( ),; Partial derivative with respect to xj.

( )’t id. with time t.

9 /9n Outward normal derivative along the boundary T.

;,g,b Distributed forces, woments and bimoment along the beam,
[1] Diagonal inertia matrix of cross section.

Complementary displacement vectc.,
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Lﬂgendix A
Shear Coefficients Kij

Solutions of (10-a,b,c) allow the knowledge of the functione
8ig(i=1,2,%) verifying over the domain @ of the cross-section:

Sc S
2 or3 - —
Vg, 1 I X,
Sc S
Vig,, = ~=2 & - — x,
Ig I,
I,-J
Vzgao = I d
¢

with 9g;,/0n = 0 ; i=1,2,3 along the boundary I.

Then, the Kij are deduced in thez form of:
_L

K =
11 Id)

f¢830 a0
9}

and for i,j=2,3 ; i#j ; k=j-1 :
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] L3 c.
Kji = - ij Bk, 40 + (j-i) I f¢gko dQ
I:-J
Kj1 " 57 108k 90
I,-J 1 c,
— K;; = -— [x; d@ + (i-j) =i [ogy, d
S 1] I; £ i 839 (i-§) To é g3o0 dQ

———————

The properties of symetry of the Kj ij are shown by means of the

Green-Gauss theorem, and we find:

I:-J
Kas = Ky 5 Ky = = Kyj

Appendix B
Stiffness Matrix [D]

We introduce the following dimensionless notations:

\2‘2
I - L ¥ O VY

o= 1+ K
R IEY aET¢ ' ehaged

= {1 - - .1_3 JL_2 - -1
Is ko {¢x (ak,-2) + (1+¢3 1o )(k 2)}

El ko I
o, = 12 K, —0 B1 = & BT (Z-RI)

! G(I,-J)2? ; ¢,
2,3 + ¢ 12 Elj 8 K {ifs
i=2,3 j- Kij G3g2 R j (2-k,)

Then, the symetry properties of [D] leads to the following

terms, in the simplified case : i#j*Kijﬁo.

ES s 8
d} = dg = -d; = —d? = ; others d} = 43 = 4:

= g =
1 i = d%

12 EI;
2 (1+83)

d? = dj = -d} =5
2 s £3(1+93)
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2 2
d3 = d%o - -d?o - —d: = 3 di
12 EI 12 EI
dz - d9 = —d = -d“ = ———-—--»-———3- B /c = _——-—-—-—i—-
o« T dn 1 P oat(ees) 2 S22 T TR g )

20 42 o _q5 o 49 3 %
dg= dj, = =dg = -d}, = =d, = -d}, = d}, = -5 a2

2 - 9 - - 2 - 3 ]2 EIa
ds d13 d13 = ds -23(l+¢3) 1 c3

Iy ¢y

d? = g% = -7 « -g°
7 14 l+¢3

9

=k, GJ

El;
L(1+d3)

Q.
- w
|
o
LR
oo
[ ]

(4+9,+38,)

12 EI, 8
11 2«3(]'0'4’2) 1 cz
I2 ¢c2
1+,

4 ? 11
dy = d}, = d] = -d}! = -k, GJ

EI,

2(1+¢2) (4+9,+38,)

5 El2 (2-0.+38.)
L(1+d2) 2 2
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GJ
6 6 7 13
d7'd1.‘ = -dl3 g_dI“ ==ko IQ;
1
GJk 1 I2 c3 I3 c G
a7 = A}t e o {-® (ghAg -aAlchAR) + o ( 2, 2 5) . & e
; aA(chAf=1) ¢, 1+9, 1403 o
2 2 “;. ®
GJk I I2 ¢ I X
a7, = ———2 {Z® (ghAL - aAl) + O (—— + ——2)(shAL - AR)} .
ail(chAl=-1) ¢, 1+02 1+9,
h;—&m—v.—u—-w-
Appendix C
The study of natural torsional frequencies of a cantilever beam
performed by means of the finite element procedure has been compared
to the experimental datas. The results concerning the relative error e
are shown on table ! below. . ® ®
MODE N° ] 2 3 4 5 6 7 8 9 10 .
_ SR D .0
ERROR X 0. 0.9 0. 0.7 | -1, 0,9 | =1.6 | -1.3 0.1 2, ’
Table 1. .
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